
Summer Fellowship Report

On

Osdag on Cloud

Submitted by

Suraj Ranajit Bhosale

Under the guidance of

Prof. Sidhartha Ghosh

Department of Civil Engineering
IIT Bombay

and under the mentorship of

Nagesh Karmali Mr. Danish Ansari

Project Manager, IIT Bombay Project Software Engineer, IIT Bombay

August 29, 2023

Acknowledgment
I would like to express my heartfelt gratitude to the FOSSEE team for pro-

viding a remarkable platform that allowed me to enhance my skills and contribute
to projects in collaboration with IIT Bombay. This opportunity has been invaluable
in my journey of growth and learning.

I extend my sincere thanks to every individual who played a pivotal role in guiding
and mentoring me throughout this journey. Your insights and support have been
instrumental in shaping my understanding and capabilities.

I am deeply appreciative of my fellow friends and team members. Together, we
formed a cohesive unit and had the privilege of working alongside dedicated men-
tors. Their unwavering guidance and mentorship empowered us to navigate through
various challenges and learn immensely from each experience.

I would like to extend a special thanks to Nagesh Karmali, who served as a Project
Research Associate. From the selection process to the culmination of the fellowship,
his continuous guidance proved to be invaluable. I am also grateful to Danish Ansari,
the Assistant Project Manager, who provided assistance and insights at every step
of the project.

I am honored to have had the opportunity to work under the guidance of Prof.
Siddharth Ghosh, who generously shared his expertise and time to mentor us. His
support has been a driving force behind our progress.

In conclusion, I extend my heartfelt thanks to FOSSEE and the OSDAG Commu-
nity for guiding me on this transformative journey. Working with such kind-hearted
individuals has been a privilege, and I am grateful for the support and encourage-
ment that I have received. Thank You.

1

Contents

1 Introduction 4
1.1 Osdag on Cloud Internship . 4
1.2 What is Osdag on Cloud? . 4
1.3 What Technology We Used to Develop 4

2 Project Involvement and Contributions 6
2.0.1 My Contributions . 6

3 Version of Development 8
3.0.1 Package.json . 8
3.0.2 Dependencies and Their Uses 8

4 Flow Tree and Structure 11

5 Design Preferences UI 14
5.1 Working . 16

6 Authentication 24
6.1 UI and Functionality . 24

6.1.1 Signup . 24
6.1.2 Login . 25
6.1.3 Forget Password: OTP Verification 26
6.1.4 Forget Password: Add New Password 27

6.2 API’s and Contexts . 27
6.2.1 API’s . 27

6.3 Working in Code . 29
6.3.1 Important Imports . 29
6.3.2 SignUp . 30
6.3.3 Login . 32
6.3.4 Guest User . 35

7 Websites for UI Integration 36
7.1 React - Official Documentation . 36
7.2 React Router . 36
7.3 Material-UI . 37
7.4 Ant Design . 37
7.5 React Bootstrap . 38

2

7.6 Semantic UI React . 38
7.7 React Query . 39
7.8 Chakra UI . 39
7.9 Evergreen . 40
7.10 React Spring . 40
7.11 Storybook . 41
7.12 React Icons . 41
7.13 React Virtualized . 42

8 Important Documents 43

3

Chapter 1

Introduction

1.1 Osdag on Cloud Internship

The FOSSEE Summer Fellowship is provided under the FOSSEE project.FOSSEE
project promotes the use of FOSS (Free/Libre and Open Source Software) tools to
improve quality of education in our country. FOSSEE encourages the use of FOSS
tools through various activities to ensure availability of competent free software
equivalent to commercial (paid) softwares.
The FOSSEE project is a part of the National Mission on Education through In-
frastructure and Communication Technology(ICT), Ministry of Human Resources
and Development, Government of India. Osdag on Cloud is one such open source
software which comes under the FOSSEE project. Osdag on Cloud internship is
provided through FOSSEE project. And the selection was based on a screening
task followed by a task demonstration-interview.

