
Semester-Long Internship Report

On

Scilab Octave Toolbox

Submitted by

Shagun Katoch
National Institute of Technology, Hamirpur

Under the guidance of

Prof. Kumar Appaiah

Department of Electrical Engineering

IIT Bombay

Mentor

Mr. Rupak Rokade

July 5, 2021

1

Acknowledgment

The internship opportunity we had with the FOSSEE Team, IIT BOM-
BAY, was a great chance for learning and professional development. There-
fore, we consider ourselves as very lucky individuals as we were provided with
an opportunity to be a part of it. We are also grateful for having a chance
to meet so many wonderful people and professionals across the country who
led us through this internship period.

We are using this opportunity to express our deepest gratitude and spe-
cial thanks to Prof. Kannan M. Moudgalya, head of FOSSEE team, IIT
Bombay, for giving us an opportunity to be a part of this project.

We express our deepest thanks to Prof. Kumar Appaiah, professor in the
Department of Electrical Engineering, IIT Bombay, for taking part in useful
decisions and giving necessary advices and guidance to make life easier. We
choose this moment to acknowledge his contribution gratefully.

It is our radiant sentiment to place on record our best regards, deepest sense
of gratitude to our mentor, Mr. Rupak Rokade for the continuous support
which was extremely valuable for our study both theoretically and practically
and helping us to learn a lot many things.

We perceive this opportunity as a big milestone in our career development.
We will strive to use gained skills and knowledge in the best possible way,
and we will continue to work on their improvement, in order to attain desired
career objectives. Hope to continue cooperation with all of you in the future.

2

Contents

1 Introduction 5
1.1 About Scilab Octave Toolbox 5
1.2 Version Control . 6
1.3 Travis CI . 7
1.4 Doxygen . 8

2 Structure of Scilab Octave toolbox 9
2.1 File Structure . 9

2.1.1 builder.sce . 9
2.1.2 loader.sce . 10
2.1.3 demos . 10
2.1.4 etc . 10

2.1.4.1 scilab octave.start 10
2.1.4.2 scilab octave.quit 10

2.1.5 jar . 10
2.1.6 cleaner.sce . 11
2.1.7 unloader.sce . 11
2.1.8 .travis.yml . 11
2.1.9 Doxyfile . 11
2.1.10 help . 11
2.1.11 macros . 11
2.1.12 sci gateway . 12
2.1.13 src . 12
2.1.14 tests . 12
2.1.15 thirdparty . 12

2.2 Guidelines to use the toolbox 12

3 Contributions 14
3.1 Task 1 . 14

3.1.1 Problem Statement . 14
3.1.2 Role . 14
3.1.3 Contributions . 15

3.2 Task 2 . 17
3.2.1 Problem Statement . 17
3.2.2 Role . 17
3.2.3 Contributions . 17

3

3.3 Task 3 . 18
3.3.1 Problem Statement . 18
3.3.2 Role . 18
3.3.3 Contributions . 19

4 Conclusion 21

5 References 22

4

Chapter 1

1 Introduction

SCILAB is an open-source numerical, programming, and graphics environ-
ment available for free from the French Government’s ”Institut Nationale
de Recherche en Informatique et en Automatique - INRIA (National Insti-
tute for Informatics and Automation Research).” It is similar in operation to
MATLAB and other existing numerical/graphic environments and can be run
using a variety of operating systems including UNIX, Windows, Linux, etc.
It includes a large number of intrinsic numeric, programming, and graphics
functions.

GNU Octave is a high-level, open-source language, primarily intended for
numerical computations. It provides a convenient command-line interface
for solving linear and nonlinear problems numerically, and for performing
other numerical experiments. It is easily extensible and customizable via
user-defined functions written in Octave’s language, or using dynamically
loaded modules written in C++, C, Scilab, or other languages.

