
Summer Fellowship Report

On

Osdag on Cloud

Submitted by

Atharva Ratnadeep Pingale

Under the guidance of

Prof. Sidhartha Ghosh

Department of Civil Engineering
IIT Bombay

and under the mentorship of

Mr. Nagesh Karmali Mr. Danish Ansari

Project Manager, IIT Bombay Project Software Engineer, IIT Bombay

August 28, 2023

Acknowledgment

I would like to thank FOSSEE for providing me a platform to work on some-
thing I am very interested in. I am thankful to everyone who thought of having and
involved in selection process based on screening tasks. I am grateful to be a part of
team which promotes open source software.

I thank all the Osdag on Cloud members, who are wonderful mentors and great
team. I thank Dr. Kannan M. Moudgalya, Prof. Sidhartha Ghosh, Mr. Nagesh
Karmali (Project Manager), Mr. Danish Ansari (Assistant Project Manager)
and team, who made us feel welcome and planned all the tasks meticulously during
this period. Your collective expertise and willingness to share your knowledge have
significantly contributed to my professional growth and understanding of the field.
I also extend my appreciation to my fellow interns and colleagues for creating an
environment that fosters collaboration and learning. Your camaraderie and willing-
ness to share insights and experiences have made this fellowship experience truly
enriching.

As I reflect on this internship, I realize the immense impact it has had on my
professional development and future prospects. The practical skills I’ve acquired and
the connections I’ve made are invaluable assets that I will carry with me throughout
my career. Once again, I am truly thankful for the opportunities I’ve been given
and for the people who have played a role in making this fellowship a transformative
and rewarding experience.

1

Contents

1 Introduction 4
1.1 FOSSEE Summer Fellowship . 4
1.2 About Osdag . 4
1.3 Challenges with the Osdag software 4
1.4 What is Osdag on Cloud? . 5
1.5 Who can use Osdag on Cloud? . 5

2 Installation and Setup of Osdag on Cloud 6
2.1 Software Requirements . 7
2.2 Installation steps . 8

3 My Fellowship work 12

4 Input Values - Backend 14
4.1 Column Flange-Beam-Web and Column-Web-Beam-Web 14
4.2 Beam-Beam . 15
4.3 Customized inputs . 15

5 Create Design Report - Backend 16
5.1 API for Company Logo . 16
5.2 Generating the Design Report . 16
5.3 Obtaining the Design Report PDF 16

6 User Authentication, Authorization and activities - Backend 18
6.1 User Signup . 18
6.2 User Login . 18
6.3 Guest Mode . 18
6.4 Email Verification . 19
6.5 Forget Password . 19
6.6 API for Saving the input values . 19
6.7 API for obtaining all the input files of a user 20

7 ModuleState Thunks and Reducer 21
7.1 Input values fetching . 21
7.2 Design Report fetching . 22
7.3 CAD model fetching . 22
7.4 Design Report PDF fetching . 22

2

7.5 Create and Delete Design Session . 24
7.6 Create Design . 25

8 UserState Thunks and Reducer 26
8.1 User Signup fetching . 26
8.2 User Login fetching . 26
8.3 Email Verification . 27
8.4 Forget Password . 28
8.5 Saving the Input Files . 28
8.6 Obtaining the input files . 29

9 Postgres Database 31
9.1 Script for generating Postgres Database 31
9.2 Script for updating Sequences . 31
9.3 Design model . 31
9.4 UserAccount model . 32

10 Serializers 34
10.1 All Serializers . 34

11 Architecture 37
11.1 Osdag on Cloud architecture . 37

3

Chapter 1

Introduction

1.1 FOSSEE Summer Fellowship

The FOSSEE Summer Fellowship is provided under the FOSSEE project. FOSSEE
project promotes the use of FOSS (Free/Libre and Open Source Software) tools to
improve quality of education in our country. FOSSEE encourages the use of FOSS
tools through various activities to ensure availability of competent free software
equivalent to commercial (paid) softwares.
The FOSSEE project is a part of the National Mission on Education through In-
frastructure and Communication Technology(ICT), Ministry of Human Resources
and Development, Government of India. Osdag on Cloud is one such open source
software which comes under the FOSSEE project. Osdag on Cloud internship is
provided through FOSSEE project. And the selection was based on a screening
task followed by a task demonstration-interview.

