
Semester Long Internship Report

On

Scilab Octave Toolbox

Submitted by

Karan

GGSIPU, Delhi

Under the guidance of

Prof. Kannan M. Moudgalya

Chemical Engineering
Department

IIT Bombay

Prof. Kumar Apaiah

Chemical Engineering
Department

IIT Bombay

Mentored By

Mr. Rupak Rokade

IIT Bombay

July 10, 2021

2

Acknowledgment

The internship opportunity we had with the FOSSEE Team, IIT BOMBAY, was a
great chance for learning and professional development. Therefore, we consider
ourselves as very lucky individuals as we were provided with an opportunity to be
a part of it. We are also grateful for having a chance to meet so many wonderful
people and professionals across the country who led us through this internship
period.

We are using this opportunity to express our deepest gratitude and special thanks
to Prof. Kannan M. Moudgalya, head of FOSSEE team, IIT Bombay, for giving us
an opportunity to be a part of this project. We express our deepest thanks to
Prof. Kumar Appaiah, professor in the Department of Electrical Engineering, IIT
Bombay, for taking part in useful decisions and giving necessary advices and
guidance to make life easier. We choose this moment to acknowledge his
contribution gratefully.

It is our radiant sentiment to place on record our best regards, deepest sense of
gratitude to our mentor, Mr. Rupak Rokade for the continuous support which was
extremely valuable for our study both theoretically and practically and helping us
to learn a lot many things.

We perceive this opportunity as a big milestone in our career development. We
will strive to use gained skills and knowledge in the best possible way, and we will
continue to work on their improvement, in order to attain desired career
objectives. Hope to continue cooperation with all of you in the future.

1

Contents

1 Introduction 4
1.1 About Scilab Octave Toolbox . 4
1.2 Version Control . 5
1.3 Travis CI: Continuous Integration . 5
1.4 Doxygen . 6

2 Scilab Octave Toolbox Structure 7
2.1 File Structure . 7

2.1.1 builder.sce . 7
2.1.2 loader.sce . 7
2.1.3 demos . 8
2.1.4 etc . 8
2.1.5 jar . 8
2.1.6 cleaner.sce . 8
2.1.7 unloader.sce . 8
2.1.8 .travis.yml . 9
2.1.9 Doxyfile . 9
2.1.10 help . 9
2.1.11 macros . 9
2.1.12 sci gateway . 9
2.1.13 src . 9
2.1.14 tests . 10
2.1.15 thirdparty . 10

2.2 Guidelines to use the toolbox . 10

3 Contributions 12
3.1 Task 1: Error Handling . 12

3.1.1 Problem Statement . 12
3.1.2 Role & Contributions . 12
3.1.3 Conclusion . 14

3.2 Task 2: Structure Support . 15
3.2.1 Problem Statement . 15
3.2.2 Role & Contributions . 15
3.2.3 Conclusion . 18

3.3 Task 3: Windows OS Support . 19
3.3.1 Problem Statement . 19

2

3.3.2 Role & Contributions . 19
3.3.3 Conclusion . 20

4 Conclusion 21

5 Reference 22

3

Chapter 1

Introduction

SCILAB is an open-source numerical, programming, and graphics environment avail-
able for free from the French Government’s ”Institut Nationale de Recherche en
Informatique et en Automatique - INRIA (National Institute for Informatics and
Automation Research).” It is similar in operation to MATLAB and other existing
numerical/graphic environments and can be run using a variety of operating sys-
tems including UNIX, Windows, Linux, etc. It includes a large number of intrinsic
numeric, programming, and graphics functions.

GNU Octave is a high-level, open-source language, primarily intended for nu-
merical computations. It provides a convenient command-line interface for solving
linear and nonlinear problems numerically, and for performing other numerical ex-
periments. It is easily extensible and customizable via user-defined functions writ-
ten in Octave’s language, or using dynamically loaded modules written in C++, C,
Scilab, or other languages.

1.1 About Scilab Octave Toolbox

FOSSEE Octave toolbox is a toolbox in scilab maintained and developed by FOSSEE
(Free and Open Source Software in Education), IIT Bombay. It is basically a toolbox
which aims to bring the power of the octave right inside the scilab. So, we can call
all the octave functions directly from scilab using this.

