
Semester long Internship Report

On

FOSSEE Optimization Toolbox

Submitted by

Sharvani Laxmi Somayaji
B.Tech (Electrical and electronics engineering)
National Institute of Technology Karnataka

Under the guidance of

Prof. Ashutosh Mahajan
Industrial Engineering and Operations Research

IIT Bombay
and mentor

Mr. Rupak Rokade

FOSSEE, IIT Bombay

August 7, 2021

Acknowledgment

The semester long internship opportunity I had with FOSSEE Team, IIT Bombay, was a
great chance for me to learn and experience professional software development.
Therefore, I consider myself lucky to have been provided with such a wonderful
opportunity. I am also grateful for having a chance to meet so many skilled and talented
professionals who led me through this internship.
It is my radiant sentiment to place on record my best regards, deepest sense of gratitude
to Prof. Ashutosh Mahajan who in spite of being extraordinarily busy with his duties,
took time out to hear, guide and keep me on the correct path.
I would like to express my deepest thanks my mentor, Mr. Rupak Rokade for his
continuous support and guidance and taking part in discussions which were extremely
valuable for carrying out the tasks. I would also like to thank my team members for their
useful insights and discussions and everyone who helped me throughout the internship.
I perceive this opportunity as a big milestone in my career development. I will strive to
use gained skills and knowledge in the best possible way, and I will continue to work on
their improvement, in order to attain desired career objectives. I also hope to continue
cooperation with all of you in the future.

1

Contents

1 Introduction 3
1.1 Scilab . 3
1.2 FOSSEE Optimization toolbox . 3

2 Task 1 - Exploring and implementing the “limited-memory” option of
IPOPT for reducing the computation time 5
2.1 About the task . 5

2.1.1 Issue as stated in the CNES report 5
2.2 About the function fot fmincon . 6
2.3 Contribution as a tester . 6
2.4 Finding the appropriate method . 7
2.5 Writing Examples and testing extensively 8

2.5.1 CUTEst . 8
2.5.2 Translating and testing . 8
2.5.3 Limitations and challenges faced . 12

2.6 Executing the files . 13
2.6.1 Steps to locate and execute the CUTEst problems 13
2.6.2 Steps to Run all the files at once and obtain any output 13

2.7 Comparison of the outputs . 14

3 Task 2 - “Integer Constraints Not Working” Issue raised on GitHub 16
3.1 About the task . 16
3.2 About the function fot intlinprog . 16
3.3 Contribution as a documentor . 17

4 Task 3 - Spoken Tutorials 18
4.1 About the task . 18
4.2 Contribution as a manager . 18
4.3 Changes made to the files in the subfolders 18

4.3.1 Subfolder 2 Linear Programming using linprog function 18
4.3.2 Subfolder 3 Integer Programming using intlinprog 19

5 Other contributions 20
5.1 List of other contributions . 20

5.1.1 Details about the binaries for toolbox version 0.4.1 20

6 Future enhancements 21

7 Conclusions 22

2

Chapter 1

Introduction

1.1 Scilab

Scilab is a free and open-source, cross-platform numerical computational package and a
high-level, numerically oriented programming language. It can be used for signal
processing, statistical analysis, image enhancement, fluid dynamics simulations,
numerical optimization, and modeling, simulation of explicit and implicit dynamical
systems and (if the corresponding toolbox is installed) symbolic manipulations. Scilab is
one of the two major open-source alternatives to MATLAB, the other one being GNU
Octave.

1.2 FOSSEE Optimization toolbox

FOSSEE Optimization Toolbox (FOT) for Scilab offers several optimization routines
including, but not limited to, linear optimization, integer linear optimization,
unconstrained optimization, bounded optimization and constrained optimization. The
function calls and outputs are similar to those available in MATLAB. These routines call
optimization libraries in the backend, most of which are COIN-OR libraries. CLP is used
for linear programming, CBC and SYMPHONY for integer linear programming, IPOPT
(with MUMPS) for nonlinear optimization and Bonmin for integer nonlinear
optimization. There are also routines for specific optimization problems like linear and
nonlinear least squares, minimax, and goal programming using these solvers.

