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Chapter 1

Overview

Spoken Tutorial and Soul project of FOSSEE (Free/Libre and Open Source Soft-
ware for Education) are projects at Indian Institute of Technology Bombay. They
aim to promote the use of open source tools throughout India and reduce the use of
proprietary software.

During my three-month fellowship, I was asked to create projects using GeoGe-
bra for Mathematics. To create these projects, I did extensive research, created the
constructions on Calculus and Statistics in GeoGebra.

I provide below a brief idea of each of my projects, describing in brief, the topic,
and the construction procedure for each.
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Chapter 2

FOSSEE and SOUL

2.1 FOSSEE

FOSSEE(Free/Libre and Open Source Software for Education) project promotes
the use of FLOSS tools in academia and research. The FOSSEE project is part
of the National Mission on Education through Information and Communication
Technology (ICT), Ministry of Education (MoE), Government of India. Science
Open source Software for Teaching Learning or SOUL for short is one of the projects
which is promoted by FOSSEE.

2.2 SOUL

SOUL (Science OpensoUrce Software for Teaching Learning) is an attempt to put
together popular ICT software used as teaching/learning tools by the community of
educators and learners in basic concepts and advanced learning of Science subjects.
These software can be used as ICT tools for topics in science subjects in classroom
teaching and learning.
Learners can learn the software using the resources available for each of these soft-
ware on SOUL website. They can create a project on a particular topic using the
available software.
This website can be used as a platform to showcase the completed projects using
the software promoted on this page. These projects will be available as resource
material for all the interested educators and learners.
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Chapter 3

GeoGebra Constructions in
Calculus

I worked on the following projects. A short description, steps, and a link to the
exported web pages of each of the projects is provided below:

3.1 Trigonometric Limits

Fig: 3.1: Trigonometric Limits for sine, cosine, and tan

Limits help us understand how functions behave as their input values approach
specific points. In the case of trigonometric functions, limits allow us to determine
what happens to the function as the input gets closer and closer to a particular
value.
For example, consider the function f(x) = sin(x)/x. As x approaches 0, we want to
know what happens to the function. By calculating the limit of f(x) as x approaches
0 (written as lim(x→0) f(x)), we can find that the limit is equal to 1. This means
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that as x gets closer and closer to 0, the value of f(x) tends to 1. Limits provide
insights into the behaviour of trigonometric functions near specific points, which is
useful in various fields such as calculus, physics, and engineering.

Steps

1. Open GeoGebra 6 and Create a new file.

2. Add a trigonometric function.
In the Algebra view, locate the input box at the top. Type the trigonometric
function ”f(x) = sin(x)/x,” to represent the limit of sin(x)/x as x approaches
0.

3. Include a slider.
To demonstrate the concept of a limit, add a slider to control the value of x.
In the Algebra view, click on the ”+” icon and select ”Slider.” Specify the
name as ”a”, minimum as ”-8”, maximum as ”8”, and increment as ”1” for
the slider.

4. Define the limit function.
Create a new function that represents the limit of the trigonometric function.
In the Algebra view, click on the ”+” icon and select ”Function.” Use the
”Limit” command to define the limit function. Now create a function ”g(a) =
Limit(f(x), a)” for the limit of sin(x)/x as x approaches a.

5. Visualize the limit
Select the ”Point” tool from the toolbar. Place the point on the graph to repre-
sent the limit value. Use the input bar at the bottom to enter the coordinates
of the point as ”(a, g(a))”.

6. Type the trigonometric function ”h(x) = cos(x)/x,” to represent the limit of
cos(x)/x as x approaches 0. and follow the same steps.

7. Type trigonometric function ”j(x) =tan(x)/x,” to represent the limit of tan(x)/x
as x approaches 0. and follow the same steps.
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Fig: Trigonometric limits for Sin

Fig: Trigonometric limits for Cos

7



Fig: Trigonometric limits for Tan

https://www.geogebra.org/m/h6ykaby4

3.2 L’Hopital’s Rule

Fig: Implementation of L’Hopital’s Rule

Here I have used GeoGebra to explore the application of L’Hopital’s Rule in eval-
uating limits. Two functions, f(x) and g(x), were defined and their derivatives
determined. A slider ”c” symbolizing the approach value was integrated, allowing
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dynamic analysis. The values of f(c), g(c), f’(c), and g’(c) were computed to estab-
lish a base for the calculations. By plotting a point A at (c, 0) and presenting a
text box with the expression limx→c

f
g

= a
b

= (L′H) = limx→c
f ′

g′
= d

e
, the interaction

between the slider and visual elements highlighted the significance of L’Hopital’s
Rule in resolving limits. This hands-on approach fostered a deeper comprehension
of the mathematical concept.