The Octave toolbox for Scilab makes use of both the Octave-C++ API and
the Scilab-C++ API. Firstly, the input is fetched using the Scilab API and stored
(Initially, only int/double/complex data type was supported), the input is then sent
to the fun() function where the input data is passed to Octave’s API for computation.
The returned data is then checked to see for a successful response or an error. If
an error is encountered, a general error is thrown in Scilab (Initial case), or if the
computation is successful, then the output is sent back using Scilab’s API. It can
solve the following types of problems:

• Linear algebra problems

• Finding the roots of nonlinear equations

• Integrating ordinary functions

4

• Manipulating polynomials

• Integrating ordinary differential and differential-algebraic equations etc.

FOSSEE Octave toolbox mainly uses 2 octave libraries, namely :

• loctinterp

• loctave

1.2 Version Control

Git is a version control system for tracking changes happening in files of computers
which comes along with web-based hosting services for repositories. It can be used
to coordinate work among multiple people across the world. We have made the
toolbox in our systems as git repositories (local repository) to push it to GitHub (to
create a remote repository).

GitHub is a web-based hosting service for version control using Git which offers
all of the distributed version control and source code management (SCM) function-
ality of Git as well as adding its own features. We have used GitHub for version
control using Git. We used Github for two more major purposes that are:

• Linking it with Travis CI, the continuous integration tool, where we can deploy
and test our projects which are in Github.

• Adding Doxygen, which is the de-facto standard tool for generating documen-
tation from annotated C++ sources.

The file “.travis.yml” in Github indicates the Travis CI to test our projects whereas
the ”Doxyfile” indicates the file to configure Doxygen documentation.

1.3 Travis CI: Continuous Integration

Travis CI is a continuous integration tool, where we can deploy and test our projects
which are in Github. We have linked our repository to our Travis CI account and
then we initiated a build in Travis. Travis just looks into the .travis.yml file in the
repository, and based on the script that we have mentioned, it builds our project.

Figure 1.1: Travis Build Log

We have built the test.sce of the toolbox in Travis CI, which is used to validate
the functions present in the toolbox. On successful completion of the build we get

5

an indication of build success whereas if the build fails, then we get an indication of
build failure which indicates that we have to revisit the test file to fix the errors or
bugs. After every build, be it successful or failed builds, we get notification mails
from Travis regarding the commit information and the build status. So each time,
we triggered the builds by entering the desired commit messages of the git repository,
to test the toolbox.

1.4 Doxygen

Doxygen is a popular tool to document the code which can be used to generate
code for a variety of languages. It is great at generating the documentation for the
class definitions (the member variable, methods, etc.), class hierarchies (inheritance
hierarchy), etc. But, it does not do much with documenting the algorithm (which
is typically there in .cpp files). There are two main steps in using Doxygen:

• To use Doxygen, we write comments in code using the format that Doxygen
understands. The comments are included in the header files (.h) files. But, we
should also comment code in your .cpp files, though Doxygen won’t use them
extensively.

• Then, simply run Doxygen, which generates an html folder (in our case, inside
the doc folder in Github) with the index.html file in it. The documentation
for the code is now in an easy to read html file.

6

Chapter 2

Scilab Octave Toolbox Structure

Followings are the list of visible files and folders in the main directory of the fossee-
scilab-octave-toolbox of Scilab:

• builder.sce
• loader.sce
• demos
• etc
• jar
• cleaner.sce
• unloader.sce
• README.md
• .travis.yml
• Doxyfile
• help
• doc
• locales
• macros
• sci gateway
• src
• tests
• thirdparty

2.1 File Structure

2.1.1 builder.sce

This file builds the macros, help and the loader.sce files. Type the command exec
builder.sce in the scilab console to execute this file. Both these have to be executed
every time, to load the toolbox for usage.

2.1.2 loader.sce

It is basically a file that calls the function scilab octave.start present in the etc
folder. This has to be executed first on opening the toolbox, using the command
exec loader.sce in the scilab console.

7

2.1.3 demos

It contains demo files for the toolbox.

2.1.4 etc

etc directory contains the initialization and finalization script of the toolbox which
runs at the beginning and termination of the toolbox. They are executed while
executing the loader and unloader files.

scilab octave.start The name of the initialization script for a toolbox is the name
of the toolbox followed by ”.start”. It is executed when we run the loader.sce file.
It’s purpose includes :

• Load function libraries from macros directory.
• Load gateway and shared libraries form sci gateway and thirdparty directory.
• Load help from help directory.
• Load demos from demos directory.

scilab octave.quit The name of the finalization script for a toolbox is the name
of the toolbox followed by ”.quit”. It is executed when we run the loader. It’s
purpose includes :

• Unlink the toolbox libraries.
• Remove any preferences that were set by the toolbox.

