
Summer Fellowship Report

On

Implementation of Workflow, Searching,
Sorting and Auto-Grader of LTI for eSim

on Cloud

Submitted by

Rugved Somwanshi

Under the guidance of

Prof. Kannan Moudgalya

Chemical Engineering Department

IIT Bombay

April 2021

Acknowledgement

I, the summer intern of the FOSSEE - eSim Cloud Project am overwhelmed
in all humbleness and gratefulness to acknowledge my deep gratitude to all those
who have helped me put my ideas to perfection and have assigned tasks well above
the level of simplicity and into something concrete and unique. I wholeheartedly
thank Prof. Kannan M. Moudgalya for having faith in me, selecting me to
be a part of his valuable project and for constantly motivating me to do better. I
thank Mr. Nagesh Karmali and Ms. Firuza Aibara for providing me the
opportunity to work on this project. I am also very thankful to my mentors for
their valuable suggestions. They were and are always there to show me the right
track when needed help. With help of their brilliant guidance and encouragement,
I was able to complete my tasks properly and were up to the mark in all the tasks
assigned. During the process, I got a chance to see the stronger side of my technical
and nontechnical aspects and also strengthen my concepts. Last but not the least,
I sincerely thank all my other colleagues working in different projects under Prof.
Kannan M. Moudgalya for helping me evolve better with their critical advice.

1

Declaration

I declare that this written submission represents my ideas in my own words and
whenever others’ ideas or words have been included, I adequately cited and refer-
enced the original sources. I declare that I have properly and accurately acknowl-
edged all sources used in the production of this thesis.

I also declare that I have adhered to all principles of academic honesty and in-
tegrity and have not misrepresented or fabricated or falsified any idea/data/fact/-
source in my submission. I understand that any violation of the above will be a
cause for disciplinary action by the Institute and can also evoke penal action from
the sources which have not been properly cited or from whom proper permission
has not been taken when needed.

Rugved Somwanshi

2

Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Project Objective . 5
1.3 Project Outcome . 6
1.4 Project Requirements . 7

2 Project Overview 8
2.1 Features . 8

2.1.1 Workflow API . 8
2.1.2 Searching and Sorting . 11
2.1.3 Auto grader for LTI Apps . 11

3 Feature Implementation 12
3.1 Workflow API . 13

3.1.1 Updated Groups . 13
3.1.2 States . 15
3.1.3 Transitions . 16
3.1.4 Projects . 18
3.1.5 Transition History . 20
3.1.6 Permissions . 21
3.1.7 Reports . 23
3.1.8 Miscellaneous . 24

3.2 Searching and Sorting . 25
3.3 LTI Grader . 25

4 Conclusion 28

5 Future Work 29

3

List of Figures

3.1 Schema Diagram of Custom Group 13
3.2 Admin View of a Group . 13
3.3 Schema Diagram of States . 15
3.4 Admin Panel view of a state . 15
3.5 Schema of Transition . 16
3.6 Admin view of a Transition . 17
3.7 Schema of Project . 18
3.8 Create Project(1) . 18
3.9 Create Project(2) . 19
3.10 Project Page . 19
3.11 Schema of Transition History . 20
3.12 View of all logged transitions . 20
3.13 Simple Project Timeline . 21
3.14 Schema of Permissions . 21
3.15 Admin view of a permission . 22
3.16 Schema of Report . 23
3.17 A user reporting a project . 23
3.18 A reviewer approving a report . 23
3.19 Reports shown to the contributor . 24
3.20 Review Dialog for Reviewers . 24
3.21 Review Dashboard for Reviewers . 24
3.22 Sorted Schematic on the dashboard. 25
3.23 Searched Schematic on the dashboard. 25
3.24 Results if every parameter is wrong 26
3.25 Results if every parameter is correct 26
3.26 Results if some parameters are wrong 26
3.27 Graph Results . 27

4

Chapter 1

Introduction

The current system allows the users to draw analog and digital circuits and simulate
them. The users have a facility to drag and drop components from the left pane
onto the schematic grid on the right pane. The components on the grid are con-
nected using wires. The circuit can then be simulated using the different simulation
parameters(DC Solver, DC Sweep, Transient analysis, and AC analysis). The basic
ERC check enables the users to find out errors if any. The size of the schematic
grid can be changed from A1 to A5 paper sizes along with portrait and landscape
modes. The users can also print the circuit or save it in pdf format for documenta-
tion purposes.
Apart from this, contributors can create circuits and send them for review for pub-
lishing them on the platform for all to see.
All of this code is hosted in the repository available on GitHub

1.1 Problem Statement

The system had an absence of user roles and a common place for all users to see
circuits. There was a need of a system for users to be able to publish created cir-
cuits and a review/reporting system for the same. This system should also support
multiple roles and states of a circuit along side permissions for each role.
There was also a need of searching and sorting features for schematics on dashboard
as it can easily get crowded and hamper user experience. Implementation of valida-
tion of circuits while simulating was required.
LTI integration for eSim on Cloud also required a way to calculate and send a grade
to the LMS.