Steps

1. Open GeoGebra and create a new file.

2. In the Algebra View, define the functions f(x) and g(x) as f(x) = x2 − xand
g(x) = x− 1, respectively. Also, find the derivatives of f(x) and g(x), denoted
as f’(x) and g’(x), which are f ′(x) = 2x− 1and g′(x) = 1, respectively.

3. Create a slider named ”c” with the value of 1. This slider represents the value
that x approaches as it tends to c.

4. Calculate the values of a, b, d, and e by evaluating the functions and deriva-
tives at the given value of c:

Set a as the result of evaluating f(c).
Set b as the result of evaluating g(c).
Set d as the result of evaluating f’(c).
Set e as the result of evaluating g’(c).

5. Create a point A at coordinates (c, 0) to represent the point on the graph.

6. Add a text box to display the L’Hopital’s rule and the limit expression. Write
the expression” limx→c

f
g

= a
b

= (L′H) = limx→c
f ′

g′
= d

e
” to represent the

equation.

7. Interact with the graph by moving the slider ”c” and observe how the graphs
and the text box change accordingly.

https://www.geogebra.org/m/pyxknyh3
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3.3 Midpoint, Trapezoidal, Simpson’s Rules

Fig: Midpoint, Trapezoidal, Simpson’s Rules

In this project, I used numerical integration techniques. The process involved defin-
ing a quadratic function, f(x), and subsequently applying integration techniques to
approximate definite integrals. The midpoint rule was employed using the Rectan-
gleSum function, precisely configuring parameters such as subintervals and displace-
ment.
The TrapezoidalSum function was then utilized for the trapezoidal rule approxima-
tion, enhancing understanding through practical implementation. The synthesis of
both methods via Simpson’s rule, achieved by blending their results with specific
weights, culminated in a comprehensive approximation. By seamlessly integrating
theory and application, this project offered a hands-on comprehension of numerical
integration principles and their real-world significance.

Steps

1. Open GeoGebra

2. Create a new file

3. Define the function f(x) = x2.

4. Calculate the midpoint rule using the RectangleSum function: Use the Rect-
angleSum function with the parameters: f(x), lower limit (0), upper limit (1),
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number of subintervals (4), and displacement (0.5).

5. Calculate the trapezoidal rule using the TrapezoidalSum function: Use the
TrapezoidalSum function with the parameters: f(x), lower limit (0), upper
limit (1), and number of subintervals (4).

6. Combine the midpoint and trapezoidal rule using Simpson’s rule: Multiply
the midpoint sum by (2/3) and the trapezoidal sum by (1/3). Add the results
together to get the Simpson’s rule approximation.

https://www.geogebra.org/m/gkcrbyns

3.4 Integration by Parts

Fig: Integration by Parts

In this GeoGebra project, the utilization of numerical integration techniques was
explored through practical implementation. A defined function, f(x) = sin(x3 +x),
was employed as the integrand, and constraints were established using g(x) to define
the

function within specific limits. The Trapezoidal Rule, involving six subintervals,
was harnessed to approximate the definite integral of f(x) over the interval [0, π/2].
Through GeoGebra commands, the calculated approximation was revealed, bolster-
ing understanding of the process. The final touch incorporated LaTeX notation to
elegantly portray the integral symbol, integration limits, and the computed approx-
imation. By merging theory and application, this project adeptly showcased the
potency of numerical integration in estimating complex functions and unveiled the
symbiotic relationship between mathematical concepts and practical execution.

11

https://www.geogebra.org/m/gkcrbyns


Steps

1. Open GeoGebra and create a new file.

2. Define the function f(x) as f(x) = sin(x3 + x). This function represents the
integrand.

3. Define the function g(x) as g(x) = if((−π/2) <= x <= (π/2), f(x)). This
function represents the integrand within the given limits of integration.

4. Set the value of n as 6. This represents the number of subintervals for the
Trapezoidal Rule.

5. Calculate the approximation of the definite integral using the Trapezoidal
Rule. To do this, use the command TrapezoidalSum(f, 0, π/2, n). This will
compute the integral of f(x) from 0 to π/2 and assign the approximation to
the variable ’a’.

6. Display the result. Use the command a to show the value of the approximation
on the screen.

7. To display the integral symbol and the limits of integration in the output, use

LaTeX notation. Write ’
∫ π

2
0 f(x)dx = a’ to represent the integral of f(x) from

0 to π/2 along with the computed approximation.