Optimization Toolbox Functions:

fot fgoalattain Solves a multiobjective goal attainment problem.

fot fminbnd Solves a nonlinear optimization problem on bounded variables.

fot fmincon Solves a general nonlinear optimization problem.

fot fminimax Solves a minimax optimization problem.

fot fminunc Solves an unconstrained optimization problem.

fot intfminbnd Solves a mixed-integer nonlinear optimization problem on bounded
variables.

fot intfmincon Solves a constrained mixed-integer nonlinear optimization problem.

3

https://www.scilab.org/
https://atoms.scilab.org/toolboxes/FOT/0.4.1
https://github.com/coin-or/
https://github.com/coin-or/Clp
https://github.com/coin-or/Cbc
https://github.com/coin-or/SYMPHONY
https://github.com/coin-or/Ipopt
https://github.com/coin-or/Bonmin

fot intfminimax Solves a mixed-integer minimax optimization problem.

fot intfminunc Solves an unconstrained mixed-integer nonlinear optimization problem.

fot intlinprog Solves a mixed-integer linear optimization problem.

fot intquadprog Solves a mixed integer quadratic optimization problem.

fot linprog Solves a linear optimization problem.

fot lsqlin Solves a linear least squares optimization problem.

fot lsqnonlin Solves a nonlinear least squares optimization problem.

fot lsqnonneg Solves a nonnegative linear least squares optimization problem.

fot quadprog Solves a quadratic optimization problem.

fot quadprogCLP Solves a quadratic optimization problem with linear constraints.

fot quadprogmat Solves a quadratic optimization problem (with input in MATLAB
format).

fot version Displays current versions of various libraries and latest git reference id.

4

Chapter 2

Task 1 - Exploring and
implementing the
“limited-memory” option of
IPOPT for reducing the
computation time

2.1 About the task

Role assigned: Tester.

2.1.1 Issue as stated in the CNES report

We have used “fmincon” on a test case that is more representative of “real” applications
(semidirect optimal control method).
The test has been successful, and “fmincon” gave the correct results (as compared to
Matlab).

Because the functions (cost + constraints) use numerical integration, computation time
is critical.

For instance, with N=15 mesh points for the command, computation time is 45 seconds.
But this is after making some improvements in fmincon.sci (calls to execstr, order for
finite differences mainly, see below: section 3) which enable a gain of execution time of a
factor 6 (computation time with the original “fmincon” would have been 6 times longer).
As computation time is function of N2, you see how fast it would increase.

For this problem, most of the computation time is spent in the function that computes
the Hessian. In total the number of function calls per iteration is about 350 (only 16 for
Matlab). The reason is that Matlab computes an approximate Hessian by default, which
corresponds to the “limited-memory” option of Ipopt. With this option available, the
computation time could be much smaller.

5

2.2 About the function fot fmincon

fot fmincon is a function available in the FOSSEE Optimization Toolbox which solves a
general nonlinear optimization problem. The function calls Ipopt, an optimization
library written in C++, to solve the Constrained Optimization problem. The function
searches the minimum of a constrained optimization problem, specified by:

minx f(x)
Subjected to:

A ·x ≤ b
Aeq · x = beq
c(x) ≤ 0
ceq(x) = 0
lb ≤ x ≤ ub

The calls to fot fmincon can be done in Scilab as follows:

xopt = fot fmincon(f,x0,A,b)

xopt = fot fmincon(f,x0,A,b,options)

xopt = fot fmincon(f,x0,A,b,Aeq,beq)

xopt = fot fmincon(f,x0,A,b,Aeq,beq,options)

xopt = fot fmincon(f,x0,A,b,Aeq,beq,lb,ub)

xopt = fot fmincon(f,x0,A,b,Aeq,beq,lb,ub,options)

xopt = fot fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc)

xopt = fot fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options)

[xopt,fopt] = fot fmincon(...)

[xopt,fopt,exitflag]= fot fmincon(...)

[xopt,fopt,exitflag,output]= fot fmincon(...)

[xopt,fopt,exitflag,output,lambda]=fot fmincon(...)

[xopt,fopt,exitflag,output,lambda,gradient]=fot fmincon(...)

[xopt,fopt,exitflag,output,lambda,gradient,hessian]=

fot_fmincon(...)