1.2 About Osdag

Osdag is Free/Libre and Open Source Software being developed for design of steel
structures. Its source code is written in Python, 3D CAD images are developed using
PythonOCC. Github is used to ensure smooth workflow between different modules
and team members. It is in a path where people from around the world would be
able to contribute to its development. FOSSEE’s “Share alike” policy would improve
the standard of the software when the source code is further modified based on the
industrial and educational needs across the country. As Osdag is currently funded
by MHRD, Osdag team is developing software in such a way that it can be used by
the students during their academics and to give them a better insight look in the
subject.

1.3 Challenges with the Osdag software

In the Osdag software, there were some major issues which made it less user-friendly.
Some major issues were - Installing the software packages on a system that already
had some of the packages gave an installation error, Installation takes some space on

4

https://fossee.in/

the system, in order to use the Osdag software on has to install it usng hte installer
and of the user didn’t like it then had to remove it, this costed more effort for
the user. Updating the Osdag software is difficult as compared to having a rolling
update for a browser version. Some 3rd party antivirus softwares were identifying
some installer files as ’containing malware’.

1.4 What is Osdag on Cloud?

Osdag on Cloud is a browser version of the Osdag software. Osdag on Cloud is
developed to overcome the challenges which the classic Osdag software faced and
provide a better version of it. It aims to provide hands-on design experience for
college students, and thus creating tomorrow’s designers familiar and confident with
steel design, provide practical design experience for (new) practising engineers Work
as a teaching tool helping college teachers. The project uses ReactJS in the frontend,
Django in the backend, Postgres and SqLite as a database and FreeCAD software
for generating the CAD models.

1.5 Who can use Osdag on Cloud?

Osdag on Cloud is created both for educational purpose and industry professionals.
Osdag on Cloud is a FOSS and its team is developing software in such a way that
it can be used by the students during their academics and to give them a better
insight look in the subject. Osdag on Cloud can be used by anyone starting from
novice to professionals.

5

Chapter 2

Installation and Setup of Osdag on
Cloud

The installation steps are given below and also in the documentation/installation.md

file of ’Osdag-web’ Repository.

Before we install anything on our machine : Check if your Ubuntu machine USER-
NAME is present in the sudoers file or not.

$ sudo -l

If the output gives you the username of your Ubuntu machine, then skip this
step and proceed to ’2.1 Software Requirements’ section.
If the output is : Sorry, user USERNAME may not run sudo on VIR-
TUAL MACHINE/UBUNTU MACHINE
Then, you will have to add your Ubuntu username into the sudoers file

• Obtain the USERNAME

$ whoami

• Get into the root and open the file

$ su root

$ nano /etc/sudoers

• Then under the title User Priviledge specification , insert the below line
:

$ USERNAME ALL=(ALL:ALL) ALL

Replace the text USERNAME with the username that you have obtained by
the command whoami.
Save the file (ctrl+o) and exit (ctrl+x)

• Exit the root terminal with ctrl+d

6

• Close the terminal and reopen it (ctrl+alt+t)

2.1 Software Requirements

1. Ubuntu LTS 20.04 / 22.04

2. Git : Install Git on Ubuntu. Open the terminal (ctrl+alt+t) and run the
below commands:

• Update the Repository

$ sudo apt update

• Install Git

$ sudo apt install git

3. IDE : (OPTIONAL) Preferably VSCode. Install VSCode with :

$ sudo snap install --classic code

4. Node v16.20.0 : Install Node from NVM by running these commands in the
Terminal

• Install curl before with the command :

$ sudo apt install curl

• Node installation commands :

$ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/

install.sh

$ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/

install.sh | bash

$ source /.bashrc

$ nvm install v16.20.0

5. Postgres : Install Postgres by running the following commands :

$ sudo sh -c ’echo "deb http://apt.postgresql.org/pub/repos/apt

$ (lsb release - cs)- pgdg main" > /etc/apt/sources.list.d/pgdg.list’

$ wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc

| sudo apt-key add -

7

$ sudo apt-get update

$ sudo apt-get -y install postgresql

6. Freecad : Install freecad with the following commands :

• Move to the root directory of the Ubuntu machine

$ cd /

$ sudo apt-get update

• Install snapd package manager

$ sudo apt-get install snapd

• Install freecad from snap

$ sudo snap install freecad

2.2 Installation steps

The Osdag on Cloud project uses ’Conda’ environment which contains all the de-
pendencies. To first download these, visit the link : Osdag Download and download
the Installer [Release: 2021-02-15] for Ubuntu. Install both the Installer - Linux
and the Installation instructions for Ubuntu files :

1. Follow the instructions in the Installation instructions file that you have
downloaded. After completing that return back to this installation guide.

2. Install texlive-latex-extra packages. Open the terminal (ctrl+alt+t) and run
the following command :

$ sudo apt-get update

$ sudo apt-get install -y texlive-latex-extra

3. Now you have successfully installed Osdag, texLive and miniconda on your
machine. Navigate to ’Desktop’

4. The next step is to clone the Osdag-Web repository on github. There are 2
ways to download the repository :

• If you already have git installed on your machine, then open a new ter-
minal in Desktop (ctrl+alt+t) and run the following command :

$ git clone https://github.com/SurajBhosale003/Osdag-web.git

8

https://osdag.fossee.in/resources/downloads

• If you don’t have git installed, then visit the Repository link :
https://github.com/SurajBhosale003/Osdag-web , click onCode tab and
download the zip file After downloading the zip file, open the terminal

Figure 2.1: Osdag zip file download

and unzip the file :

$ tar -xvf Osdag-Web-master.zip

Move the unzipped Osdag-Web-master folder to Desktop or wherever
you want and rename it to Osdag-web

5. Open the Osdag-web folder and open a new terminal there. Make sure you
have the conda environment activated. You can know this if there is (base)
written at the start of the terminal line. If you don’t see this, activate the
conda environment using :

$ conda activate

Figure 2.2: Root directory

9

https://github.com/SurajBhosale003/Osdag-web

6. Create Database and Role in Postgres and Configure it, open the Terminal
(ctrl+alt+t):

• Enter into the Postgres Terminal

$ sudo -u postgres psql

• Create a new role

$ CREATE ROLE osdagdeveloper PASSWORD ’password’ SUPERUSER

CREATEDB CREATEROLE INHERIT REPLICATION LOGIN;

• Create the database

$ CREATE DATABASE "postgres Intg osdag" WITH OWNER osdagdeveloper;

• Exit from the Postgres terminal

$ \q

7. Open a terminal (ctrl+alt+t) and follow the below steps

• Enter into the Osdag-web folder which you have cloned

$ cd Desktop/Osdag-web

• Switch to develop branch

$ git checkout develop

• Install requirements.txt packages

$ pip install -r requirements.txt

• Configure the Postgres database

$ python populate database.py

$ python update sequences.py

$ python manage.py migrate

• Install the node dependencies

$ cd osdagclient

$ npm install

$ cd ..

10

• Start the Django server

$ python manage.py runserver 8000

• Open another terminal, navigate to root of Osdag-web folder and run the
following commands :

$ cd osdagclient

$ npm run dev

8. Now your Server and Client are running. Navigate to http://localhost:5173/
on your Browser. Now you can use the application.

11

http://localhost:5173/

Chapter 3

My Fellowship work

Since the commencement of my Fellowship I have contributed to the project
Osdag on Cloud. The initial few days of the Fellowship were spent in understanding
the process flow and working of the Osdag Software. I have then developed various
features and functionalities for Osdag on Cloud. Below are my contributions in brief
:

1. Input Values API (Backend) : The Input values API is a singular
APIView which handles the communication of all the input values mentioned
in the input dock like the - material, connectivity type, property class, thick-
ness list, bolt diameter, axial force etc. The input values are read from the
Database and are sent to the client in the response.

2. Create Design Report API (Backend) : The Create Design Report
APIView consists of 3 API Views which handle : storing the company logo in
the server, creating the LaTEX design report and obtaining (downloading)
the Design report.