Fig: Integration by parts at n = 5

https://www.geogebra.org/m/awcj5wnj
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3.5 Area between Curve and X-axis(Applications

of Integration)

Fig: Area between Curve and X-axis

This GeoGebra project adeptly demonstrates the practical application of inte-
gration in calculating the area between a curve and the x-axis. By defining the
function f(x) = 0.25x2 + 2, the area of interest is identified. Through interactive
sliders for limits of integration (a and b), the user can dynamically set the interval.
The integration of f(x) over the interval [a, b] is calculated and its absolute value
obtained to ensure a positive area. By determining the x-intercepts and presenting
the formula text, the project visualizes the interval and equation of the area calcula-
tion. Through this interactive exploration, the project underscores the integration’s
utility in determining enclosed areas and provides an illustrative model of mathe-
matical applications in real-world contexts.

Steps

1. Define the function:
f(x) = 0.25x2 + 2. This represents the curve for which you want to find the
area between it and the x-axis.

2. Create sliders for a and b:
Create sliders for a and b to specify the limits of integration. Set the initial
values of a and b to -5 and 5, respectively.

3. Calculate the integral:
c = Integral(f, b, a). Calculate the definite integral of the function f(x) with
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respect to x, from x = a to x = b. The result is stored in the variable c.

4. Calculate the absolute value of the integral:
g = abs(c). Take the absolute value of the calculated integral c to ensure a
positive value for the area.

5. Find the x-intercepts of the curve:
A = Intersect(d, x − axis) and B = Intersect(e, x − axis). Calculate the
x-coordinates where the curve intersects the x-axis. These points will help
visualize the interval over which the area is being calculated.

6. Display the area and formula:
Area between the curve and the x-axis = integral from a to b of f(x) dx = g
square units. Display the formula for the area, including the integral notation
and the value of g, in the GeoGebra app.

7. Display the formula text:
text2 = FormulaText(c, true, true). Convert the calculated integral c into a
formatted formula text and store it in the variable text2. The ”true, true” pa-
rameters ensure that the text includes the integral symbol and the integration
limits.

Fig: Area between Curve and X-axis at limits (-3,3)

https://www.geogebra.org/m/ach6bs7f
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3.6 Rolle’s Theorem

Fig: Rolle’s Theorem

This GeoGebra project explores the characteristics of a cubic function and its tan-
gent lines within a defined interval. By defining functions and values, it demon-
strates the dynamic nature of calculus concepts. The project showcases tangent
lines, intersections, and derivatives, effectively illustrating the relationship between
the original function and its derivative. Through interactive manipulation of points
on the graph, the project visually underscores the horizontal tangent points where
the derivative equals a constant value. This hands-on approach offers an insightful
understanding of the interplay between a function and its derivative, demonstrating
the power of GeoGebra as a tool for visualizing and comprehending calculus princi-
ples in action.

Steps

1. Open GeoGebra and create a new graphing window.

2. Define the function f(x) by typing ”f(x) = x3 − 3x”, f ′(x) = f ′(x)” in the
input bar and press Enter.

3. Define the function p(x) using the If statement to restrict its domain to the
interval [a, b]. Type ”p(x) = If(a <= x <= b, f(x))” in the input bar and
press Enter.

4. Create a tangent line to the graph of f(x) at point D. Type ”c1 = Tangent(D, f)”
in the input bar and press Enter.

5. Define the values for a and b by typing ”a = -2” and ”b = 1” in the input bar,
respectively, and pressing Enter.
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6. Calculate the derivative of f(x) at point C. Type ”e = f ′(x(C))” in the input
bar and press Enter.

7. Define the coordinates for points A and B. Type ”A = (a, f(a))” and ”B =
(b, f(b))” in the input bar and press Enter.

8. Create point C as the intersection of the x-axis and the segment AB. Type
”C = Point(Segment((x(A), 0), (x(B), 0)))” in the input bar and press Enter.

9. Create point D as the intersection of the tangent line and the x-axis. Type
”D = Intersect(c1, x− axis)” in the input bar and press Enter.

10. Create a segment from point D to point C. Type ”d = Segment(D, C)” in the
input bar and press Enter.

11. Add a text label to display the values of x(C) and f’(c). Type ”c = x(C)Text(”c =
” + ToString(c) + ”f ′(c) = ” + ToString(e),−2, f(a) + 10)” in the input bar
and press Enter.

12. Move point C along the x-axis by clicking and dragging it. As you move the
point, the text label will update to show the corresponding values of x(C) and
f’(c).

13. Observe the function points where the tangent line is horizontal. These points
will correspond to the values of x(C) where f’(c) equals the constant value e.

https://www.geogebra.org/m/uxrhmwyd

3.7 Mean Value Theorem

Fig: Mean Value Theorem at t=1
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This GeoGebra project delves into the Mean Value Theorem’s practical appli-
cation, unraveling its significance in the context of a defined cubic function. By
employing graphical and analytical tools, the project elucidates the theorem’s con-
ditions. Through interactive point plotting and slider manipulation, the relation-
ship between tangent line slopes and secant line slopes is scrutinized. The project
effectively visualizes the theorem’s essence, illustrating how a parallel tangent and
secant line indicates a point within the interval satisfying the theorem’s criteria.
This hands-on exploration fosters a comprehensive understanding of calculus con-
cepts and their tangible implications, highlighting GeoGebra’s capability in bridging
theory with real-world observations.