1.2 What is Osdag on Cloud?

Osdag on Cloud is a web version of the Osdag Desktop application which is Free/Li-
bre and Open Source Software being developed for design of steel structures. The
project uses ReactJS in the frontend, Django in the backend, Postgres and SqLite as
a database and FreeCAD software for generating the CAD models. Github is used
to ensure smooth workflow between different modules and team members. It is in a
path where people from around the world would be able to contribute to its develop-
ment. FOSSEE’s “Share alike” policy would improve the standard of the software
when the source code is further modified based on the industrial andeducational
needs across the country.

1.3 What Technology We Used to Develop

Osdag was developed to cater to both educational purposes and industry profes-
sionals. Its primary goal is to provide valuable insights into the subject matter for
students, while also serving as a useful tool for professionals. The user interface

4

has been meticulously designed to offer flexibility and attractiveness. Additionally,
video tutorials are available to facilitate users in getting started with the application.

The technologies employed in the development of Osdag include:

• Front-End with React.js: React.js, a prominent JavaScript library, was
utilized to create a responsive and dynamic front-end for the application. This
ensures an engaging user experience and seamless interaction.

• Back-End with Django: Django, a powerful Python web framework, forms
the backbone of the application’s back-end. It manages user authentication,
database models, and API endpoints, ensuring efficient data handling.

• Database with PostgreSQL: PostgreSQL, a robust open-source relational
database management system, was chosen to store and manage various aspects
of the application, including user data and content.

• React Libraries: Apart from the core React.js library, additional React
libraries such as React Quill and React Router were integrated to enhance
the application’s capabilities. These provide rich text editing and client-side
routing functionalities.

• Styling Libraries: Libraries like Material-UI and Ant Design were utilized to
leverage pre-styled components, contributing to a polished and user-friendly
interface.

The integration of these technologies ensures that Osdag delivers a comprehen-
sive and efficient solution, meeting the requirements of both educational and pro-
fessional users.

5

Chapter 2

Project Involvement and
Contributions

2.0.1 My Contributions

• Main Window and Launch Screen Window:

Developed the user interface for the main window and launch screen window
of the project.

• Sidebar Development:

Created and designed the sidebar for easy navigation and access to various
sections.

Implemented the functionality of the sidebar to ensure smooth interaction.

• Module Sections:

Designed and implemented 12 different sections/modules, enhancing the project’s
usability.

• Finplate Design and Implementation:

Designed the UI for the finplate section.

Integrated popups for user input and feedback.

Implemented API integration related to the finplate module.

• UI Alignment and Enhancement:

Aligned UI elements in accordance with design preferences for a consistent
look and feel.

Incorporated minor UI enhancements such as dropdowns to improve user ex-
perience.

• Project Flow Structuring:

Structured and organized the project flow to ensure logical progression and
ease of use.

6

• Document Creation:

Created several documents detailing UI/UX guidelines, design patterns, and
functional specifications.

• Authentication UI:

Implemented the complete UI for user authentication, including login and
registration.

• Frontend Integration:

Managed the integration of frontend components, ensuring seamless commu-
nication with backend services.

• User Account UI:

Designed and developed the user account UI, enabling users to manage their
profiles effectively.

• API Implementation and Testing:

Implemented and thoroughly tested various APIs and endpoints to guarantee
functionality and reliability.

• Summary:

Throughout my involvement in the project, I have primarily focused on UI de-
velopment and the successful implementation of various functionalities. This
includes designing UI components, integrating APIs, aligning with design pref-
erences, and enhancing the overall user experience. I have also been responsi-
ble for structuring the project flow, creating documentation, and ensuring the
smooth integration of frontend elements with backend services.

7

Chapter 3

Version of Development

3.0.1 Package.json

The package.json file contains a list of dependencies used in the project. These
dependencies contribute to various functionalities and features within the applica-
tion.