3. User Authentication, Authorization and activities (Backend) : I
have fully developed the User activities part in the project. I have developed
APIViews in the backend which perform operations like - user login, user
signup, user logout, setting the refresh token, JWT token creation, verifying
mail, forgot password feature, saving input files, sending all the input files
associated to the user to the client.

4. Module State : The Module state file which is fully developed by me except
the design preferences calls. This file is responsible for making API calls when
a user is working on a selected module (ex - Fin Plate Connection). All the
thunks in the file perform operations like - obtaining the input values, setting
the session, API call for CAD design, generating the design report and its
related APIs.

5. User State : I have fully developed all the Thunks in the UserState. All the
thunks in the file are responsible for user login, user signup, verifying email,
forgot password feature, saving the input value file, obtaining the input values
files of a user, generating and setting the ’Access’ and ’Refresh’ token using
JWT.

12

6. Postgres Database : I have configured the Postgres Database for the project,
developed the Django models, the serializers for the models, the shell scripts
for populating the Postgres database and updating sequences, developed the
Design model, have developed the UserAccount model, developed the instal-
lation documentation for the project (documentation/installation.md)

7. Architecture : I have designed the Osdag on Cloud Architecture. This is a
blueprint of the application. It defines how components of a software system
are assembled, their relationship and communication between them.

13

Chapter 4

Input Values - Backend

The inputData view.py file in the Django server file system is an API file which
communicates between the client (Browser) and the server. This file is located
in relative directory : osdag/web api/inputData view.py . This file contains the
InputData APIView class which handles GET requests only. When an API call is
made to obtain the input values (a GET request), the get() method of the InputData
APIView class is invoked. Depending on the type of request, the program control
is navigated using if-else statements. There are 3 types of connectivity data which
this APIView serves. These are :

1. Column Flange-Beam-Web

2. Column Web-Beam-Web

3. Beam-Beam

Before the request is served, the API checks if the cookie in the request is present or
not. It checks for the cookie named fin plate connection session . The request
gets served only if this cookie is present. This cookie is generated and set by the
session api.py file inside the same directory as inputData view.py

4.1 Column Flange-Beam-Web and Column-Web-

Beam-Web

For both Column Flange-Beam Web and Column-Web-Beam-Web types of connec-
tivity, the response is served in the same way. These requests require 3 values :

1. ’Designation’ column from ’Columns’ table

2. ’Designation’ column from ’Beams’ table

3. ’Grade’ column from ’Material’ table

The data for these columns is obtained from the Postgres database and sent to the
client as a JSON DRF Response.

14

4.2 Beam-Beam

For Beam-Beam type of connectivity, the response is served differently. This request
requires 2 values :

1. ’Designation’ column from ’Beams’ table

2. ’Grade’ column from ’Material’ table

The data for these columns is obtained from the Postgres database and sent to the
client as a JSON DRF Response.

4.3 Customized inputs

There are 3 input values that can be set to ’customized’ on the Browser. These are
:

1. Propertyclass The API will send all the values from ’boltFyFuList’ table as
a python list embedded in a JSON object. This response is sent as DRF
Response.

2. Thickness When the thickness property is set to customized, the API will send
a ’PLATE THICKNESS SAIL’ list embedded in an object. This object will
be sent as a JSON DRF Response.

3. BoltDiameter When the BoltDiameter property is set to customized, all the
records of the column ’Bolt diameter’ from the table ’Bolt’ is obtained from
the Postgres database. This list is sent to the client as a JSON DRF Response.

15

Chapter 5

Create Design Report - Backend

5.1 API for Company Logo

The company logo feature is present when the user hits the ’Create Design’ button
and a popup appears. The user then uploads a company logo in the input field.
When an image is uploaded, before pressing the ’Ok’ button to start report gen-
eration, an API is called which stores the company logo in the server file system.
This image will be used to display in the report. An APIView called CompanyLo-
goView in osdag/web api/design report csv view.py is called. This APIView
accepts only POST request. When the program control enters this APIView, it
first checks for a cookie id named fin plate connection session . The file is ob-
tained from the request, a unique filename is generated using uuid4. It then checks
if the directory file storage/company logo exists or not, if the directory does
not exist, then the directory is created. The company logo image file is then stored
in the file storage/company logo/ directory. After successful write operation, a
response is sent back to the client with the ’logofullPath’ which contains the absolute
path of the image.