2.3 Contribution as a tester

To begin with, I had explored the methods, terminologies and options related to non linear
optimization problems. I had then explored the options available in Ipopt, MATLAB,
coding in AMPL, Scilab, MATLAB and other tools like Travis CI for testing. I had also
explored various examples and sources for testing the function and hessian approximation
option. I had made an excel sheet and selected 16 examples from the CUTEst set of
different types with varying complexities with a large number of variables and equations
and translated around 10 examples from AMPL to Scilab and reviewed and tested other
example codes as well. Apart from this, I have written the codes for gradients and hessians
for appropriate examples and other necessary code files. I have also tried to optimize these
example codes and keep them readable. I have compiled detailed documents related to
the outputs for all the problems. More details are present in further sections.

6

2.4 Finding the appropriate method

In general, when second derivatives can be computed with reasonable computational effort,
it is usually a good idea to use them, since then Ipopt normally converges in fewer iterations
and is more robust. An exception might be in cases, where your optimization problem has
a dense Hessian, i.e., a large percentage of non-zero entries in the Hessian. In such a case,
using the quasi-Newton approximation might be better, even if it increases the number of
iterations, since with exact second derivatives the computation time per iteration might
be significantly higher due to the very large number of non-zero elements in the linear
systems that Ipopt solve in order to compute the search direction.
Newton’s method is very fast but it requires gradient and hessian matrix evaluated at
each iteration.

Some alternatives that avoid calculation of the Hessian:

• Quasi-Newton methods

• finite-difference Newton methods

Algorithms that avoid calculation of the Hessian and storage of any matrix

• steepest descent

• nonlinear conjugate gradient methods

• limited-memory Quasi-Newton methods

• truncated Newton methods

Technology that helps in the calculation of the Hessian:

• automated differentiation

Methods that require no derivatives

• finite difference methods

• Nelder & Meade simplex

• pattern search

Storage and time complexities of some methods are mentioned in the table 2.1

Table 2.1: Storage and step complexities of different methods

Method Storage Step Complexity Convergence rate

CG O(n) O(n) linear
BFGS/DFP/SR1 O(n2) O(n2) superlinear (fast)
L-BFGS O(mn) O(mn) (r-fast)
Newton (full Hess) O(n2) O(n3) quadratic (v-fast)
Newton (sparse Hess) O(n)−O(n2) O(n)−O(n3) quadratic (v-fast)

The limited-memory option available in Ipopt which is closer to L-BFGS method can be
used to approximate the Hessian of the Lagrangian by a limited-memory quasi-Newton

7

https://coin-or.github.io/Ipopt/

method.

We can use this feature by setting the option hessian approximation to the value
“limited-memory”. In this case, it is not necessary to implement the Hessian
computation method Ipopt::TNLP::eval h. If we are using the C or Fortran interface,
we still need to implement these functions, but they should return false or IERR=1,
respectively, and don’t need to do anything else. Since the Hessian of the Lagrangian is
zero for all variables that appear only linearly in the objective and constraint functions,
the Hessian approximation should only take place in the space of all nonlinear variables.
By default, it is assumed that all variables are nonlinear, but we can tell Ipopt explicitly
which variables are nonlinear, using the
Ipopt::TNLP::get number of nonlinear variables and
Ipopt::TNLP::get list of nonlinear variables methods, see Additional methods in
TNLP. (Those methods have been implemented for the AMPL interface, so we would
automatically only approximate the Hessian in the space of the nonlinear variables, if we
are using the quasi-Newton option for AMPL models.) Currently, those two methods are
not available through the C or Fortran interface.

2.5 Writing Examples and testing extensively

2.5.1 CUTEst

CUTEst (Constrained and Unconstrained Testing Environment with safe threads) is
the latest evolution of CUTE, the constrained and unconstrained testing environment for
numerical optimization. It is a versatile testing environment for optimization and linear
algebra solvers. The test problems provided are written in so-called Standard Input
Format (SIF). A decoder to convert from this format into well-defined Fortran 77 and
data files is available as a separate package. Once translated, these files may be
manipulated to provide tools suitable for testing optimization packages. Ready-to-use
interfaces to existing packages, such as MINOS, SNOPT, filterSQP, Knitro, and more,
are available. CUTEst is available on a variety of UNIX platforms, including Linux and
is designed to be accessible and easily manageable on heterogeneous networks.