{

"dependencies": {

"@mui/icons-material": "^5.14.3",

"@mui/material": "^5.13.4",

"@react-pdf-viewer/core": "^3.12.0",

"@react-three/drei": "^9.74.16",

"@react-three/fiber": "^8.13.3",

"@reduxjs/toolkit": "^1.9.5",

"antd": "^5.5.0",

"axios": "^0.24.0",

"base-64": "^1.0.0",

"crypto-browserify": "^3.12.0",

"js-file-download": "^0.4.12",

"jwt-decode": "^3.1.2",

"pdfjs-dist": "^2.11.0",

"react": "^18.2.0",

"react-dom": "^18.2.0",

"react-redux": "^8.0.7",

"react-router-dom": "^6.14.2",

"react-toastify": "^8.0.0",

"three": "^0.153.0"

}

}

3.0.2 Dependencies and Their Uses

Here are some of the key dependencies used in the Osdag project along with their
purposes and links for more information:

8

• @mui/icons-material and @mui/material: These packages are part of the
Material-UI library, which provides pre-styled UI components for a polished
design. [https://mui.com/]

• @react-pdf-viewer/core: This package enables rendering and viewing PDF
documents within the application. [https://react-pdf-viewer.dev/]

• @react-three/drei and @react-three/fiber: These packages are used for
integrating 3D graphics and effects into the application using the Three.js
library. [https://github.com/pmndrs/react-three-fiber]

• @reduxjs/toolkit: Redux Toolkit simplifies state management by providing
utilities for managing state, actions, and reducers. [https://redux-toolkit.
js.org/]

• antd: Ant Design is a UI library that offers a variety of components for
building user interfaces. [https://ant.design/]

• axios: Axios is used for making HTTP requests to APIs, facilitating data
fetching and interaction with the back-end. [https://axios-http.com/]

• react-router-dom: This package enables client-side routing, allowing nav-
igation between different components without a full page reload. [https:
//reactrouter.com/]

• react-toastify: React Toastify provides customizable toast notifications to
display user feedback. [https://fkhadra.github.io/react-toastify/]

• three: Three.js is a library for creating 3D graphics and visualizations in the
browser. [https://threejs.org/]

Please make sure to keep the versions of these dependencies up-to-date to ensure
compatibility and take advantage of the latest features and improvements.

9

https://mui.com/
https://react-pdf-viewer.dev/
https://github.com/pmndrs/react-three-fiber
https://redux-toolkit.js.org/
https://redux-toolkit.js.org/
https://ant.design/
https://axios-http.com/
https://reactrouter.com/
https://reactrouter.com/
https://fkhadra.github.io/react-toastify/
https://threejs.org/

Figure 3.1: npm commands

10

Chapter 4

Flow Tree and Structure

The project’s directory structure is as follows:

APP_CRASH

cad

design_report

design_type

documentation

drawing_2D

file_storage

freecad_utils

gui

osdag

osdagclient

osdag_api

osdag_web

ResourceFiles

static

texlive

themes

utilities

utils

.gitignore

.travis.yml

4-Postgres-Installation.sh

bc_endplate_test.py

cad_test.py

% ... (other file entries)

This representation provides a visual structure of the project’s organization.
Here’s a brief explanation of each folder and its contents:

APP CRASH: The directory for crash reports and error logs.

cad: Storage for CAD calculation files.

11

design report: Contains logic and code in Python to create design reports.

design type: Specifies design types, such as beam, column, connection, etc. Along
with Python files.

• beam column

• compression member

• connection

• flexural member

• frame 2D

• frame 3D

• group design

• plate girder

• tension member

• truss

• design type.py

• main.py

• member.py

documentation: Installation guidelines and documentation by Atharv Pingle.

drawing 2D: Storage for 2D drawings.

file storage: Contains subfolders for CAD modules and design reports, storing
.brep and .aux files, respectively.