1.2 Project Objective

The objective of the project is to implement a workflow which enables a user to
create projects, making the user a contributor, and having a multi-staged review
process where a project goes through multiple states.
Searching and sorting based on different fields of a schematic is another objective of
the project to make navigation to multiple circuits easier.

5

https://github.com/frg-fossee/eSim-Cloud

A basic auto-grader where comparison between simulation results is done to grade
the submission is the final objective of the project.

1.3 Project Outcome

The projects add the facility to implement multiple states, roles and permissions for
the workflow API which enables contributors to create new projects which will be
reviewed and published on the site. The published projects are visible to all users
and can be reported if any mistakes are present.
A search and sort functionality is implemented for Schematics, Projects and LTI
apps on different pages,
Auto-grading with the aid of comparing the simulation results is done and the grade
is submitted to the LMS.

6

1.4 Project Requirements

Following Major Technologies have been used during development.

• Docker

• Django (v2.2.12)

• React (v16.13.1)

• PostgreSQL

7

Chapter 2

Project Overview

The implemented features allow the user to create a project and contribute to the
existing platform. A project consists of different details like procedure,observations
and conclusion. This is not limited as the contributor can add his own custom
details as he pleases. This project is sent for the reviewer to review and then is pub-
lished after complete reviewing. This leads to a highly configurable workflow with
evaluation checkpoints and a reporting system to revise the project if any mistakes
are found by a user. A contributor can also provide default simulation parameters
for a user to simulate. This system is also integrated to work with versioning.
A searching and sorting feature which searches over fields like title, author or de-
scription of a schematic, project or LTI app is also in place. Sorting takes place over
multiple fields like name, creation time or save time is implemented. For reviewers,
sorting based on name, author and status is also implemented.
An auto-grader is implemented by comparing the idea simulation results with simu-
lation results submitted by a student over a LMS platform. A teacher, for example,
can also set the parameters over which a submission shall be evaluated.

2.1 Features

My task was divided into three main parts, Workflow API, Searching/Sorting and
Auto-grading Circuits. More details are given below.

2.1.1 Workflow API

In previous versions of eSim on Cloud, there was no place where all users can share
their circuits in a common place,So with a goal to make the platform feel like a com-
munity and enable sharing different circuits and their observations over the cloud,
an highly configurable workflow is created which enables users to be contributors by
creating projects and publishing them to the platform after being reviewed by the
reviewers.
This uses a role-based system where each user is assigned a role. Contributor role
is given to every single user by default. Reviewer role can be given to certain users
by the admin using Django admin panel. There is also an integration of staff roles.
Every project has a state defining where it is currently in the workflow. The default

8

states are Draft, Review, Published and Reported.

Workflow

A default workflow is setup when the project is built. This workflow can be changed
according to the use.
When a contributor creates a project, the project is in the Draft state. This is the
stage where contributor can make changes, select the version of schematic it wants
to use for the project and update the project if it has any changes.
After everything is in place, the contributor can put its project in Review State.
This is the state where a reviewer can take up a project, review it and publish the
project or send it back to draft if any mistake is found. The reviewer can also give
a note to the contributor for pointing out necessary changes.
If everything is perfect, the project can be published for all users to see. The project
goes into Published state. All published projects are visible in ’Projects’ page.
A user can report a project if there are any issues. The project goes into Reported
state. The reported project is still visible for other users but has a warning saying
that the project is reported so not to take all details mentioned in the project as
ground truth. A reviewer can then review the reports and approve or decline them
if they are not correct. If the reports are approved, the reviewer must send this
project back to Draft stage where the contributor can see the approved reports and
fix the mistakes or make changes accordingly and send the project back to Review
state.

Project page

A project consists of title, description, procedure, observation and conclusion. This
can be modified by the contributor to its will.The project page also has an auto-
generated component list, buttons to copy the schematic, simulate the given schematic
in the project or report the project. A user has to give report description while
reporting a project which helps the contributor to make proper changes. For simu-
lation, the contributor can provide simulation parameters which will be auto-filled
in the fields to aid users which insufficient knowledge in electronics. Any user can
also view the timeline of the project, all the states the project went through and
who reviewed the project. A user can also check the component parameters by
double-clicking on the component present in the schematic.

9

Workflow Terminology

Here are a few parameters to keep in mind while configuring the workflow.

• States: The states which a project can be in. One can define if a project is a
particular state, should it be visible to all the users or not.