2.1.5 jar

This folder has a scilab en US.jar file. This file is basically a Java Archive package
file format typically used to aggregate many Java class files and associated metadata
and resources (text, images etc.) into a file for distribution.

2.1.6 cleaner.sce

This file is generated by builder.sce. On executing this file, we actually delete the
loader.sce and the unloader.sce files. One caution to the users is that do not edit
this file.

2.1.7 unloader.sce

It is used to unload the toolbox.

8

2.1.8 .travis.yml

This file is included to facilitate the builds we can trigger in Travis CI. Travis CI
provides a default build environment and a default set of steps for each programming
language. We can customize any step in this process in .travis.yml. .travis.yml can
be very minimalistic or have a lot of customization in it. So each time when a build
is triggered by the user, an new scilab instance is opened in the terminal without
any gui (scilab-cli) and executes test.sce in the tests folder of the toolbox (because
of the -f flag used here).

2.1.9 Doxyfile

Doxygen uses a configuration file to determine all of its setting. This configuration
file is a free-form ASCII text file with a structure that is similar to that of a Makefile,
with the default name Doxyfile. It is parsed by Doxygen and essentially, consists of
a list of assignment statements. Each statement consists of a TAG NAME written
in capitals, followed by the equal sign (=) and one or more values.

2.1.10 help

The help section that covers all the functions that the toolbox currently consists of.

2.1.11 macros

Macros folder contains scilab function files. Files with extensions other than sci will
not be compiled when the builder is run. Scilab macros can be:

• A Scilab function file which returns the result after computation.
• A Scilab function which calls a C, C++ or FORTRAN code.
• A Scilab function which calls a binary library.

2.1.12 sci gateway

Now the sci gateway directory contain all necessary files to create the builder for the
primitive octave fun. For this, the builder file is in the sci gateway/cpp/ directory,
this builder (named builder gateway cpp.sce) creates the new shared libraries to
link the compiled C and new Scilab interface routines and generates a loader. This
loader file calls the addinter function to load dynamically the shared library.

2.1.13 src

The src directory contain all source code files for the octave fun function i.e. to call
octave from c and then pass the result to scilab.

9

2.1.14 tests

This folder contains 2 tests file that are used to validate all the functions present in
the toolbox macros. One is the demo.sce file which is used for the demo purposes
whereas other is the test.sce file which is executed in the Travis CI (Continuous
Integration).

2.1.15 thirdparty

It contains the header files and dynamic link libraries for the fun function for both,
Linux and Windows.

2.2 Guidelines to use the toolbox

The toolbox is available at Github. The users are requested to go through the
README.md file prior to using the toolbox.

Else, the users are requested to follow the following steps:

• Prerequisites for Linux

1. sudo apt-get install build-essential (117 MB download)

2. sudo apt-get install liboctave-dev (103 MB download)

3. sudo apt-get install octave

4. sudo apt-get install scilab

5. Now, install the required octave packages using the below command in
linux terminal sudo apt-get install octave-pkg name

For example, to install signal package in octave, do
sudo apt-get install octave-signal

• Prerequisites for Windows

1. Download and Install Scilab 6.0.1 x64 from Scilab.org

2. Download and Install Octave 4.4.1 x64.

3. Install Mingw Tollbox for Scilab (https://atoms.scilab.org/toolboxes/
mingw/0.10.5).

4. Create an user variable called OCTAVE_HOME with value equal to the in-
stallation directory of Octave, (Default: C:\Octave\Octave-4.4.1\).

Now build and load the toolbox using the folllowing steps:

1. Clone the repository as it is.

2. Go to the root folder and execute the command exec builder.sce to build
the toolbox.

10

https://github.com/FOSSEE/fossee-scilab-octave-toolbox
https://www.scilab.org/previous-scilab-versions
https://atoms.scilab.org/toolboxes/mingw/0.10.5
https://atoms.scilab.org/toolboxes/mingw/0.10.5

3. Load the toolbox using exec loader.sce and start using the functions in the
toolbox.

This step should be repeated every time you restart the Scilab to load the tool-
box again. Once the toolbox is built and loaded by following the steps mentioned
above, we can verify the functioning of the toolbox by executing the test.sce by
exec tests/test.sce.

11

Chapter 3

Contributions

3.1 Task 1: Error Handling

3.1.1 Problem Statement

Capturing the original octave error messages and returning them to
Scilab.