• Cad Modules: Store .brep files of CAD modules.

• Design report: Store reports in .aux format.

freecad utils: Utility files for FreeCAD.

gui: GUI related files.

osdag: Subfolder web api contains APIs.

osdagclient: Main folder for the frontend, including subfolders assets, components,
and context.

osdag api: Contains API endpoints for various functionalities.

osdag web: Contains secret key.py for OSDAG web.

ResourceFiles: Contains database files and design examples in .osi format.

static, texlive, themes, utilities, utils: Miscellaneous folders for static assets,
LaTeX distribution, themes, utilities, and helper scripts.

12

.gitignore, .travis.yml, 4-Postgres-Installation.sh, ...: Various project config-
uration and script files.

bc endplate test.py, cad test.py, ...: Python scripts and test files.

13

Chapter 5

Design Preferences UI

In this chapter, we will explore the various tabs and features of the Design Pref-
erences User Interface (UI) for beam-column structures. The UI allows users to
customize mechanical properties and design parameters to generate accurate calcu-
lations and models. Let’s take a closer look at each tab:

Figure 5.1: Design Preferences UI

• Column Section:

– This tab is dedicated to defining and customizing properties of column
sections, such as shape, dimensions, and material.

– Users can input parameters like section type (rectangular, circular, etc.),
dimensions (width, depth, diameter, etc.), and select or create custom
materials.

– Customizable mechanical properties include Young’s Modulus, Poisson’s
ratio, yield strength, and ultimate strength.

14

• Beam Section:

– Similar to the Column Section, this tab focuses on beam properties and
customization.

– Users can define beam cross-sectional properties like shape, dimensions,
and material.

– Input parameters may include section type (I-beam, T-beam, etc.), di-
mensions (flange width, web thickness, etc.), and material specifications.

– Customizable mechanical properties include elastic modulus, shear mod-
ulus, yield strength, and more.

• Connector:

– This tab deals with connections between various structural members, such
as beams and columns.

– Users can define connection types (welded, bolted, etc.) and customize
relevant parameters.

– Customization options may include connector dimensions, types of fas-
teners, and their spacing.

– Mechanical properties could include shear strength, bearing strength, and
other relevant connection properties.

• Bolt:

– In this tab, users can specify properties related to bolts used in connec-
tions.

– Parameters may cover bolt diameter, length, grade, and material.

– Mechanical properties of bolts like tensile strength, shear strength, and
preload can be customized.

• Weld:

– This section allows users to define and customize weld properties used in
connections.

– Parameters might include weld type, size, and material.

– Customizable mechanical properties include weld strength and efficiency.

• Detailing:

– The detailing tab focuses on providing additional information for design
and construction drawings.

– Users can input preferences for annotations, dimensions, and symbols
used in the generated drawings.

• Design:

– This tab is where the actual structural design calculations are performed.

15

– Users can input design loads, boundary conditions, and other relevant
design parameters.

– The software uses the provided inputs from previous sections to calculate
and generate structural design results, such as required member sizes,
reinforcement details, and connection forces.

5.1 Working

• Technology Stack:

OSDAG-web is built using a combination of modern web development tech-
nologies. React.js is employed for creating the interactive and dynamic fron-
tend user interface. Django, a powerful Python web framework, serves as the
backend to manage data, business logic, and user authentication. PostgreSQL
is the chosen database system to store and retrieve application data securely.

• Folder Structure and Project Launch:

The project’s folder structure follows best practices for maintainability. The
osdagclient folder contains the frontend components, including JavaScript
files, stylesheets, and assets. To launch the project, the necessary dependencies
are configured, and the server is started, initiating the rendering of the initial
page – the LoginPage.jsx.

• Authentication:

Figure 5.2: Login

16

LoginPage.jsx is where the user authentication process begins. The authen-
tication code implemented here ensures secure user access to the application.
It handles user account creation (signup) and existing user logins. Upon suc-
cessful login, users are granted access to the main page.