I have selected 16 problems from the CUTE set of PrincetonLib. PrincetonLib is a
collection of nonlinear programming (NLP) models. The purpose of the collection is to
provide algorithm developers of nonlinear optimization codes with a large and varied set
of both theoretical and practical test models. It also aids in the software quality
assurance process by providing a set of tools to facilitate benchmarking and performance
analysis. The original models are in AMPL format and collected by Robert Vanderbei
and colleagues at Princeton University.

2.5.2 Translating and testing

Rosenbrock problem

I had started by taking a simple and popular nonlinear optimization problem, the
Rosenbrock problem and writing the scilab code for the same as a base example. The
problem is stated as follows:

8

https://coin-or.github.io/Ipopt/OPTIONS.html#OPT_hessian_approximation
https://coin-or.github.io/Ipopt/classIpopt_1_1TNLP.html#a26b9145267e2574c53acc284fef1c354
https://coin-or.github.io/Ipopt/classIpopt_1_1TNLP.html#a015506564afc611060f4416dbb08aa4d
https://coin-or.github.io/Ipopt/classIpopt_1_1TNLP.html#a9bb5f16cdc2754d1667749268fb1308c
https://coin-or.github.io/Ipopt/INTERFACES.html#INTERFACE_CPP_ADDITIONAL
https://coin-or.github.io/Ipopt/INTERFACES.html#INTERFACE_CPP_ADDITIONAL
http://gamsworld.org/performance/princetonlib/htm/group5stat.htm
https://ampl.com/
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/rosenbrock.sce

Find the minimum value of the Rosenbrock function

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2

with the following constraints:
x1 + 2x2 ≤ 1

at starting point (-1, 2).

The scilab code for this function contains the following components:

x0=[-1,2];//initial value

A=[1,2]; b=1; //linear inequality constraint

Aeq=[]; beq=[]; //linear equality constraint

lb=[]; ub=[]; //lower and upper bounds

Here, the number of variables, n is 2. The number of inequality constraints, m is 1. x0

is the initial point for x having dimension (1 × 2). Linear inequality constraint is of the
form

A · x ≤ b
A is the matrix containing the coefficients of linear inequality constraints of size (1 × 2).
b is the vector related to A and represents the linear coefficients in the linear inequality
constraints of size (1 × 1). There are no equality constraints as well as lower and upper
bounds for this problem.

//objective function

function y=f(x)

y=100*(x(2) - x(1)^2)^2+(1-x(1))^2;

endfunction

//gradient for the objective function

function y = fGrad(x)

y = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];

endfunction

The objective function, f(x) returns the value, y which is supposed to be minimized. In
this case, the gradient of f(x),

∇f(x) =

(
−400 · (x2 − x21) · x1 − 2 · (1− x1)

200 · (x2 − x21)

)
The function, fGrad(x) returns the gradient of the objective function of size (2 × 1). The
gradient matrix is of the form

yi =
∂f

∂xi
where i is the variable number which varies from 1 to n.

//non linear constraint

function [c,ceq]=nlc(x)

c=[x(1)^2+x(2)^2-1];

ceq=[];

endfunction

9

//gradient for the non linear constraint

function [cg, ceqg] = cGrad(x)

cg = [2*x(1),2*x(2)];

ceqg = [];

endfunction

Nonlinear inequality constraints are of the form

c(x) ≤ 0

where c is a vector of constraints, one component for each constraint. Similarly, nonlinear
equality constraints are of the form

ceq(x) = 0

Here, the number of nonliear inequality constraints, m2 is 1. The number of nonliear
equality constraints, m3 is 0. c(x) and ceq(x) are defined as separate single row vectors
where c has size (1 × 1) and ceq is an empty vector.
The function nlc(x), represents the gradient of the nonlinear constraints (both equality
and inequality) of the problem. The gradient matrix, cg is of the form

cgi,j =
∂c(i)

∂xj

where i is the row number which varies from 1 to m2 and j is the column number which
varies from 1 to n.
It is declared in such a way that gradient of nonlinear inequality constraints are defined
first as a separate matrix (cg of size (m2 × n) or as an empty matrix), followed by gradient
of nonlinear equality constraints as a separate matrix (ceqg of size (m3 × n) or as an empty
marix).