1.1 About Scilab Octave Toolbox

FOSSEE Octave toolbox is a toolbox in scilab maintained and developed
by FOSSEE(Free and Open Source Software in Education), IIT Bombay. It
is basically a toolbox which aims to bring the power of octave right inside
scilab. So, we can call all the octave functions directly from scilab using this.

The Octave toolbox for Scilab makes use of both the Octave-C++ API and
the Scilab-C++ API. Firstly, the input is fetched using the Scilab API and
stored (Initially, only int/double/complex data type was supported), the in-
put is then sent to the fun() function where the input data is then passed to
Octave’s API for computation. The returned data is then checked to see for
a successful response or an error. If an error is encountered, a general error
is thrown in Scilab (Initial case), or if the computation is successful, then

5

the output is sent back using Scilab’s API. It can solve the following types
of problems:

1. Linear algebra problems

2. Finding the roots of nonlinear equations

3. Integrating ordinary functions

4. Manipulating polynomials

5. Integrating ordinary differential and differential-algebraic equations etc.

FOSSEE Octave toolbox mainly uses 2 octave libraries, namely :

1. loctinterp

2. loctave

Along with this, toolbox also uses mkoctfile to compile the C source code in
to a dynamic loadable .oct file for octave.

1.2 Version Control

Git is a version control system for tracking changes happening in files of
computers which comes along with web-based hosting services for reposito-
ries. It can be used to coordinating work among multiple people across the
world. We have made the toolbox in our systems as git repositories (local
repository) to push it to GitHub (to create a remote repository).

GitHub is a web-based hosting service for version control using Git which
offers all of the distributed version control and source code management
(SCM) functionality of Git as well as adding its own features. We have used
GitHub for version control using Git. We used Github for two more major
purposes that are:

1. Linking it with Travis CI, the continuous integration tool, where we
can deploy and test our projects which are in Github.

2. Adding Doxygen, which is the de-facto standard tool for generating
documentation from annotated C++ sources.

6

The file “.travis.yml” in Github indicates the Travis CI to test our projects
whereas the ”Doxyfile” indicates the file to configure Doxygen documenta-
tion.

1.3 Travis CI

Travis CI is a continuous integration tool, where we can deploy and test our
projects which are in Github. We have linked our repository to our Travis
CI account and then we initiated a build in Travis. Travis just looks into
the .travis.yml file in the repository, and based on the script that we have
mentioned, it builds our project.

Figure 1: The basic configuration of the travis engine

We have built the test.sce of the toolbox in Travis CI, which is used to
validate the functions present in the toolbox.

On successful completion of the build we get an indication of build suc-
cessful whereas if the build fails, then we get an indication of build failed
which indicates that we have to revisit the test file to fix the errors or bugs.
After every build, be it successful or failed builds, we get notification mails

7

from Travis regarding the commit information and the build status. So each
time, we triggered the builds by entering the desired commit messages of the
git repository, to test the toolbox.

1.4 Doxygen

Doxygen is a popular tool to document the code which can be used to gen-
erate code for a variety of languages. It is great at generating the documen-
tation for the class definitions (the member variable, methods, etc.), class
hierarchies (inheritance hierarchy), etc. But, it does not do much with docu-
menting the algorithm (which is typically what you have in your .cpp files).
There are two main steps in using Doxygen:

1. To use Doxygen, we write comments in code using the format that
Doxygen understands. The comments are included in the header files
(.h) files. But, we should also comment code in your .cpp files, though
Doxygen won’t use them extensively.

2. Then, you simply run Doxygen, which generates an html folder (in our
case, inside the doc folder in Github) with the index.html file in it. The
documentation for the code is now in an easy to read html file.

Figure 2: Overview of Doxygen documentation

8

Chapter 2

2 Structure of Scilab Octave toolbox

Followings are the list of visible files and folders in the main directory of the
fossee-scilab-octave-toolbox of Scilab:

• builder.sce
• loader.sce
• demos
• etc
• jar
• cleaner.sce
• unloader.sce
• README.md
• .travis.yml
• Doxyfile
• help
• doc
• locales
• macros
• sci gateway
• src
• tests
• thirdparty

2.1 File Structure

2.1.1 builder.sce

This file builds the macros, help and the loader.sce files. Type the command
exec builder.sce in the scilab console to execute this file. Both these have to
be executed every time, to load the toolbox for usage.