Figure 5.3: Signup

• Main Page: The main page serves as the central hub for the application’s
functionality and features.

• Modules Section:

Under the ”All Modules” section, various modules related to structural en-
gineering tasks are available. These modules are designed to help engineers

17

Figure 5.4: All Modules

and users perform different analyses and calculations related to their projects.
Each module provides a dedicated workspace for specific tasks.

• Connections Module:

The Connections module focuses on designing connections between structural
components. It offers several sub-modules, each catering to a specific type of
connection. One such sub-module is the Shear Connection.

• Fin Plate Model: Clicking on the ”Fin Plate” model initiates a detailed
design process, encompassing the following sections:

– Input Dock:

The Input Dock is the starting point for generating the CAD model.
Users provide parameters such as Connectivity type, Column and Beam

18

Sections. The validation process ensures that only valid inputs are ac-
cepted, preventing errors downstream.

– CAD Model View and Log View:

In the CAD Model View, users can interact with a three-dimensional
representation of the designed connection. This visualization is powered
by Three.js, a JavaScript library for 3D graphics. The Log View, located
below the CAD model, displays real-time feedback on the validity of
inputs and the status of the CAD generation process. Errors, warnings,
and successful generation messages are shown here.

19

– Output Dock: The Output Dock presents users with calculated outputs
based on the provided inputs. This section details the properties of the
plate (Thickness, Height, Length) and bolt (Diameter, Property Class,
Shear Capacity). These outputs are crucial for engineers to evaluate the
feasibility and safety of the design.

20

– Design Report and Test Cases:

Within the Output Dock, users have options to generate a comprehen-
sive design report and save output data for future reference. The design
report includes applied test cases, aiding engineers in assessing whether
the design meets safety and performance standards.

– Drop-down Menu:

The Drop-down Menu enhances user experience by organizing function-
alities:

∗ Load Input: Users can load a saved .osi file, populating the Input
Dock with the corresponding parameters.

∗ Download Input: Allows users to download the current input as an
.osi file for later use.

∗ Save Input: Enables users to save the current input in their dash-
board for easy retrieval.

∗ Save Log Message: Provides a way to save log status and information
for documentation purposes.

∗ Create Design Report: Initiates the process of generating a detailed
design report.

21

Figure 5.5: Drop-down menu

∗ Home Button: Users can quickly navigate back to the homepage from
any section.

• User Account:

The ”My Account” section empowers users to manage their profile and interact
with their saved data.

– Dashboard:

Users can view a dashboard displaying their saved .osi files. These
files represent various design scenarios and configurations. Each entry
provides options for downloading and viewing.

– Logout Button:

The logout button ensures users can securely log out of their accounts.
It clears cookies and local storage data associated with the user session,
enhancing privacy and security.

22

Figure 5.6: User Account

23

Chapter 6

Authentication

6.1 UI and Functionality

6.1.1 Signup

When a user wants to sign up, they are presented with a signup form containing
three input fields: Email, Username, and Password. Upon submitting the form, the
data is stored in a PostgreSQL database for future authentication and access.

24

6.1.2 Login

The login screen provides two input fields: Username and Password. The system
uses the username (considered as a primary key) to search for the user’s data in
the database. Additionally, the system includes a ”Forgot Password” functionality,
allowing users to reset their passwords.

25

6.1.3 Forget Password: OTP Verification

In case a user forgets their password, they can request a password reset by
entering their registered email address and clicking on the ”Send OTP” button. An
OTP (One-Time Password) is sent to their email address. After receiving the OTP,
the user enters it in the verification interface to confirm their identity.

26

6.1.4 Forget Password: Add New Password

Once the user successfully verifies their OTP, they are directed to the ”Add
New Password” screen. Here, the user is required to enter and confirm their new
password. After clicking the ”Save” button, the new password is securely stored in
the database, allowing the user to log in with the updated credentials.