• User Roles(Groups): Using Django Groups, one can define separate roles for
both platforms, eSim and Arduino on cloud. There are attributes like is the
role for staff or someone who should be reviewing the circuits.

• Permissions: This table is used to define view, edit and delete permissions for
each state for each role. This enables granular control of permissions and can
be extended in future to en-corporate more types permissions.

• Transitions: Very similar to permissions, this table is used to define which
role is allowed to change a project in a specific state. This enables highly
customized workflows for future use.

Integration with versioning

The project is integrated with versioning which allows contributor to try different
circuits by making different variations and versions. Then, the contributor can select
which specific version and variation of the circuit he wants to use for the project.
This leads in easy and efficient revisions of a project and better user experience.

Miscellaneous

Whenever a user reports a circuit, a report is created which has to be accepted
or denied by the reviewer. This helps in clearing wrong/malicious reports so the
contributor can makes changes which are only necessary.
When a project is changed from one state to another, a transition takes place. This
transition is logged in the back-end and can be viewed from the admin panel in the
publish API side of things. This helps in establishing transparency to all the users
about the flow itself and can be used for future reference if required.

10

2.1.2 Searching and Sorting

As schematics,projects and LTI apps go on increasing, there is a need of searching
functionality which can help users find what they exactly want to access. There is
also a sorting functionality implemented which can help users to sort their schematics
for better user experience.

2.1.3 Auto grader for LTI Apps

A basic auto-grader is implemented which evaluates students simulation results by
comparing it to teachers saved simulation when a student submits on the LMS
platform.Depending the parameters defined by the teacher, the student is graded as
well. This process is done in the back-end in a secure way.It also provides a feedback
of which simulated parameters the student got correct. This could be worked used
further to help student guide towards the right solution.

11

Chapter 3

Feature Implementation

The following chapter describes the procedure I had undertaken to implemented the
above listed features:

1) Workflow API

2) Searching and Sorting

3) Auto grader for LTI Apps

12

3.1 Workflow API

Implementing workflow came with adding models like Projects, States, Transitions,
Transition History, Reports and Permissions.Groups model was updated as well.
Their implementation is given below:

3.1.1 Updated Groups

This model is used to extend the functionality of the existing groups system in
Django. These groups are used as roles in the workflow.

Figure 3.1: Schema Diagram of Custom Group

Figure 3.2: Admin View of a Group

13

The attributes are:

• group: Key of the Django group it is referencing.

• is_arduino: If the specific role/group is for Arduino or for eSim on cloud.

• is_type_reviewer: If the specific role/group is for reviewers. This grants the
privilege to review reports for that specific role.

• is_type_staff: If the specific role/group is for staff. This grants the privilege
to change gallery circuits for that specific role.

• is_default_role: If the specific role/group is supposed to assigned to every
new user created on the platform.

Default groups are:

• Contributor[eSim]

• Contributor[Arduino]

• Reviewer[eSim]

• Reviewer[Arduino]

• Staff[eSim]

• Staff[Arduino]

14

3.1.2 States

Every Project will have a state it is currently in. These states define where a
particular project is in the current workflow.

Figure 3.3: Schema Diagram of States

Figure 3.4: Admin Panel view of a state

The attributes are:

• name: Name of the state

15

• description: Description of the state

• public: A boolean value to define if a project is in this particular state, should
it be visible to any user on the platform.

• report: A boolean value to define if a project is in this particular state, should
it be considered reported and sent for reviewers to review. Note that this
is only used for the reporting side (to enable controlling of reports) of the
workflow and should not be ticked for the normal Review state.

Default States are:

• Draft: State used for the drafting stage of a project

• Review: State used for the reviewing stage

• Reported: State used when a project gets reported

• Published: State used for the published stage

3.1.3 Transitions

Each Transition defines which roles can change the state of a project from state A
to state B. It also holds the messages for each event and history to display it on a
timeline. History is defined as an action which was taken on a project and an event
is defined as something which is currently happening. Each type of user will have
different messages shown. These details are then visible in the timeline of a project.

Figure 3.5: Schema of Transition

16

Figure 3.6: Admin view of a Transition

The attributes are:

• name: Name of the transition.

• from_state: The state in which the project is expected to be in.

• to_state: The state to which the project is expected to be put in.

• restricted_for_creator: If the transition is restricted for creator. If True,
the creator of the project cannot make this transition happen.

• only_for_creator:If the transition is allowed ONLY for creator. If True, the
creator of the project only can make this transition happen.

• event_creator:Event message for the creator of the project.

• history_creator: History message for the creator of the project.

• event_reviewer: Event message for a reviewer.

• history_reviewer: History message for a reviewer.

• event_other: Event message for a normal user.

• history_other: History message for a normal user.