function y = lHess(x,obj,lambda)

//Hessian of objective

H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200];

//Hessian of nonlinear inequality constraint

Hc = [2,0;0,2];

//lambda.ineqnonlin: The Lagrange multipliers for

//the nonlinear inequality constraints.

y = obj*H + lambda(1)*Hc;

endfunction

The Hessian, H(x) is (
1200x21 − 400x2 + 2 −400x1

−400x1 200

)
The hessian matrix of the objective function, H is of the form

Hi,j =
∂2f

∂xi∂xj

where i and j vary from 1 to n.

10

The Hessian is the Hessian of the Lagrangian, where the Lagrangian

L(x, λ) = f(x) +
∑

λg,igi(x) +
∑

λh,ihi(x)

where g and h are vector functions representing all inequality and equality constraints
respectively (meaning bound, linear, and nonlinear constraints) .

g(x) ≤ 0, h(x) = 0

The Hessian of the Lagrangian is

∇2
xxL(x, λ) = ∇2f(x) +

∑
λg,i∇2gi(x) +

∑
λh,i∇2hi(x)

lambda contains the Lagrange multipliers. The Hessian of the Lagrange Function has
been pre-defined. The function, lHess(x, obj, lambda) represents the hessian function
of the Lagrange in the form of a Symmetric Matrix with input parameters as x, objective
factor and lambda. With large number of variables, the hessian matrix can easily become
huge.

//With hessian approximation off

options = struct("MaxIter", [15000], "CpuTime", [5000], "GradObj",

fGrad, "Hessian", lHess,"GradCon", cGrad,"HessianApproximation", [0]);

//With hessian approximation on

options = struct("MaxIter", [15000], "CpuTime", [5000], "GradObj",

fGrad, "Hessian", "off","GradCon", cGrad,"HessianApproximation", [1]);

Various options under the options structure can be tuned by the user. The “Hessian
Approximation” can be set to 0 or 1 to turn hessian approximation off or on respectively.
The “CpuTime”, “MaxIter” and other parameters need to be tuned according to the
problem.

[x,fval,exitflag,output]=fot fmincon(f,

x0,A,b,Aeq,beq,lb,ub,nlc,options)

Finally, the function fot fmincon can be called which returns the outputs that contains
the required solution, x, value of the function f(x) at x, exitflag denoting the reason of
termination of the algorithm, ouput containing the information about the optimization.
More details can be found here.
I had tested the function with few textbook examples and compared the outputs with
that obtained in MATLAB.

CUTEst problems

I have picked 16 examples of different types with varying complexities with a large
number of variables and equations from this source and translated around 10 examples
from AMPL to Scilab and reviewed and tested other example codes as well. In order to
test the problems conveniently, I have decreased the value of variables as given in the

11

https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/functions/fmincon
http://gamsworld.org/performance/princetonlib/htm/group5stat.htm

AMPL source code so as to keep it within the processing capacity of the testing systems.

To verify the value of the optimal solution, and the optimal value of the objective function
at these reduced values, I have tested all the 16+1 examples extensively to the best of my
abilities and compared the outputs with that of MATLAB, AMPL, NEOS server (Ipopt).
Table 2.2 contains the 16 problems that have been selected along with the AMPL source
code and documents containing detailed outputs obtained on my system as well as other
online solvers. Details about the versions of the related components and other parameters
in my system can be found here.

Table 2.2: CUTEst Problems with AMPL source code and detailed outputs

S. No. Problem name AMPL Source Code Detailed outputs*

1 broydn3d [problem link 1] [output link 1]

2 cosine [problem link 2] [output link 2]

3 curly10 [problem link 3] [output link 3]

4 dtoc1l [problem link 4] [output link 4]

5 hadamard [problem link 5] [output link 5]

6 hager1 [problem link 6] [output link 6]

7 hager4 [problem link 7] [output link 7]

8 liswet10 [problem link 8] [output link 8]

9 mancino [problem link 9] [output link 9]

10 msqrtb [problem link 10] [output link 10]

11 penalty1 [problem link 11] [output link 11]

12 power [problem link 12] [output link 12]

13 reading2 [problem link 13] [output link 13]

14 sipow3 [problem link 14] [output link 14]

15 tfi2 [problem link 15] [output link 15]

16 ubh1 [problem link 16] [output link 16]

Output details related to the rosenbrock problem can be found here.