6.2 API’s and Contexts

6.2.1 API’s

1. User Signup

Endpoint: http://localhost:8000/user/signup/ Method: POST

This endpoint allows you to create a new user account using the HTTP POST
method. You need to send encrypted data in the request body, including the

27

http://localhost:8000/user/signup/

username, password, and email. No special authentication is required for this
request.

2. User Login

Endpoint: http://localhost:8000/user/login/ Method: POST

This API endpoint is likely used for user login. To log in, you need to send
a JSON request with the username, password, and a flag indicating whether
the user is a guest.

3. OTP Verification

Endpoint: http://localhost:8000/user/checkemail/ Method: POST

This API endpoint represents a process where you provide an email address,
and in response, you receive a message and a one-time password (OTP) via
email. You then ask the user to enter the OTP for verification, comparing it
with the received OTP to confirm the authenticity of the email address.

4. Confirm Forget Password

Endpoint: http://localhost:8000/user/forgetpassword/Method: POST

After OTP verification, users are directed to set a new password. Once they
confirm the new password, the system updates the user’s password in the

28

http://localhost:8000/user/login/
http://localhost:8000/user/checkemail/
http://localhost:8000/user/forgetpassword/

database with the provided email address. This process ensures secure pass-
word changes and updates the database accordingly.

6.3 Working in Code

6.3.1 Important Imports

1. Imports

In the provided code snippet, we are working within a React application. The
code focuses on managing user-related functionality using a UserContext from
the ’../../context/UserState’ module. This context likely encompasses user
data and actions. Additionally, we are utilizing three crucial React hooks:
useState, useContext, and useEffect.

To streamline the process, the useContext hook enables us to extract specific
functions and data from the UserContext. This includes:

• userSignup: A function responsible for user registration.

• userLogin: A function facilitating user login.

• verifyEmail: A function used to verify the user’s email address.

• forgetPassword: A function that initiates the password reset process.

• isLoggedIn: A boolean flag indicating the user’s login status.

This setup empowers us to seamlessly integrate user authentication and man-
agement into our component. By harnessing these functions and data from
the UserContext, we can proficiently handle user actions such as registration,
login, email verification, password reset, and ascertain whether a user is cur-
rently logged in or not.

29

6.3.2 SignUp

In react This SignUp process triggers the registration process for a new user. It
supplies the chosen username, email, password, and marks the account as unverified
initially.

• Function Signature:

The function takes four parameters: username, email, password, and isGuest.
These parameters are presumably used to gather user registration information.

• Logging and Fetching:

30

Here, the function logs some information for debugging purposes. It then uses
the fetch function to send a POST request to the specified URL (user/signup/).
The request includes the provided username, email, password, and isGuest
parameters in the request body as a JSON payload.

• Processing Response:

After the fetch request, the code awaits the response and parses it as JSON.
If the response status is 201 (indicating successful user creation), the function
proceeds to call another function (createJWTToken) to create a JWT token,
dispatches a reducer action to update the signup status with a success message,
and logs the isLoggedIn state.

If the response status is not 201, the function dispatches a reducer action with
an error message.

If an error occurs during the entire process, such as a network error or server
exception, the catch block handles it by dispatching a reducer action with an
appropriate error message.

This involves Redux or a similar state management system (as implied by the
use of dispatch). It seems to handle user registration, potentially creating a user
account, generating a JWT token, and updating the application state accordingly.

31

6.3.3 Login

The userLogin function is invoked with three arguments: username, password,
and false. This function returns a Promise. When the Promise is fulfilled, it
triggers a callback function that performs the following actions:

• Alert Display:

An alert is displayed with a message derived from the message received from
the Promise resolution, providing feedback about the login process.

• Handling Guest User:

If the value of the third argument (false) indicates that the user is a guest,
no token is created, and the user’s information is not stored in the database.