5.2 Generating the Design Report

When the user sends all the details for generating the design report, the APIView
CreateDesignReport is called. This APIView accepts POST request only. The
’metadata’ from the request body is obtained. Then the program control checks for
the cookie id called fin plate connection session . Then the input values which
was saved in ’Design’ model is obtained, along with the design status and logs from
the ’Design’ model. Then it checks if the metadata is None, then it creates an object
for the dummy

5.3 Obtaining the Design Report PDF

After the design report is created, it gets saved in file storage/design reports

directory. After which another request is made to the server to obtain the design
report PDF file. This task is handled by the GetPDF APIView which is present in

16

osdag/web api/design report csv view.py file. This API View obtains the re-

port id from the request data (POST request). The filename is the report id.pdf

file which is searched in that directory. The latex files is converted to the PDF file
with the same filename as the report id and is sent back to the client.

17

Chapter 6

User Authentication,
Authorization and activities -
Backend

6.1 User Signup

When the user on the browser creates a new account by submitting the user-
name, email and password, a request is made to the Signup APIView in the
osdag/web api/user view.py file . This APIView obtains the username, email,
password and the isGuest attribute which defines if the user is a guest or not. All the
request.data is passed to the UserAccount serializer. If the serializer is valid, then a
new user account is created in the Django’s default User model. Creating this user
in the Django’s by default User model will be useful in providing authentication,
defining permission classes and more advanced things that Django provides. So, the
user account gets created in the UserAccount model and the Django’s User model.

6.2 User Login

When a user who has an account logs provides the username and password to the
Browser. A request is made to the LoginView APIView. This APIView obtains
the isGuest attribute, if the isGuest attribute is false, then it proceeds to authenti-
cate the user with the useranme and password. To authenticate the user, the record
with both the matching values username and password is obtained. If found, then
the user gets logged in, else receives an error message. On successful login, the
length of the list of all the inputValueFiles associated with that user is sent to the
client along with the user’s email.

6.3 Guest Mode

While logging in, if the user clicks on the Guest mode in the Browser, a request is
made to the LoginView APIView. This time, the isGuest attribute is set to true.
For guest mode, a dummy user is created in Django’s User model with a dummy

18

username, email and password. Then, a successful login message is sent back to the
client.

6.4 Email Verification

When the user is on the login page, clicks Forget password, provides email and hits
the ’Get OTP’ button, a request is made to theCheckEmailView APIView in the
osdag/web api/user view.py file. The email is obtained from the request data (

POST request), it then checks if the email is present in the database or not. If it is
present, then it proceeds with generating a random OTP. The email and the OTP is
passed to the send mail() function which is located in mailing.py file in osdag web
directory. The send mail function will obtain the HOST, PORT, FROM EMAIL
and PASSWORD from the osdag web/utils.py file. The credentials for osdag on
cloud’s email and password can be set here. Then an email is sent to the user’s
email using the SMTP protocol. After which, the program control returns back to
CheckEmailView APIView and a response with the OTP is sent back to the client.

6.5 Forget Password

After the OTP is sent to the user’s account by CheckEmailView APIView, the
user will provide the new password in the browser. After hitting save, an API
call will be made to the ForgetPasswordView APIView. In this APIView, the
password and email is obtained from the request data. The user’s email is searched
in the Django User model. If a user is found in the User model, then the password
is updated for the user. Then a user with the email is searched in the UserAccount
model. If the user is found, then the password for that user gets updated as well.
After this, a success message is sent back to the client.

6.6 API for Saving the input values

When the user us working on the module and hits the ’Save Input’ button in the
drop-down in the File top-bar. An API call is made to the SaveInputFileView
APIView. This APIView obtains the content and email from the request data
(POST request). The user with the email is searhed in the UserAccount model.
Upon finding the user, the userObject is obtained. Then the length of allInputVal-
ueFiles array is obtained and the length+1 value is added to the filename string.
Currently the module is fin plate connection, so the filename will have the name of
the module fileIndex osi file. The contents obtained from the request is written in
the file. The file is stored in the file storage/input values files directory .
Upon successfully creating and writing the file. The absolute path of that file is
appended in the allInputValueFiles array associated to that particular user. The
updated userObject is saved. After this, the response with allInputValueFilesLength
and the filename is sent back to the client.