Steps

1. Open GeoGebra and create a new file.

2. Define the function f(x) using the input provided: f(x) = x3 − 2x2 − 6x+ 10.
To do this, click on the ”Function” icon in the toolbar and enter the function
in the input box that appears.

3. Plot the graph of the function f(x) over the interval [-2, 3]. To do this, click on
the ”Function” icon again and select ”Function” from the drop-down menu.
Enter the function f(x) and the interval [-2, 3] in the input box.

4. Plot the point A at (-2, f(-2)). To do this, click on the ”Point” icon in the
toolbar and click at the coordinates (-2, f(-2)).

5. Plot the point B at (3, f(3)). Like step 4, click on the ”Point” icon and click
at the coordinates (3, f(3)).

6. Define the slider ”t” by clicking on the ”Slider” icon in the toolbar and as-
signing it the value of -1.

7. Plot the point C at (t, f(t)). To do this, click on the ”Point” icon, click on the
canvas to create a new point, and use the input box to specify the x-coordinate
as ”t” and the y-coordinate as ”f(t)”.

8. Calculate the slope of the line passing through points A and B, denoted as m2.
To do this, click on the ”Line through two points” icon in the toolbar, select
point A, and then select point B. The slope of the line will be displayed.

9. Calculate the slope of the tangent line to the curve at point C, denoted as m1.
To do this, click on the ”Tangent” icon in the toolbar, select point C, and the
tangent line will be displayed along with its slope.

10. Compare the slopes m1 and m2. If they are equal, it indicates that there exists
at least one point in the interval [-2, 3] where the tangent line is parallel to
the line passing through A and B, satisfying the conditions of the Mean Value
Theorem

11. Optionally, you can add labels or annotations to the graph and points for
clarity and visual appeal.
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12. You can interact with the slider ”t” to observe how the slope of the tangent
line changes as you move the point C along the curve.

https://www.geogebra.org/m/ydyjjmgs

3.8 Fundamental Theorem of Calculus

Fig: Fundamental Theorem of Calculus

This GeoGebra project engages with the Fundamental Theorem of Calculus by visu-
ally and interactively illustrating its concepts. Through intuitive steps, the definite
integral of a given function is explored. By defining functions and variables, the
project creates an interactive platform to showcase the relationship between definite
integrals and antiderivatives. Points and text elements are strategically placed to aid
understanding and facilitate interaction. The project encourages user engagement
by allowing the manipulation of the upper limit of the definite integral, providing
real-time visualization of area changes. By seamlessly integrating theory and prac-
tice, the project offers an insightful demonstration of the Fundamental Theorem’s
principles and GeoGebra’s utility in making complex calculus concepts accessible
and comprehensible.

Steps

1. Open GeoGebra and create a new file.

2. Define the function ”f(x) = 2sin(x) + 1” by typing it into the input bar or
using the ”Input” tool and selecting ”Function.”

3. Define the function ”g(x) = If(0 <= x <= x(A), Integral(f) + 2)” by typing
it into the input bar or using the ”Input” tool and selecting ”Function.” This
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function calculates the value of the integral of f(x) and adds 2 if the x-value is
within the range from 0 to x(A).

4. Define the variable ”a = Integral(f, 0, x(A))” by typing it into the input bar
or using the ”Input” tool and selecting ”Variable.” This variable represents
the value of the definite integral of f(x) from 0 to x(A).

5. Define the variable ”c1 = 0” by typing it into the input bar or using the
”Input” tool and selecting ”Variable.” This variable represents the constant
lower limit of the definite integral.

6. Create a point ”A” on the x-axis by selecting the ”Point” tool and clicking on
the x-axis. This point represents the upper limit of the definite integral.

7. Create a point ”B” by selecting the ”Point” tool and typing ”(x(A), a)” into
the input bar. This point represents the coordinates (x(A), a), where a is the
value of the definite integral.

8. Create a function ”F (x) = Integral(f, 0, x)” by typing it into the input bar
or using the ”Input” tool and selecting ”Function.” This function represents
the integral of f(x) from 0 to x.

9. Add a text element by selecting the ”Text” tool and clicking on the desired
location. Type ”F (x) =

∫ x
0 f(t)dt = a” to display the equation of the an-

tiderivative.