• Local Storage:

Regardless of whether the user is a guest or not, the username is stored in
the browser’s local storage, allowing it to be stored on the user’s device for
potential future use.

The code handles the login process, provides an alert message, and handles
whether to create a token and store the user’s information in the database based on
whether the user is a guest or not.

32

Section 1: Function Declaration and Debugging Logs

In this section:
The userLogin function is declared, taking four parameters: username, pass-

word, isGst, and JWTLogin. Debugging logs are printed to the console, displaying
information about the function context, username, and whether the user is a guest
(isGst). If JWTLogin is true, it means a JSON Web Token (JWT) login is being
attempted. In this case, a successful login status is set, and the function returns
early.

Section 2: Handling Successful Login Response

If the HTTP response status is 200 (successful), it means the user has logged
in successfully. If the user is not a guest (i.e., isGst is false), a new JWT token
is created using the createJWTToken function (not shown in the provided code).
User information is stored in the browser’s local storage, including the user type,

33

username, email, and other data. If the user is a guest (i.e., isGst is true), only the
user type (”guest”) is stored in local storage.

Section 3: Setting Login Status and Handling Error Messages

If the login is successful, the login status is set to true, and a success message is
stored in the payload. If the response status is not 200, the code handles different
error cases based on the message received from the server. The login status is set
to false, and an appropriate error message is stored in the payload.

Section 4: Error Handling and Dispatching Server Error Message

Here, any errors that occur during the login process are caught. If an error
occurs, the login status is set to false, and a server error message is stored in the
payload.

Please note that the code relies on external functions like dispatch and createJWTToken,
and the behavior might vary based on their implementations.

34

6.3.4 Guest User

generateRandomString

The generateRandomString function creates a string by randomly selecting
characters from a predefined set of lowercase letters, uppercase letters, and dig-
its. The length of the string is determined by the length parameter provided when
calling the function.

• GuestEmail = GUEST.${generateRandomString(10)};: This line gen-
erates a random string of 10 characters using the generateRandomString func-
tion and then constructs a guest email by appending it to the string ”GUEST.”
and adding ”@gmail.com” at the end. This creates a random email address
like ”GUEST.xxxxxxxxxx@gmail.com”.

• const GuestUserPassword = generateRandomString(12);: This line
generates a random string of 12 characters using the generateRandomString
function, creating a random password for the guest user.

• userLogin(GuestEmail, GuestUserPassword, true);: This line uses the
userLogin function to attempt a guest user login. The GuestEmail and
GuestUserPassword are passed as arguments, along with true to indicate
that the user is a guest.

It generates random email and password credentials for a guest user and then at-
tempts to log in the guest user using the userLogin function. The generateRandomString
function is used to create the random email and password.

35

Chapter 7

Websites for UI Integration

7.1 React - Official Documentation

Website: https://reactjs.org/docs/getting-started.html

The official documentation for React.js serves as an essential resource for learning
about React’s fundamental concepts, such as components, props, state, lifecycle,
hooks, and more. It provides comprehensive guides and examples to help developers
build efficient and maintainable user interfaces using React.

7.2 React Router

Website: https://reactrouter.com/

36

React Router offers thorough documentation and guides for implementing rout-
ing and navigation within React applications. It enables developers to create single-
page applications with multiple views and dynamic URL routing, allowing for seam-
less navigation between different sections of the app.

7.3 Material-UI

Website: https://mui.com/

Material-UI is a widely-used React UI framework that provides a comprehensive
set of pre-designed components following Google’s Material Design guidelines. It
offers a cohesive and visually appealing design system for building modern and
responsive user interfaces.

7.4 Ant Design

Website: https://ant.design/

37

Ant Design offers a collection of high-quality and customizable React components
designed with a focus on elegance and usability. It comes with a set of design
principles and guidelines that help developers create professional and intuitive user
interfaces.