9

2.1.2 loader.sce

It is basically a file that calls the function scilab octave.start present in the
etc folder. This has to be executed first on opening the toolbox, using the
command exec loader.sce in the scilab console.

2.1.3 demos

It contains demo files for the toolbox.

2.1.4 etc

etc directory contains the initialization and finalization script of the tool-
box which runs at the beginning and termination of the toolbox. They are
executed while executing the loader and unloader files.

2.1.4.1 scilab octave.start

The name of the initialization script for a toolbox is the name of the toolbox
followed by ”.start”. It is executed when we run the loader.sce file. It’s
purpose includes :

1. Load function libraries from macros directory.
2. Load gateway and shared libraries form sci gateway and thirdparty

directory.
3. Load help from help directory.
4. Load demos from demos directory.

2.1.4.2 scilab octave.quit

The name of the finalization script for a toolbox is the name of the toolbox
followed by ”.quit”. It is executed when we run the loader. It’s purpose
includes :

1. Unlink the toolbox libraries.
2. Remove any preferences that were set by the toolbox.

2.1.5 jar

This folder has a scilab en US.jar file. This file is basically a Java Archive
package file format typically used to aggregate many Java class files and asso-
ciated metadata and resources (text, images etc.) into a file for distribution.

10

2.1.6 cleaner.sce

This file is generated by builder.sce. On executing this file, we actually delete
the loader.sce and the unloader.sce files. One caution to the users is that do
not edit this file.

2.1.7 unloader.sce

It is used to unload the toolbox.

2.1.8 .travis.yml

This file is included to facilitate the builds we can trigger in Travis CI.
Travis CI provides a default build environment and a default set of steps
for each programming language. We can customize any step in this process
in .travis.yml. .travis.yml can be very minimalistic or have a lot of customiza-
tion in it. So each time when a build is triggered by the user, an new scilab
instance is opened in the terminal without any gui (scilab-cli) and executes
test.sce in the tests folder of the toolbox (because of the -f flag used here).

2.1.9 Doxyfile

Doxygen uses a configuration file to determine all of its setting. This config-
uration file is a free-form ASCII text file with a structure that is similar to
that of a Makefile, with the default name Doxyfile. It is parsed by Doxygen
and essentially, consists of a list of assignment statements. Each statement
consists of a TAG NAME written in capitals, followed by the equal sign (=)
and one or more values.

2.1.10 help

The help section that covers all the functions that the toolbox currently
consists of.

2.1.11 macros

Macros folder contains scilab function files. Files with extensions other than
sci will not be compiled when the builder is run. Scilab macros can be:

1. A Scilab function file which returns the result after computation.
2. A Scilab function which calls a C, C++ or FORTRAN code.

11

3. A Scilab function which calls a binary library.

2.1.12 sci gateway

Now the sci gateway directory contain all necessary files to create the builder
for the primitive octave fun. For this, the builder file is in the sci gateway/cpp/
directory, this builder (named builder gateway cpp.sce) creates the new shared
libraries to link the compiled C and new Scilab interface routines and gener-
ates a loader. This loader file calls the addinter function to load dynamically
the shared library.

2.1.13 src

The src directory contain all source code files for the octave fun function i.e.
to call octave from c and then pass the result to scilab.

2.1.14 tests

This folder contains 2 tests file that are used to validate all the functions
present in the toolbox macros. One is the demo.sce file which is used for
the demo purposes whereas other is the test.sce file which is executed in the
Travis CI (Continuous Integration).

2.1.15 thirdparty

It contains the header files and dynamic link libraries for the fun function
for both, Linux and Windows.