This toolbox basically makes use of both the Octave-C++ API and the Scilab-
C++ API. So, firstly, the input is fetched using the Scilab C++ API, which is then
sent to the fun() function where the data is passed to Octave’s API for computation
using the feval function. The returned data is then checked to see for a successful
response or an error. Now earlier, if an error was encountered in the octave side
of this toolbox, it threw only following errors, instead of the specific error by the
octave:

• Octave interpreter exited with status = ...

• Error encountered in Octave evaluator!

• Octave unable to process!

3.1.2 Role & Contributions

Role: Documentor

For the major part I pertained to creating documentation for the toolbox. I went
about creating documentation with the following approaches:

• Internal Toolbox Document

• Doxygen: For auto generated documentation from Source Code

12

(a) Original Working of the Toolbox

(b) Working of the Toolbox with Error Han-
dling

Figure 3.1: Toolbox Flowchart

13

Figure 3.2: HTML Homepage of Doxygen Generated Documentation

3.1.3 Conclusion

In the current implementation of error handling in Octave’s interpreter, the errors
were being sent into an error buffer by Octave. The developer of this task came with
a neat approach to store the errors from the buffer and send the same to Scilab.

Figure 3.3: Error from Octave inside Scilab

14

3.2 Task 2: Structure Support

3.2.1 Problem Statement

Handling octave functions that represent the input and output data in
structure format.

The toolbox before this task was supporting doubles/ complex numbers and
strings but no structured I/O. Upon receiving a struct as an input or output the
toolbox simply gave a ”unsupported datatype” error. Our task was to extend the
toolbox to accept and return structs as well.

Figure 3.4: Original Struct I/O Error

3.2.2 Role & Contributions

Role: Developer

This task was a bit trickier as we were dealing with not one but different types
of data inside a structure. The basic approach to this problem that we used is to
fetch the data from Scilab, store it in a custom defined C++ structure, interface
with Octave, get the returned data stored in the same custom structure and finally
deliver it to Scilab for the user.

Problems Faced:

1. Transferring data between Octave and Scilab’s API.

2. Storing the data between the two APIs.

3. Handling of heterogeneous data inside a structure.

3.2.2.1 Transfering Data Between Scilab and Octave API

The first hurdle to cross was to get the struct data from Octave and Scilab’s API
whether it is input or output. Since a struct is nothing but a mapping of various
key value pairs, we needed to get the keys and their respective values.

In Octave we extensively made use of the octave_scalar_map class and it’s
member to create structures and send them as I/O while using Octave’s C++ API.

15

For fetching the data, in Scilab we used the scilab_getFields function and
appropriate similar functions to get the respective value pair depending on the
datatype. In Octave, we made use of the octave_scalar_map class and it’s function
to extract the struct data, most importantly the key and contents members for
the keys and values respectively.

On the other hand for sending the data to the API, In Octave we we used the
assign member of octave_scalar_map to assign the key-value pairs of a struct and
in Scilab, we used scilab_createStruct to model a structure. To assign a key to
this Scilab structure scilab_addField and it’s equivalent counterpart based on the
datatype was used.

Figure 3.5: Fetching Struct Data from Octave

Figure 3.6: Fetching Struct Data from Scilab

Since the value of each field in as struct could be a different data type we had to

16

keep a tight conditional check on extracting/ storing these different types of data
types. Right now the structs can handle doubles, complex numbers, strings and
matrices.

3.2.2.2 Storing the data between the two APIs.

The next hurdle was to store the data in between the two APIs, the main issue being
since the struct can contain heterogeneous data, traditional arrays would not do.

Figure 3.7: Custom Structure to Store Data

The solution that I came up with was to use a custom defined C++ structure for
this purpose. We would create an array of this custom structure and each index of
this array would replicate each field of the struct that we are transferring between
the API. Each field or index would store field as well as it’s respective value. This
way we could recreate the structure for Scilab or Octave as well and it is flexible
enough to support any custom type of user created structs.

The custom structure used to store data is of the form:

typedef enum {

TYPE_DOUBLE,

TYPE_COMPLEX,

TYPE_STRING,

17

TYPE_STRUCT,

}FUNCTYPE;

typedef struct {

FUNCTYPE type; //Type of value in struct’s field

void* key; //key of struct field

int rows; //rows dimension of struct field’s value

int cols; //cols dimension of struct fields’ value

void* dataReal; //Real data if struct field’s value is real

void* dataImg; //Img data if struct field’s value is complex

void* str; //String data if struct field’s value is string

} FUNCSTRUCT;

3.2.2.3 Additional Task

One more thing that we added to the toolbox that was not explicit to this task was
string I/O compatibility.

