Screening Task

for

P(11-35) - Project Research Assistant

Please attempt all questions. Remember that your submission will be graded on the quality of your work and validity of the results.

Task

Please see the subsequent pages and attempt all the 5 questions.

Submission procedure for the Task:

- Put your code along with other supporting files (if any) in a folder. You may put a README file inside the folder, if you want, to give us more information about your submission.
 Rename that folder as "first_name-job_code", without quotes. For example, P(11-35)-satish
- 2. Compress the folder in ZIP format. Avoid any other compression format.
- 3. Mail the zip file to info@fossee.in.

Make sure to put the mail subject-line as "job-code-YourName without quotes. For example, "P(11-35)-satish" No extension in the deadline will be considered for submission of screening task

Consider a set of defferential equations: The reaction $A \rightarrow B$ takes place in a continuous stirred-tank reactor (CSTR). The reaction is exothernic $\frac{dCA}{dt} = \frac{FCCAO - CA)}{V} - 2kCA^2$ $\frac{dT}{dt} = \frac{F(T_0 - T)}{V} - \frac{2(\Delta H)k CA^2}{PCP} - \frac{U_0A(T - T_0)}{V_PC_P}$ CA -> concentration of A in reactor T > temperature of mixture in reactor F - feed flow rate CAO, K, To, V, DH, P, CP, Vo, A, Ti, Vp are constants. Assume DH as (a), VoA as (b)

PCP

VpCP $C_{A_0} = 1$, V = 100, $k = 4.11 \times 10^{13}$, $T_0 = 275$, $\rho = 1$, $-\Delta H = 596619$, $C_P = 4200$, $U_0A = 20000 \times 60$, $T_0^2 = 250$

Modified set of equations: $\frac{dCA}{dt} = \frac{FC(AO - CA)}{V} - 2kCA^{2}$ $\frac{dT}{dt} = \frac{F(T_0 - T)}{\sqrt{1 - 2kaCA^2 - 6(T - T_0^2)}}$ where, State vector X = [CA T] Manipulated input vector U = F Measured Variable Y = T Above set of equations can be written as: $\frac{dx}{dt} = f(x, v)$ with $Y = g(x) = \overline{[0]}x$ Ornestion 1: Develop Linear perturbation model at steady-state conditions I, U

X = [0.0192 384.05] Ū = 120

Use following formulae for it: dx = Ax + Bu , y= Cx $A = \begin{bmatrix} \partial f \\ \partial x \end{bmatrix}_{n \times n}$ at \bar{x}, \bar{v} n = number of states (2 in our case) $B = \begin{cases} \partial f \\ \partial U \end{cases}_{n \times m}$ at X, U m = number of inputs (1 in our case) C = [2g] at X, U Y = number of outputs

(1 in our case) Ouestion ?: Convert : continuous-time linear model to discrete-time linear model. dx = Ax + Bu J-> Continuous-time Y = Cx

 $x(k+1) = \phi x(k) + \Gamma U(k)$ -> Discrete-time Use following formulae: $\Gamma = \int_{0}^{\infty} e^{A\tau} B d\tau$ where Ts -> sampling time, Ts = 0.1 min Orustion 3: Consider an 'ARX' model: y(k) + a, y(k-1) = b,u(k-1) + bzu(k-2) + e(k) where e(k) is a white-noise sequence, U(k) and y(k) are time-domain series (input-output data)

A y(k) = B v(k) + e(k) Whore A = (1 + a,q-1), B = (6,q-1+6,2q-2) Write this polynomial form of 'ARX' in Observable' and 'controllable' state-space form.

Question 4: How will you find the Values of parameters (a, b, b2) if U and y vectors are provided to you.
U(1), u(2) u(10) y product for these y(1), y(2) y(10) J are provided to you Write the method/approach you will follow).
Overstion 5: Considering you are provided with input-output I data (y-v vectors), write a code sequence of MATLAB/SCHAB/OCTAVE to get 1e' vector in terms of parameters (a, b, b)