* Details about the versions of the related components and other parameters can be found
here.

The scilab codes for all the 16+1 problem files can be found in the location, FOSSEE-
Optimization-Toolbox/tests/general tests/CUTEst

2.5.3 Limitations and challenges faced

• There is a certain computational limit up to which we can currently test the CUTEst
problems on FOT (Scilab). This also depends on the capacity of the system (RAM
etc). My system crashed few times on testing for certain number of variables and
equations. The sparse matrices could be stored in a better manner to increase the
limit.

• Some problems converged very slowly, and the outputs for some problems were
varying for different solvers. There could be some issues with some problems.

• The numerical values for the optimized output could slightly vary among different
systems due to differing system capacities.

12

https://in.mathworks.com/products/matlab.html
https://ampl.com/try-ampl/start/
https://neos-server.org/neos/solvers/nco:Ipopt/AMPL.html
https://docs.google.com/document/d/1dO8NKdiNQkhFvbRBYxZDHDJtHAhkgY_2lVRkgUZU1Qs/edit?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/broydn3d.mod
https://drive.google.com/file/d/1WCvngwWdQPTghCT-sjGRfJnRvqhhOaR-/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/cosine.mod
https://drive.google.com/file/d/1YEJYEQqpG8uOuTxnWphqSoRv2d32cDpH/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/curly10.mod
https://drive.google.com/file/d/1gyTUpx9be9cwuYlRmJFLkD-_eFJjv5Rl/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/dtoc1l.mod
https://drive.google.com/file/d/1fjJoP80WF2zMI8l5xktaxp4orQ8gNX31/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/hadamard.mod
https://drive.google.com/file/d/1yagxRgVzlQGOZ1pIXmt0bJI00OehxLAA/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/hager1.mod
https://drive.google.com/file/d/143bMeabPG3JTPED6pngO3SDpoHMEhD31/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/hager4.mod
https://drive.google.com/file/d/1MnyiUFL4rgDnf6RCLda6cLpJxY71v1Jf/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/liswet10.mod
https://drive.google.com/file/d/1FQIpYUv1DL6ws1xbMcIZnk1Eh26Esl8f/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/mancino.mod
https://drive.google.com/file/d/1bPxKVQr-b5vfM-4w-LXfx0UIXBA0qCR-/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/msqrtb.mod
https://drive.google.com/file/d/11eZEL8qKyVEIwRyoXZqRrrtQLUNYjRF3/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/penalty1.mod
https://drive.google.com/file/d/1lItq-1xZjTiKtdpIOe8vZqIaNUM8SnAL/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/power.mod
https://drive.google.com/file/d/1_aPf4dZTIG_qFd3PFBK9Nb0TjpZ6PilL/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/reading2.mod
https://drive.google.com/file/d/1cSTH9QgVkQy0Me4baQkDJEBiMAUSsYhh/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/sipow3.mod
https://drive.google.com/file/d/1dmkMxYVM9ztVaUId0ZeIFGWzyd0d80Z5/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/tfi2.mod
https://drive.google.com/file/d/1BLanZu6-WE8iXhCekStd8bG0PWMnIlV3/view?usp=sharing
https://vanderbei.princeton.edu/ampl/nlmodels/cute/ubh1.mod
https://drive.google.com/file/d/1GXEn_mYjqjzoUzqMXr3jxaYHNmRQaDqE/view?usp=sharing
https://drive.google.com/file/d/1tOeJyPY8LX6-832wiu9DPu1h_InRdm1D/view?usp=sharing
https://docs.google.com/document/d/1dO8NKdiNQkhFvbRBYxZDHDJtHAhkgY_2lVRkgUZU1Qs/edit?usp=sharing
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/tree/Scilab-6/tests/general_tests/CUTEst
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/tree/Scilab-6/tests/general_tests/CUTEst

• There were other challenges such as difficulty in tuning the iteration limit, tolerance
limit, solver limit and other types of limits.