10. Add another text element by selecting the ”Text” tool and clicking on the
desired location. Type ”Drag the point x to change the upper limit of the
definite integral. Observe how the area changes with x” to provide instructions
to the user.

11. Add one more text element by selecting the ”Text” tool and clicking on the
desired location. Type ”text3 = FormulaText(f, true, true)” to display the
formula of f(x) in the project.

12. Arrange the elements in the construction as desired, adjusting their positions
and sizes as needed.

13. We can drag the point ”X” to change the upper limit of the definite integral,
and observe how the area changes accordingly. The function ”F(x)” represents
the antiderivative of f(x), and the text element ”text3” displays the formula
of f(x).

https://www.geogebra.org/m/yne4sdr7
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3.9 The Intermediate Value Theorem

Fig: Intermediate value Theorem

This GeoGebra project offers a dynamic visualization of the Intermediate Value The-
orem’s principles. Through strategically defined functions, points, and vectors, the
project conveys the theorem’s concept of continuity within an interval. By creating
intersections, lines, and segments, the project vividly illustrates potential x-values
that satisfy the theorem’s conditions. The use of vectors highlights the directional
aspects involved. Additionally, the inclusion of informative text further enhances
comprehension, addressing the possibility of multiple solutions. This interactive ap-
proach effectively bridges theory and practical application, showcasing GeoGebra’s
prowess in rendering complex mathematical concepts accessible and tangible. The
project provides an engaging exploration of the Intermediate Value Theorem’s sig-
nificance, demonstrating its real-world implications in an intuitive and interactive
manner.

Steps

1. Open GeoGebra and create a new file.

2. The function f(x) is defined based on the given conditions, using the If state-
ment to choose between the values of g(x) when x is within the interval [x(A),
x(B)].

3. The line l is created to be perpendicular to the x-axis at x = 0. This line will
be used to find the intersection point with the graph of g(x).

4. The intersection point between the line l and the graph of g(x) is calculated
using the points A and B. This point represents the possible value(s) of x that
satisfy the Intermediate Value Theorem.
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5. Various points are defined with their respective coordinates: A and B represent
the given x-coordinates with a y-coordinate of 0. C and D represent the x-
coordinates of the intersection point and the corresponding y-values obtained
from f(x). E and F represent the y-values obtained from f(x) at x(A) and x(B),
with x-coordinates of 0. H represents the first element (index 1) from the list
G, which contains the intersectionpoint(s) of g(x) and the line l. I represent
the x-coordinate of point H with a y-coordinate of 0. Y is a movable point
represented by m.

6. The line segments i, j, k, and m are created using the given points to visually
represent different segments of the graph.

7. The vector u is calculated based on the points Y and H. This vector represents
the direction and magnitude from point Y to the intersection point H.

8. The vector v is determined using the points H and I. This vector represents
the direction and magnitude from point H to the x-axis.

9. The text ivt4 is defined to display a message about the possibility of multiple
x values satisfying the Intermediate Value Theorem. If there are more than
one intersection point in the list G, this note will be shown to indicate that
there may be multiple x values satisfying the theorem.

https://www.geogebra.org/m/syzej44q

3.10 The Squeeze Theorem

Fig: The Squeeze Theorem
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This GeoGebra project elegantly explores the Squeeze Theorem, a fundamental con-
cept in calculus. Through interactive elements, the project vividly demonstrates how
functions are bounded and constrained within certain limits. By defining distinct
functions and incorporating dynamic sliders, the relationships between the functions
are established and visualized. Text explanations effectively introduce the theorem’s
relevance, while an animation button engages users in observing how the theorem op-
erates in real-time. The inclusion of a reset button ensures flexibility for exploration
and repetition. This project merges theory with interactive visualization, offering
an insightful understanding of the Squeeze Theorem’s applicability and GeoGebra’s
prowess in conveying complex mathematical principles through an intuitive interface.

Steps

1. Open GeoGebra and create a new file.

2. Define the functions f(x), g(x), and h(x) based on the given expressions:
f(x) = −x2
g(x) = x2

h(x) = x2 ∗ sin(1/x2)

3. Set up the sliders a, b, c, d, e, and i to allow for flexible input of numerical
values. These sliders will be used to define the coordinates of points in subse-
quent steps:
a, b, c, d, e, and i represent different numerical values.

4. . Define the points A, B, C, D, E, and F using the given sliders:
A = (a, f(a))
B = (b, f(b))
C = (c, g(c))
D = (d, g(d))
E = (e, h(e))
F = (i, h(i))

5. Create the texts text1 and text2 to provide explanations and state the Squeeze
Theorem:
text1 contains an explanation of the function f(x) and its relationship to the
bounds of −x2 and x2. It also concludes that f(x) = x2 ∗ sin(1/x2) is trapped
between −x2 and x2, establishing the application of the Squeeze Theorem. *
text2 presents the statement of the Squeeze Theorem, emphasizing its condi-
tions and explaining that if f(x) and h(x) have the same limit L as x approaches
c, then g(x) also approaches L as x approaches c.