3.2.3 Conclusion

Now the toolbox supports struct I/O and the structs can contain doubles, complex
numbers, strings and matrices. Additionally the toolbox now also supports string
I/O.

Figure 3.8: Working Struct I/O in Scilab Octave Toolbox

18

3.3 Task 3: Windows OS Support

3.3.1 Problem Statement

Extending the toolbox usage to Windows OS.
The Original Scilab Octave Toolbox was only supported on Linux. The third

task was to bring the toolbox support for Windows OS as well.

3.3.2 Role & Contributions

Role: Manager

Adding support for Windows was faced with some unique hurdles as the loading
and building process is quite differ net than on Linux.

As the manager for this task I divided the problem into three main parts:

• Creating the builder script.

• Creating the loader script.

• Testing and Fixing the bugs on Windows OS.

Problems Faced

1. Loader script failing without bin PATH.

2. Octave Interpreter failing to search for function files without ”OCTAVE HOME”
environment variable.

3. Cleaner script not working due to multiple gcc binaries in the PATH.

4. Crashes while running the test script in Scilab.

Figure 3.9: loader.sce error in Scilab on Windows OS

19

3.3.2.1 Handling the Errors

The solution to this task was the result of constant debugging and going through
the documentation was creating toolboxes on Scilab. The most time consuming part
was to getting to the source of various error in the building and loading process and
random crashes.

The error of the builder script failing was tracked back to the presence of multiple
gcc binaries in the PATH environment variable. We need the gcc version specified
by the mingw toolbox but the Octave installation also ships with it’s own gcc

executable and having that in the PATH would mean trouble for the builder script.
Simply removing the octave/bin from PATH while building the toolbox would solve
this problem.

Coming to the loader script, it would fail if we do not have the octave/binin
our PATH variable (which we removed for the build process). Thus we need to add
that back to the PATH variable. Since building is a one time process we could add
back the bin path.

After successfully loading the toolbox into Scilab we then encountered a unique
problem where Octave’s interpreter was not able to find functions. This was traced
to the absence of the OCTAVE_HOME user variable, which is essential for Octave’s
interpreter to find function definitions.

3.3.3 Conclusion

We achieved the support by modifying the builder script and adding the equivalent
prerequisites for Windows.

Figure 3.10: Scilab Octave Toolbox working on Windows OS

20

Chapter 4

Conclusion

Closing off this report, the Scilab Octave Toolbox at the end of this Semester Long
Internship is now capable of:

• Handling and Displaying Error Messages from Octave.

• String Input/Output

• Structured Data as Input/Output

• Running on Windows OS

During the semester-long internship, I got the chance to work on open-source soft-
ware and even though sometimes the learning curve was a bit steep it proved to be
a great opportunity.

At the end, I would like to thank the mentors, my team members and everyone
who made my internship a great learning experience.

21

Chapter 5

Reference

• Source Repository:
https://github.com/FOSSEE/fossee-scilab-octave-toolbox

• Scilab API Documentation:
https://help.scilab.org/docs/6.0.2/en_US/api_struct.html

• Octave API Documentation:
https://octave.org/doxygen/4.4/

• https://octave.1599824.n4.nabble.com/Capturing-exception-messages-in-octave-
C-API-td4694132.html

22

https://github.com/FOSSEE/fossee-scilab-octave-toolbox
https://help.scilab.org/docs/6.0.2/en_US/api_struct.html
https://octave.org/doxygen/4.4/
https://octave.1599824.n4.nabble.com/Capturing-exception-messages-in-octave-C-API-td4694132.html
https://octave.1599824.n4.nabble.com/Capturing-exception-messages-in-octave-C-API-td4694132.html

	Introduction
	About Scilab Octave Toolbox
	Version Control
	Travis CI: Continuous Integration
	Doxygen

	Scilab Octave Toolbox Structure
	File Structure
	builder.sce
	loader.sce
	demos
	etc
	jar
	cleaner.sce
	unloader.sce
	.travis.yml
	Doxyfile
	help
	macros
	sci_gateway
	src
	tests
	thirdparty

	Guidelines to use the toolbox

	Contributions
	Task 1: Error Handling
	Problem Statement
	Role & Contributions
	Conclusion

	Task 2: Structure Support
	Problem Statement
	Role & Contributions
	Conclusion

	Task 3: Windows OS Support
	Problem Statement
	Role & Contributions
	Conclusion

	Conclusion
	Reference