19

6.7 API for obtaining all the input files of a user

When a logged in User goes to the My Account page. An API call is made to theOb-
tainInputFileView APIView. This APIView obains the email and the fileIndex
from the request data. The email is searched in the UserAccount model. If found, a
userObject is obtained from which the file with the allInputValueFile[fileIndex]
from the array is obtained. This filename is the absolute path which we had ap-
pended while saving the input in the SaveInputFileView APIView. The file
with the obtained absolute path is found in the Server’s File system. Upon finding
the file, it is sent to the client as a FileResponse. Even tough there can be multiple
files created by the user, this APIView will serve files one at a time to the client.
This means if there are 10 files, then 10 API calls will be made to obtain 10 files.

20

Chapter 7

ModuleState Thunks and Reducer

7.1 Input values fetching

There are many fields in the input dock. These fields are obtained by individ-
ual requests. Like - the connectivityList (Column Web-Beam Web, Beam-Beam
etc) is obtained by the getConnectivityList where the module name is passed
to the API endpoint and the connectivity List is obtained, all the boltDiameter
values are obtained from getBoltDiameterList, all thickness values are obtained
from getThicknessList, all propertyClass values are obtained from getProperty-
ClassList, all material values are obtained from getColumnBeamMaterialList.

Figure 7.1: getConnectivityList Thunk

Figure 7.2: getBoltDiameter Thunk

21

Figure 7.3: getThicknessList Thunk

Figure 7.4: getPropertyClassList Thunk

Figure 7.5: getColumnBeamMaterialList Thunk

7.2 Design Report fetching

When the create Design Report button is clicked, the createDesignReport Thunk
thunk is called which sends the request to the server. In the request body, the com-
panyLogo is required, so another request to the server is made by the companyL-
ogo Thunk. If the companyLogo is provided, then the companyLogo is sent, else
nothing.

7.3 CAD model fetching

To obtain the CAD model .obj file, the request is made to the server by the cre-
ateCADModel Thunk. This thunk will not have anything in the response as the
CAD .obj file is stored in the osdagclient/public folder by the server.

7.4 Design Report PDF fetching

To obtain the design report PDF file, after the createDesignReport Thunk cre-
ates the design report, another thunk makes a call to the server to obtain the PDF
file. This is done by the getPDF Thunk.

22

Figure 7.6: createDesignReport Thunk

Figure 7.7: CompanyLogo Thunk

Figure 7.8: createCADModel Thunk

23

Figure 7.9: getPDF Thunk

7.5 Create and Delete Design Session

To create a session, a cookie with a key=fin plate connection session is set by
the server. To make this happen, a request is made by the createSession Thunk
which makes the call to create the session. And similarly, to delete the current
session, the deleteSession Thunk makes a call to the server to delete the current
session.

Figure 7.10: createSession Thunk

Figure 7.11: deleteSession Thunk

24

7.6 Create Design

When the user hits the ’Design’ button. A request is made by the createDesign
Thunk. This thunk will obtain all the input values which are passed to it via
parameters and will make a request to the server to generate the output.

Figure 7.12: createDesign Thunk

25

Chapter 8

UserState Thunks and Reducer

8.1 User Signup fetching

When a user creates an account. The credentials - username, email and password
are sent to the userSignup Thunk which sends a request to the server.

Figure 8.1: userSignup Thunk

8.2 User Login fetching

When a user logs into an existing account, the credentials username, password are
passed to the userLogin Thunk. Here, a request is made to the server for authenti-
cation followed by the calling of createJWTToken Thunk which is responsible to
generate ’refresh token’ and ’access token’ based upon the username and password
required for authorization. In these 2 API calls, some data is obtained as a response
which is stored in the localStorage. The refresh token is however stored into the

26

Cookies. Do set the refresh token in the Cookies, after the tokens have been created
by the createJWTToken Thunk, another thunk is called to set the refresh token to
the cookie. This is done by the setRefreshTokenCookie Thunk.