6. Add an animate button to the GeoGebra task. This button triggers an ani-
mation that demonstrates the behavior of the functions and how the Squeeze
Theorem applies. By clicking the animate button, the graph and points will
dynamically update according to the changing values of the sliders, showcasing
the concept of the Squeeze Theorem in action.
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7. Include a reset button in the GeoGebra task. This button allows the user
to reset the animation and return the graph to its initial state. Clicking the
reset button will restore the original positions of the graph, points, and texts,
allowing for a fresh start or repeated demonstrations of the Squeeze Theorem.

https://www.geogebra.org/m/kweghubh
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Chapter 4

GeoGebra Constructions in
Statistics

4.1 Dot Plot

Fig: Dot Plot
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Fig: Coordinates for the Dot Plot

This GeoGebra project introduces a dynamic Dot Plot generator for data visu-
alization. By utilizing spreadsheets and lists, the project effortlessly transforms
numerical data into a dot plot format. Through a step-by-step process, the project
creates a dot plot on a graph, automatically updating as data is entered. Addi-
tionally, the mean, median, and standard deviation are dynamically calculated and
displayed on the graph through text objects. The dot plot’s appearance and data
analysis components can be customized to suit specific needs. The project show-
cases the power of GeoGebra in generating interactive visualizations that enhance
understanding of data distributions while also providing real-time statistical insights.

Steps

1. Open GeoGebra and create a new empty graph.

2. Click on the ”Spreadsheet” icon in the toolbar to create a spreadsheet.

3. In the spreadsheet, label column A as ”Data” and column B as ”Frequency.”

4. Enter the numbers between 0 and 10 in column A of the spreadsheet. You can
enter up to 30 values.

5. Switch to the graph view by clicking on the corresponding tab.

6. In the Algebra sidebar, click on the ”+” button to create a new list object.

7. In the ”New Object” dialog, select ”List” and enter the formula A1:A30 (as-
suming your data is in cells A1 to A30) to represent the data list.

8. Create another list object by clicking on the ”+” button again.
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9. In the ”New Object” dialog, select ”List” and enter the formula B1:B30 to
represent the frequencies.

10. Now, create a point object by clicking on the ”+” button once more.

11. In the ”New Object” dialog, select ”Point” and enter the formula Data to
represent the data points on the dot plot.

12. Right-click on the point object and select ”Properties” from the context menu.

13. In the Properties dialog, go to the ”Advanced” tab.

14. In the ”Format” section, change the ”Visible” option to ”Invisible” to hide the
point object itself.

15. Create a text object by clicking on the ”+” button.

16. In the ”New Object” dialog, select ”Text” and enter the formula Mean(Data)
to display the mean value based on the entered data.

17. Position the text object appropriately on the graph to display the mean value.

18. Repeat steps 15-17 to create text objects for the median and standard devi-
ation values using the formulas Median(Data) and StandardDeviation(Data),
respectively.

19. Customize the appearance of the dot plot, text objects, and other elements as
desired.

20. Save the project to ensure your progress is retained.

21. Test the dot plot maker by entering values in the table and observing how
the dot plot and the displayed mean, median, and standard deviation values
update dynamically based on the entered data.

https://www.geogebra.org/m/jxepzrs2
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4.2 Standard Normal Curve

Fig: Standard Normal Curve

This GeoGebra project skillfully demonstrates the construction and visualization
of the standard normal distribution curve. Through interactive tools and sliders, the
project offers real-time exploration of z-scores and their corresponding probabilities
under the curve. By defining the function, sliders, and integrals, the standard nor-
mal distribution is effectively modeled. The graph view showcases the curve, while
shading and integral calculations dynamically depict probabilities. The project cul-
minates in an informative text box, guiding users to manipulate sliders for z-scores
of interest. This project adeptly merges theoretical concepts with practical applica-
tion, utilizing GeoGebra’s interactive features to provide an engaging and instructive
tool for understanding the standard normal distribution and its probabilities.

Steps

1. Open GeoGebra and create a new project.

2. On the Algebra View, define the function f(x) by clicking on the input bar and
typing: f(x) = Normal(0, 1, x, false) This function represents the standard
normal distribution with mean 0 and standard deviation

3. Create two sliders for zUp and zDwn by clicking on the input bar and typing:
zUp = Slider[-6, 6]
zDwn = Slider[-6, 6]
These sliders will control the upper and lower z-scores.