2.2 Guidelines to use the toolbox

The toolbox is be available at https://github.com/FOSSEE/fossee-scilab-
octave-toolbox. The users are requested to go through the README.md
file prior using the toolbox.

Else, the users are requested to follow the following steps:

• Prerequisites for Linux

1. sudo apt-get install build-essential (117 MB download)

12

https://github.com/FOSSEE/fossee-scilab-octave-toolbox
https://github.com/FOSSEE/fossee-scilab-octave-toolbox

2. sudo apt-get install liboctave-dev (103 MB download)

3. sudo apt-get install octave

4. sudo apt-get install scilab

5. Now, install the required octave packages using the below com-
mand in linux terminal-sudo apt-get install octave-pkg name
For example, to install signal package in octave, do-sudo apt-get
install octave-signal

• Prerequisites for Windows

1. Download and Install Scilab 6.0.1 x64 from Scilab.org

2. Download and Install Octave 4.4.1 x64.

3. Install Mingw Tollbox for Scilab (https://atoms.scilab.org/toolboxes/mingw/0.10.5).

4. Create an user variable called ’OCTAVE HOME’ with value equal
to the installation directory of Octave.

Now follow the folllowing steps to build and load the toolbox.

1. Clone this repository as it is.

2. Go to the main folder and execute the builder.sce using exec builder.sce.

3. Execute loader.sce using exec loader.sce and start using the functions
in the toolbox.

This step should be repeated every time you restart the Scilab to load the
toolbox again. Once the toolbox is built and loaded by following the steps
mentioned above, we can verify the functioning of the toolbox by executing
the test.sce by exec tests/test.sce.

13

Chapter 3

3 Contributions

3.1 Task 1

3.1.1 Problem Statement

Capturing the original octave error messages and returning them
to scilab-This toolbox basically makes use of both the Octave-C++ API
and the Scilab-C++ API. So, firstly, the input is fetched using the Scilab
C++ API, which is then sent to the fun() function where the data is passed
to Octave’s API for computation using the feval function. The returned data
is then checked to see for a successful response or an error. Now earlier, if
an error was encountered in the octave side of this toolbox, it threw only
following errors, instead of the specific error by the octave:

• Octave interpreter exited with status = ...

• error encountered in Octave evaluator!

• Octave unable to process!

Figure 3: Original error

3.1.2 Role

Developer

14

3.1.3 Contributions

The issue was solved by redirecting the octave errors from fun.cpp to sci octave.cpp
using the C++ std::exception and then storing the errors using a stringstream
buffer, which basically associates a string object with a stream allowing to
read from the string as if it were a stream. This buffer was later retrieved
to show the error on the scilab console. The messages returned by octave
were further classified as errors or warnings based on the value of status fun
variable and buffer length. The modified workflow of the toolbox is shown
in Figure 6.

Figure 4: Capturing Octave errors

Figure 5: Error Resolved

15

Figure 6: Modified Workflow of Toolbox

16

3.2 Task 2

3.2.1 Problem Statement

Handling octave functions that represent the input and output data
in structure format-Initially, the toolbox only supported int/double/com-
plex/real/string data types and not inputs which consisted of structure data.
In this case, the toolbox gave an error of a wrong data type. So, the task
was to extend the capability of toolbox to support the structure data types.

Figure 7: Original Error

3.2.2 Role

Manager

3.2.3 Contributions

As manager of the task, I was responsible for conducting timely meetings
for the progress update, taking decisions in regard to what needs to be done
to meet the goals of our task and make sure that the task is completed on
time. So, to solve this issue, the problem was basically divided into 4 parts
as follows:

• Capturing the struct data from scilab in sci octave.cpp and passing it
to fun.cpp.

• Retrieving the data in fun.cpp and then passing it to the feval function
for computation.

17

• Taking the output given by feval function and passing it back to sci octave.cpp.

• At last, passing the data retrieved to display on the scilab console.