2.6 Executing the files

2.6.1 Steps to locate and execute the CUTEst problems

The test cases can be found in the location
FOSSEE-Optimization-Toolbox/tests/general tests/CUTEst in the source repository. In
order to execute the CUTEst test cases, perform the following steps:

1. Open Scilab and load the FOSSEE Optimization Toolbox by running exec

loader.sce on the Scilab console. If the toolbox has not been built, run exec

builder.sce before the previous command.

2. Navigate to the CUTEst tests folder located at
FOSSEE-Optimization-Toolbox/tests/general tests/CUTEst

3. Now you can execute the individual test cases by running the corresponding files. A
problem can be executed by executing the command – exec <problem name>.sce,
where <problem name> can be replaced by any of the problem names mentioned
above. For instance, to execute the problem broydn3d, execute the command –
exec broydn3d.sce

The expected test results obtained from NEOS Ipopt/AMPL Solver are written at the top
in each test file, and one can check the results obtained on the console with them in order
to verify whether they are correct.

2.6.2 Steps to Run all the files at once and obtain any output

1. To run all the CUTEst problem files at once, execute the file run all.sce located in the
folder, FOSSEE-Optimization-toolbox-Scilab-6/tests/general tests/CUTEst/ . This
file prints and saves the outputs of all the problems in the CUTEst folder.

2. On executing the file run all.sce, the outputs for all problems (this is not included in
the GitHub repository), get saved to outputs all.sod. The outputs all.sod obtained
in my system can be found here. There are 17 problems out of which 16 are CUTEst
and 1 is the rosenbrock problem. This file can be loaded on scilab to get the output
for any problem.
This file contains:
<problem name> fval

<problem name> x

<problem name> output

<problem name> exitflag

Where <problem name> is same as the filename of the problem file.
Note: To save outputs of each problem (which is now commented), uncomment the
following line in run all.sce:
save(p+".sod","fval","output","exitflag","x");

3. The above outputs for any problem can be obtained by entering the variable name
mentioned above. Ex: To obtain the fval or objective function value of hager1

13

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/tree/Scilab-6/tests/general_tests/CUTEst
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/run_all.sce
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst
https://drive.google.com/file/d/1m-xBNs3gA74Z6CphrhaQF6ge46oed-J5/view?usp=sharing

problem, enter the variable hager1 fval (similar format for other outputs and
problems).

The outputs obtained on executing the file run all.sce on a user’s system can be
compared with the outputs obtained on my system. I have compiled a document
containing those outputs which can be found here.

2.7 Comparison of the outputs

By default, I have kept smaller values or values in the scilab problem files in the GitHub
repository such that they’ll give output within a short period of time for each problem.
Other values can be put and tested as well. The outputs for each problem out of the 16
problems are commented and written at the top in each of the scilab code files.
Table 2.3 shows the comparison of outputs obtained on AMPL, Scilab, NEOS(Ipopt) for
the 16 problems. The test cases so written, have been successfully executed in Scilab and
have yielded correct results, with marginal errors in a few cases.
For more details and more precision in the numerical values, please refer to the output
links for each problem in Table 2.2 and the expanded table.

14

https://docs.google.com/document/d/16ITqXs4xQ3hUK6llXm9jP_s-9ybr4bgsuQsDzruzbgc/edit?usp=sharing
https://docs.google.com/document/d/1_3Qyp_pKdNmxnwq9Z_5B0R9hu7Dksa9ZCTB_5SfHXVQ/edit?usp=sharing

T
ab

le
2
.3

:
O

u
tp

u
ts

o
b

ta
in

ed
fr

om
S

ci
la

b
,

A
M

P
L

an
d

N
E

O
S

so
lv

er
fo

r
th

e
16

C
U

T
E

st
ex

am
p

le
s

S
n
o
.