4. Now, create three algebraic objects for the integrals using the sliders. Click
on the input bar and type:
a = Integral(f, zUp, 6)
b = Integral(f, -6, zDwn)
c = Integral(f, zDwn, zUp)
These algebraic objects represent the integrals of the standard normal distri-
bution between the given limits.
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5. Just create a graph view by clicking on the Graphing Calculator icon.

6. On the graph view, plot the function by typing f(x) in the input bar and
pressing Enter.

7. To display the shaded region for the integral a, click on the input bar and
type:
ShadeIntegral[f, zUp, 6]
This will shade the area under the curve from zUp to 6.

8. Similarly, type ShadeIntegral[f, -6, zDwn] to shade the area under the curve
from -6 to zDwn, representing the integral b.

9. Type ShadeIntegral[f, zDwn, zUp] to shade the area under the curve from
zDwn to zUp, representing the integral c.

10. Finally, add a Text box to the graph view by clicking on the Text tool and then
clicking on the graph where you want to place the text. Type the following
text:
”Standard Normal Curve Move the lower (zDwn) and upper (zUp) sliders to
match the z-scores of interest.”

Now, when you move the sliders for zUp and zDwn, the shaded regions and
the integral values will update accordingly.

https://www.geogebra.org/m/zasqbej5

4.3 Central Limit Theorem

Fig: Central Limit Theorem

This GeoGebra project skillfully showcases the Central Limit Theorem’s funda-
mental concept through interactive visualizations. By simulating data sampling and
histogram creation, the project elegantly demonstrates the theorem’s implications.
Utilizing checkboxes to control histogram visibility, the interactive tool enables users
to witness how sample means approach a normal distribution as sample sizes in-
crease. The project’s careful arrangement of elements and text explanations ensure
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clarity. As checkboxes are toggled, histograms dynamically update, illustrating the
theorem’s application. This project merges theory and visualization, employing Ge-
oGebra’s features to provide an engaging platform for comprehending the Central
Limit Theorem’s significance in real-world scenarios.

Steps

1. Open GeoGebra and create a new project.

2. Create a list of data points called ”list1” that represents the population you
want to sample from.

3. Create four histograms, one for each sample size, using the following com-
mands:
For n=1: a = Histogram(list1, 1, false)
For n=2: b = Histogram(list1, 2, false)
For n=10: c = Histogram(list1, 10, false
) For n=30: d = Histogram(list1, 30, false)
Here, 1, 2, 10, and 30 represent the sample sizes.

4. Create four checkboxes, each representing a different sample size.
To do this, use the ”Input Bar” feature in Geogebra. Simply type the following
commands in the input bar and press Enter after each:
n1 = Checkbox(”n=1”, false)
n2 = Checkbox(”n=2”, false)
n10 = Checkbox(”n=10”, false)
n30 = Checkbox(”n=30”, false)
The second argument in each command (e.g., false) sets the initial state of the
checkbox.

5. To link the visibility of the histograms to the checkboxes, right-click on the
first histogram (a), and select ”Object Properties.” In the properties window,
go to the ”Advanced” tab and click on the small calculator icon next to the
”Visible” option. In the calculator, enter the following expression:
n1.Value
Repeat this step for each histogram (b, c, d) and link their visibility to the
corresponding checkbox’s value:
For histogram b: n2.Value
For histogram c: n10.Value
For histogram d: n30.Value

Arrange the checkboxes, histograms, and text objects as desired on the graph

6. Add a text object on the graph using the command: text1 = Text(”CentralLimitTheorem”),
and the theorem statement.

7. Check the results directly by interacting with the checkboxes. Toggle the
checkboxes on and off to observe the changes in the histograms. As you toggle
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the checkboxes representing different sample sizes (n=1, n=2, n=10, n=30),
you should see the corresponding histogram becoming visible or invisible on
the graph.

This allows you to observe how the distribution of sample means approximates
a normal distribution as the sample size increases, in accordance with the
Central Limit Theorem.

https://www.geogebra.org/m/yywvmwwx

4.4 Sampling Distribution

Fig: Sampling Distribution
This GeoGebra project adeptly illustrates the concept of a sampling distribution
through interactive elements. By employing a provided probability density function
(PDF), the project creates a dynamic platform to explore sample sizes and intervals.
Utilizing sliders, calculations, and graphical elements, the project calculates proba-
bilities, z-scores, and standard errors. The dynamic updates of z-scores and statistics
enhance engagement. Clear text instructions guide users through interaction and
understanding. The project’s design elegantly combines theory and visualization,
showcasing GeoGebra’s capability in conveying statistical concepts. It provides an
interactive experience that fosters comprehension of sampling distributions’ behavior
as sample size varies, ultimately contributing to a deeper understanding of statistics
principles.

Steps

1. Open GeoGebra and create a new file
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2. Define the function f(x) as the probability density function (PDF) provided.