All these parts were assigned to each one of us. In regards to this, I was
assigned the first part and hence, worked with the Scilab API functions like
scilab getfields and scilab getStructMatrix2dData to retrieve the struct data
given by a user.

Figure 8: Error Resolved

3.3 Task 3

3.3.1 Problem Statement

Extending the toolbox usage to Windows OS-As earlier, the toolbox
was limited to Linux OS (Debian/Ubuntu) only, it was required to extend
the capability of the toolbox to windows OS also.

3.3.2 Role

Tester

18

Figure 9: Original Error

3.3.3 Contributions

The builder.sce file had to be edited for windows to include the liboctave-
6.dll and liboctinterp.dll files, present in the bin folder of the Gnu octave,
which made the build successful, but loading the toolbox was still giving
errors. This issue was addressed by adding the path of the bin folder of
GNU Octave to environment variables. However, some functions were still
not working fine. It was solved by adding the OCTAVE HOME variable to
environment variables so that octave could find all of its functionalities. I
also provided the solution in case of the following error:

-library name.a not found error on running ”exec builder.sce”.

,which usually happens when you build the toolbox on Windows for the
first time or from scratch. To solve this, simply comment the commands:

-octave lib dir + ”liboctave-6”;
-octave lib dir + ”liboctinterp-6”;

in toolbox root/sci gateway/cpp/builder gateway cpp.sce. Now, run exec
builder.sce to get a sucessful build. Uncomment the commands, you just
commented and run the builder command once again. This time the toolbox

19

will build sucessfully. The toolbox still had very minor errors like test.sce
script crashing or cleaner.sce failing, but they were also solved eventually.

Figure 10: Error Resolved

20

Chapter 4

4 Conclusion

During the semester-long internship, I was exposed to software and open-

source culture and had a very steep learning curve. I learned a variety of

concepts and turned them into efficient and implementable ones. I have made

a lot of progress and understood the implications of becoming a computer

professional and software engineer. I discovered the concept of APIs and cre-

ated an interface through them. Additionally, it also improved my C’s pro-

ficiency level. Plus, I learned about the challenges of writing cross-platform

software, how your code is affected when the operating system changes, how

to modify your code, how to handle errors, and finally, how to fix it. In

addition to my technical knowledge, I also learned about time management,

critical and analytical thinking, and goal management. Finally, I would like

to thank everyone who made my internship such a wonderful and memorable

learning experience.

21

5 References

• https://octave.1599824.n4.nabble.com/Capturing-exception-messages-in-
octave-C-API-td4694132.htmla4694163

• https://octave.org/doc/v6.1.0/Structures-in-Oct-002dFiles.html

• https://stackoverflow.com/questions/48226185/c-using-enum-inside-struct

• https://help.scilab.org/docs/6.0.2/en US/api struct.html

22

https://octave.1599824.n4.nabble.com/Capturing-exception-messages-in-octave-C-API-td4694132.html#a4694163
https://octave.1599824.n4.nabble.com/Capturing-exception-messages-in-octave-C-API-td4694132.html#a4694163
https://octave.org/doc/v6.1.0/Structures-in-Oct_002dFiles.html
https://stackoverflow.com/questions/48226185/c-using-enum-inside-struct
https://help.scilab.org/docs/6.0.2/en_US/api_struct.html

	Introduction
	About Scilab Octave Toolbox
	Version Control
	Travis CI
	Doxygen

	Structure of Scilab Octave toolbox
	File Structure
	builder.sce
	loader.sce
	demos
	etc
	scilab_octave.start
	scilab_octave.quit

	jar
	cleaner.sce
	unloader.sce
	.travis.yml
	Doxyfile
	help
	macros
	sci_gateway
	src
	tests
	thirdparty

	Guidelines to use the toolbox

	Contributions
	Task 1
	Problem Statement
	Role
	Contributions

	Task 2
	Problem Statement
	Role
	Contributions

	Task 3
	Problem Statement
	Role
	Contributions

	Conclusion
	References