Figure 8.2: userLogin Thunk

Figure 8.3: createJWTToken Thunk

8.3 Email Verification

For email verification, verifyEmail Thunk is called, which makes a request to the
server, providing the email in the request. The response obtained is the OTP which
is used by the client to validate the user’s input OTP.

27

Figure 8.4: setRefreshTokenCookie Thunk

Figure 8.5: LocalStorage set values

8.4 Forget Password

The forget Password feature calls the ForgetPassowrd Thunk, which makes a
request. It sends email and the new password to the server.

8.5 Saving the Input Files

To save the input file of the current module. When the user clicks on the Save Input
button in the dropdown. A SaveInputValues Thunk makes a call to the back-end
providing the all the input values in its request.body field. The request is a POST
request with credentials included. The email is also sent in the request.body to help
the Django server to create and name the file. Upon successful creation, a status
OK is received which then triggers the dispatch() function which updates the redux
variables. One of the variables is the save input message which is displayed on the
top bar on the browser - that the input file has been saved as FILENAME. Upon

28

Figure 8.6: verifyEmail Thunk

Figure 8.7: ForgetPassword Thunk

saving the input values of the module again, the contents of the file is sent to the
Django server which then creates a new file and a new message is displayed on the
top-bar in the browser with the new FILENAME.

8.6 Obtaining the input files

To obtain multiple input files associated to the user, the obtainAllInputValue-
Files Thunk is called which obtains the number of inputFiles associated to the
user. This number of inputFiles is obtained from the localStorage which we had
obtained when the user logged in or when the user saves the input. This value (
number of inputFiles) gets updated in the localStorage whenever the user saves
the input file. Now that the number of input files is known, a for loop is executed

29

which calls the obtainSingleInputFile Thunk. This thunk will obtain one file at
a time. in this way, after the for loop is executed, all the input files are obtained.
When the user clicks on the download button of any .osi input file, the download
link will sent (a GET request) to the server which will provide the file and download
it in the browser.

Figure 8.8: obtainAllInputValueFiles Thunk

Figure 8.9: obtainSingleInputFile Thunk

30

Chapter 9

Postgres Database

9.1 Script for generating Postgres Database

A new script is developed for creating a Postgres database and populating the
database. This script is located in the ResourceFiles/Database/postgres Intg osdag.sql

file. This script will populate the database with the name ’postgres Intg osdag’. We
have created this database while installing and configuring Postgres in Chapter 1.
This action can be executed by running the command : python populate database.py

file in the server terminal in the root of the project. The ’populate database.py’ file
will execute the Postgres script and give a success message upon completion.

9.2 Script for updating Sequences

A new script is developed for updating the sequences of all the tables in the postgres Intg osdag

database. The reason was because, by default the Django’s Postgres driver is un-
aware about the updation in the sequences in the Postgres database. The upda-
tion in the sequence is caused when a new record is inserted into the table. Say -
When the database is populated. The boltDiameter contains (11 records - guess
). So the sequence should have the next value in the record which is 12. But
since Django is unaware about the updation in the sequences, the script present in
the file ResourceFiles Database update sequences.py updates the sequences
in the Django’s table. This will make insertion and deletion in any of the tables
of the database hassle free. This script can be run by running the command :
python update sequences.py in the server terminal in the root of the project.
This python file will execute the update sequences.sql script and give a success
message upon successful completion. We have already performed this action while
configuring Postgres database in Chapter 1.

9.3 Design model

The Design model stores session module related information like - cookie id, mod-
ule id, input values, logs, output values, design status, cad design status. All these

31

information is used for session activities, creating the Design reports, checking out-
put values and CADmodel generation status. All the models in the osdag/models.py

file have been developed by me.