3. Add an x-axis to the graph.

4. Create two pointsxa and xb on the x-axis.

5. Create a slider for the sample size n. This slider allows us to adjust the number
of observations in sample and set the initial sample size n to 1.

6. Calculate the standard error of the mean standarderror using the formula
standarderror = ((2)/(sqrt(n))).

7. Calculate the probability P as the integral of the function f(x) over the interval
defined by xa and xb.

8. Calculate the z-scores za and zb using the formula za = (x(xa)−24)/(2/sqrt(n))
and zb = (x(xb) − 24)/(2/sqrt(n)).

9. Display the sample size n and the standard error of the mean standarderror.

10. Display the z-scores za and zb on the graph. These values will be updated
dynamically based on the current sample size n.

10. Create the text boxes to provide all the instructions and information on how
to interact with the task.

11. Display the sampling distribution mean µ and standard deviation σ. This
allows the users to interact with the task, adjust the sample size and interval,
and observe the corresponding probabilities and z-scores based on the current
sample size n.

https://www.geogebra.org/m/axehe6ts

4.5 Normal Probability Plot

Fig: Normal Probability plot
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This Geogebra project demonstrates the process of creating a Normal Probability
Plot for assessing data distribution’s normality. By following a structured series of
steps, the project efficiently guides users through data input, plot generation, statis-
tical analysis, and visual enhancements. The abstract highlights the importance of
interpreting the plot’s characteristics – a straight line indicates normal distribution.
The use of Geogebra tools, such as Statistics and Normal Distribution, is emphasized
for calculation and representation purposes. The project encapsulates the essence
of data analysis, providing a user-friendly approach to identifying normality and
generating insightful visualizations within a familiar software environment.

Steps

1. Open the Geogebra program.

2. Go to the File menu and select New.

3. In the Templates dialog, select the Normal Probability Plot template.

4. In the Data section, enter the following data points: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

5. Click on the Plot button to generate the normal probability plot.

6. The normal probability plot should show the data points plotted against a the-
oretical normal distribution. The points should form an approximate straight
line if the data is normally distributed. If the points do not form an approxi-
mate straight line, then the data is not normally distributed.

7. To calculate the mean and standard deviation of the data points, use the
Statistics tool.

8. To create a normal distribution with the specified mean and standard devia-
tion, use the Normal Distribution tool.

9. To add a title and labels to the plot, use the Text tool.

10. To save the plot, click on the File menu and select Save. Here are the exact
values involved in each step:
• In step 4, the data points are entered as a list, with each data point separated
by a comma.
• In step 5, the normal probability plot is generated by clicking on the Plot
button.
• In step 7, the mean and standard deviation of the data points are calculated
by using the Statistics tool.
• In step 8, a normal distribution with the specified mean and standard devi-
ation is created by using the Normal Distribution tool.
• In step 9, a title and labels are added to the plot by using the Text tool.
• In step 10, the plot is saved by clicking on the File menu and selecting Save.

https://www.geogebra.org/m/meq3xn9k
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Chapter 5

Professional outcomes

Professional skills developed during this internship are:

• Work place communication

• Applying theory to practice

• Time management

• Adaptability and networking

• Creating work reports using LaTeX

33



Chapter 6

Challenges

Challenges that I faced during the fellowship:

• Figuring out which mathematical concepts can be best explained using
GeoGebra applications.

• Creating visual math wonders using GeoGebra was a thrill, but mastering the
software’s tools was like solving a puzzle.

• Adjusting design and style settings so as to enhance visibility and readability
of the final constructions without hiding intermediate steps.

• Communicating ideas, updates, and challenges to mentors and peers, especially
when working remotely, posed communication and collaboration challenges.

• Adding and connecting sliders, and displaying changing texts according to
graph adjustments, took up most of the time.

• Writing a clear and understandable documentation for complex constructions.
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Chapter 7

Conclusion

In conclusion, being a part of the FOSSEE Summer Fellowship 2023 was a remark-
able experience. It helped me gain new knowledge in building GeoGebra construc-
tions on various fields of mathematics including calculus and statistics. I experienced
how open source software holds significant promise for teaching math, from elemen-
tary to college levels.

Exploring calculus through GeoGebra, from Trigonometric Limits to the Fundamen-
tal Theorem of Calculus, has given me a visual edge. In the domain of statistics,
working with constructions like the Standard Normal Curve and Central Limit The-
orem has solidified my insights. The fellowship showcased the practical potential of
open-source tools in education.
My heartfelt gratitude goes to all my mentors and fellow peers who helped con-
tribute to this enriching experience. As I conclude, I eagerly anticipate utilizing
these insights as I move ahead in my academic and professional journey.
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