7.5 React Bootstrap

Website: https://react-bootstrap.github.io/

React Bootstrap brings the popular Bootstrap framework’s components to the
world of React. It provides a wide range of ready-to-use components and utilities,
making it easy to create responsive and consistent UIs.

7.6 Semantic UI React

Website: https://react.semantic-ui.com/

38

Semantic UI React provides a suite of React components that adhere to the
Semantic UI design language. It allows developers to create expressive and semantic
user interfaces using a set of well-designed building blocks.

7.7 React Query

Website: https://react-query.tanstack.com/

React Query simplifies data fetching, caching, synchronization, and state man-
agement in React applications. It offers tools to manage complex data requirements,
such as querying APIs, managing mutations, and handling pagination.

7.8 Chakra UI

Website: https://chakra-ui.com/

39

Chakra UI is a modular and accessible component library that aims to streamline
the process of building user interfaces in React applications. It provides a set of
responsive and customizable components that adhere to design and accessibility
best practices.

7.9 Evergreen

Website: https://evergreen.segment.com/

Evergreen is a UI component library for React designed to help developers create
consistent and functional user interfaces. It offers a set of components that work
seamlessly together to build design systems and user interfaces.

7.10 React Spring

Website: https://react-spring.io/

40

React Spring is a library for creating fluid animations and transitions in React
applications. It enables developers to add smooth and dynamic animations to UI
elements, enhancing the user experience.

7.11 Storybook

Website: https://storybook.js.org/

Storybook is a development environment and UI component explorer for React
applications. It allows developers to isolate and develop UI components in isolation,
facilitating testing, documentation, and showcasing of components.

7.12 React Icons

Website: https://react-icons.github.io/react-icons/

41

React Icons provides a collection of popular icon libraries as ready-to-use React
components. It simplifies the process of integrating icons into React applications,
enhancing visual aesthetics and user experience.

7.13 React Virtualized

Website: https://bvaughn.github.io/react-virtualized/

React Virtualized offers a set of components optimized for efficiently rendering
large lists and tabular data. It provides solutions for optimizing performance and
memory consumption when dealing with extensive data sets.

42

Chapter 8

Important Documents

1. Link to Structure of Osdag on Cloud

2. Flow of Osdag on Cloud

3. Osdag on Cloud Repository

References
1. [React](https://reactjs.org/)

2. [React Router DOM](https://reactrouter.com/web/guides/quick-start)

3. [Ant Design](https://ant.design/)

4. [Material-UI](https://mui.com/)

5. [jwt-decode](https://www.npmjs.com/package/jwt-decode)

7. [YouTube](https://www.youtube.com/)

43

https://docs.google.com/spreadsheets/d/13I8BdDYdY0FOZxFzTIg289fMWxtoNRWiRdtX4s-Vqmk/edit?usp=sharing
https://docs.google.com/document/d/1Uwl7_DRh_zSmQVGqZDHVoe0gNPJyQXJuAZN1J7q674o/edit?usp=sharing
https://github.com/SurajBhosale003/Osdag-web/tree/develop

	Introduction
	Osdag on Cloud Internship
	What is Osdag on Cloud?
	What Technology We Used to Develop

	Project Involvement and Contributions
	My Contributions

	Version of Development
	Package.json
	Dependencies and Their Uses

	Flow Tree and Structure
	Design Preferences UI
	Working

	Authentication
	UI and Functionality
	Signup
	Login
	Forget Password: OTP Verification
	Forget Password: Add New Password

	API's and Contexts
	API's

	Working in Code
	Important Imports
	SignUp
	Login
	Guest User

	Websites for UI Integration
	React - Official Documentation
	React Router
	Material-UI
	Ant Design
	React Bootstrap
	Semantic UI React
	React Query
	Chakra UI
	Evergreen
	React Spring
	Storybook
	React Icons
	React Virtualized

	Important Documents