Figure 9.1: Design model

9.4 UserAccount model

The UserAccount model stores user credentials information like - username, pass-
word, email, allInputValueFiles. These information is associated to the user. IT is
used for User authentication, authorization and any user based actions like cre-
ating the input files for design report. This model has a field called allInput-
ValueFiles, which stores the data in the form of an ArrayField(). This Array-
Field() is not part of the Django’s provided data types for models, instead it
is a data type which comes with the Postgres driver for Django. The Array-
Field(models.TextField(blank=True)) means that it is an array having element as
a TextField() from Django data type and the initial element (0th index) element
is ” (blank text field).

32

Figure 9.2: UserAccount model

33

Chapter 10

Serializers

10.1 All Serializers

All the serializers are present in the osdag/serializers.py file for each and every
model. These serializers will check if the data that needs to be saved in the model
has a correct format or not. All the serializers are written by me. The UserAccount
Serializer also updates the password of existing user. The MyTokenObtainPairSeri-
alizer allows to set custom token claims in the JWT token body. This means that
the data in the JWT token can be customized, this data is encrypted and can be
securely sent back and forth to the client. The client can then decode this token
and read the information to perform any operation.

34

Figure 10.1: UserAccount and Design serializers

35

Figure 10.2: MyTokenobtain Serializer

36

Chapter 11

Architecture

11.1 Osdag on Cloud architecture

I have designed this architecture for Osdag on Cloud. I have designed this with the
best of my knowledge and this can be used as a blueprint for further development.
The architecture gives a really good idea about the flow of the project, how things
work and what are the components/services that are being called. At this time,
the architecture is still Monolithic . I have proposed an architecture that uses
Microservices layers. The idea behind this is to break back-end service into
micro-services to have better scalability, control and improve collective performance
of the application. In future, things like database caching, HTTP caching, Server
level caching, API gateway, load-balancing etc can be integrated if it is built on
this architecture. This architecture is still tweakable and not complete yet. It will
change as per the requirements. So, future interns/developers can freely extend this
architecture or modify it for a better use case.

37

Figure 11.1: Osdag on Cloud Architecture

38

References

• https://github.com/osdag-admin/Osdag-web

• https://github.com/SurajBhosale003/Osdag-web

• https://osdag.fossee.in/resources/downloads

• https://www.django-rest-framework.org/

• https://docs.djangoproject.com/en/4.2/

• https://stoplight.io/api-design-guide

• https://react-redux.js.org/

• https://redux-toolkit.js.org/

• https://jwt.io/introduction

• https://docs.djangoproject.com/en/4.2/ref/databases/

• https://www.postgresql.org/docs/

• https://javascript.info/

39

https://github.com/osdag-admin/Osdag-web
https://github.com/SurajBhosale003/Osdag-web
https://osdag.fossee.in/resources/downloads
https://www.django-rest-framework.org/
https://docs.djangoproject.com/en/4.2/
https://stoplight.io/api-design-guide
https://react-redux.js.org/
https://redux-toolkit.js.org/
https://jwt.io/introduction
https://docs.djangoproject.com/en/4.2/ref/databases/
https://www.postgresql.org/docs/
https://javascript.info/

	Introduction
	FOSSEE Summer Fellowship
	About Osdag
	Challenges with the Osdag software
	What is Osdag on Cloud?
	Who can use Osdag on Cloud?

	Installation and Setup of Osdag on Cloud
	Software Requirements
	Installation steps

	My Fellowship work
	Input Values - Backend
	Column Flange-Beam-Web and Column-Web-Beam-Web
	Beam-Beam
	Customized inputs

	Create Design Report - Backend
	API for Company Logo
	Generating the Design Report
	Obtaining the Design Report PDF

	User Authentication, Authorization and activities - Backend
	User Signup
	User Login
	Guest Mode
	Email Verification
	Forget Password
	API for Saving the input values
	API for obtaining all the input files of a user

	ModuleState Thunks and Reducer
	Input values fetching
	Design Report fetching
	CAD model fetching
	Design Report PDF fetching
	Create and Delete Design Session
	Create Design

	UserState Thunks and Reducer
	User Signup fetching
	User Login fetching
	Email Verification
	Forget Password
	Saving the Input Files
	Obtaining the input files

	Postgres Database
	Script for generating Postgres Database
	Script for updating Sequences
	Design model
	UserAccount model

	Serializers
	All Serializers

	Architecture
	Osdag on Cloud architecture