17

3.1.4 Projects

The entity which goes from one state through another and for which the workflow
is established. The contributor can specify different types of details for the project,
which is fully customizable, and also define the default simulation parameters. The
contributor also has to select the version of the schematic which needs to be used
for the project.

Figure 3.7: Schema of Project

Figure 3.8: Create Project(1)

18

Figure 3.9: Create Project(2)

Figure 3.10: Project Page

19

3.1.5 Transition History

This model is responsible for logging all transitions taking place on the platform.
This also aides in displaying a timeline on the Project page and create project page
for reference of the users.

Figure 3.11: Schema of Transition History

Figure 3.12: View of all logged transitions

20

Figure 3.13: Simple Project Timeline

3.1.6 Permissions

This model is responsible for configuring View,Edit and Delete permissions for each
role in reference to Projects.

Figure 3.14: Schema of Permissions

21

Figure 3.15: Admin view of a permission

The attributes are:

• role: Group/Role to which this permission is associated.

• view_own_states: Permission to view your own project in defined states.

• edit_own_states: Permission to edit your own project in defined states.

• view_others_states: Permission to view others project in defined states.

• del_own_states: Permission to delete your own project in defined states.

22

3.1.7 Reports

This model is used for implementing a report system for the project. When a
user reports a project, the report is sent to the reviewer. The reviewer check the
legitimacy of the report and approves it likewise. If the report is approved, it is
sent to the contributor of the project so for the contributor to make the necessary
changes.

Figure 3.16: Schema of Report

Figure 3.17: A user reporting a project

Figure 3.18: A reviewer approving a report

23

Figure 3.19: Reports shown to the contributor

3.1.8 Miscellaneous

While reviewing, a reviewer can put notes so for any user to see what the reviewer
has in mind. This can be used to let contributor know any changes if the project is
sent back to the Drafting state.

Figure 3.20: Review Dialog for Reviewers

Figure 3.21: Review Dashboard for Reviewers

24

3.2 Searching and Sorting

A searching and sorting feature is implemented in the dashboard of eSim on cloud.
This helps in easy navigation between multiple schematics, projects or LTI apps and
submissions.

Figure 3.22: Sorted Schematic on the dashboard.

Figure 3.23: Searched Schematic on the dashboard.

3.3 LTI Grader

Implemented a basic grader which compares teacher and students simulation results
to give a grade. Each simulation parameter is compared and evaluated accordingly.

25

Figure 3.24: Results if every parameter is wrong

Figure 3.25: Results if every parameter is correct

Figure 3.26: Results if some parameters are wrong

26

Figure 3.27: Graph Results

27

Chapter 4

Conclusion

In conclusion, I have successfully implemented Workflow, Searching/Sorting and
LTI Grade.
The workflow will aid in making the platform more cohesive and establishing a
community type system which will help all users exchange different schematics and
information. This will encourage more users to contribute and use the platform
likewise.
Searching and sorting helps uplift the user experience as a lot of new types of
features like projects and LTI apps are introduced. This helps in easier navigation
and future-proofing navigation in general. LTI grader implementation helps the LTI
system up and running. This can be used as a foundation to improve the grader
further along and implement different types of evaluations.
This project has helped me a lot of new technologies, good practices and designing
a robust system for many users to use.

28

Chapter 5

Future Work

For the workflow API, there is a need of implementing comments and a common
feed for Projects. This will give the platform a sense of community and will make
users want to come back to the site. The permissions section can be extended
to implement all different types of permissions for the platform, expanding it just
from permissions for projects.There can be metric system which can show which
contributor contributes more and which reviewer reviews more. This can result into
an incentive to have more engaging activity on the platform. A upvote/downvote
system just like Reddit for projects can be implemented too. For the LTI grader,
different ways to improve grading such as weighted grading and partial checking of
results can be done.

29

Bibliography

[1] http://ngspice.sourceforge.net/docs/ngspice-manual.pdf (Accessed on
April 10, 2021).

[2] https://www.django-rest-framework.org/ (Accessed on April 10, 2021).

[3] https://www.djangoproject.com/ (Accessed on April 10, 2021).

[4] https://swagger.io/ (Accessed on April 20, 2021).

[5] https://reactjs.org/ (Accessed on April 20, 2021).

30

http://ngspice.sourceforge.net/docs/ngspice-manual.pdf
https://www.django-rest-framework.org/
https://www.djangoproject.com/
https://swagger.io/
https://reactjs.org/

	Introduction
	Problem Statement
	Project Objective
	Project Outcome
	Project Requirements

	Project Overview
	Features
	Workflow API
	Searching and Sorting
	Auto grader for LTI Apps

	Feature Implementation
	Workflow API
	Updated Groups
	States
	Transitions
	Projects
	Transition History
	Permissions
	Reports
	Miscellaneous

	Searching and Sorting
	LTI Grader

	Conclusion
	Future Work