P
ro

b
le
m

In
p
u
t

S
c
il
a
b

N
E
O
S

A
M

P
L

In
p
u
t

S
c
il
a
b

N
E
O
S

A
M

P
L

p
a
ra

m
e
te
r

o
u
tp

u
t*

*
*

o
u
tp

u
t

o
u
tp

u
t*

p
a
ra

m
e
te
r

o
u
tp

u
t*

*
*

o
u
tp

u
t

o
u
tp

u
t*

v
a
lu
e
1

(I
p
o
p
t)
*
*

v
a
lu
e
2

(I
p
o
p
t)
*
*

1
b

ro
y
d

n
3d

N
=

10
0

0.
0

0.
0

0.
0

N
=

10
00

0.
0

0.
0

-

2
co

si
n

e
N

=
1
0

-9
.0

-9
.0

-9
.0

N
=

10
00

-9
99

.0
-9

99
.0

-

3
cu

rl
y
1
0

N
=

1
0
;

-1
00

3
.1

62
9

-1
00

3.
16

29
-1

00
3.

16
29

N
=

10
0;

-1
00

31
.6

29
-1

00
31

.6
29

-1
00

31
.6

29
K

=
1

K
=

1

4
d

to
c1

l
n

=
2
0
;

0.
11

2
6
86

0.
11

26
85

9
0.

11
26

85
n

=
10

0;
0.

42
53

68
3

4.
25

36
82

7e
-0

1
-

n
x

=
2
;

n
x

=
2;

n
y

=
4
;

n
y

=
4;

5
h

ad
a
m

ar
d

n
=

4
;

1.
00

0
0
29

5
1.

0
1.

0
n

=
8;

1.
00

00
05

8
1.

00
00

00
15

1.
0

6
h

ag
er

1
N

=
1
0
0;

0.
88

0
7
98

8
0.

88
07

98
8

0.
88

07
98

8
N

=
10

00
;

0.
88

07
97

0.
88

07
97

-

7
h

ag
er

4
N

=
5
0
;

2.
79

9
8
37

4
2.

79
98

10
9

2.
79

98
10

9
N

=
50

0;
2.

79
45

13
8

2.
79

45
13

4
-

8
li

sw
et

10
N

=
1
0
;

0.
02

1
9
11

7
0.

02
19

11
07

0.
02

19
11

N
=

10
00

;
4.

93
16

21
1

4.
93

11
30

09
-

K
=

2
K

=
2

9
m

a
n

ci
n

o
N

=
6
0
;

2.
30

0
D

-0
9

3.
25

39
33

e-
27

1.
71

03
E

-1
8

N
=

10
0;

2.
40

6D
-0

9
7.

55
44

5E
-1

9
5.

69
75

E
-1

9
(s

ca
le

d
)

10
m

sq
rt

b
P

=
3
;

0.
0

0.
0

0.
0

P
=

4,
5,

10
;

-
0.

0
0.

0

11
p

en
a
lt

y
1

N
=

1
0
0;

0.
06

3
5

7.
45

30
36

e-
10

9.
02

5E
-4

N
=

10
00

;
2.

18
97

40
4

6.
43

94
97

81
e-

08
-

(s
ca

le
d

)
(s

ca
le

d
)

12
p

ow
er

N
=

1
0
0;

1.
98

9
D

-1
2

9.
80

43
7e

-3
0

2.
64

24
09

E
-2

8
N

=
10

00
;

1.
89

1D
-1

0
1.

40
44

55
4e

-2
8

-
(s

ca
le

d
)

(s
ca

le
d

)

13
re

a
d

in
g
2

N
=

5
0
;

-0
.0

12
3
43

6
-0

.0
12

35
31

1
-0

.0
12

35
32

5
N

=
30

0;
-0

.0
12

45
47

-0
.0

12
55

23
4

-

14
si

p
ow

3
M

=
10

0
;

0.
49

6
4
55

3
0.

49
64

54
45

0.
49

64
54

45
6

M
=

10
00

0;
0.

53
56

50
8

0.
53

56
50

7
-

15
tfi

2
M

=
35

0
;

0.
64

9
0
41

2
0.

64
90

41
19

-
M

=
50

0;
0.

64
90

42
1

0.
64

90
41

6
-

16
u

b
h

1
n

=
5
;

1.
24

4
4
44

(w
it

h
1.

24
44

44
4

1.
24

44
44

n
=

20
00

,
(B

ey
on

d
1.

11
60

00
81

-
t0

=
0;

H
es

si
a
n

t0
=

0,
ca

p
ac

it
y
)

tf
=

10
0
0;

A
p

p
ro

x
im

at
io

n
tf

=
10

00
off

)

*
T

h
e

st
u

d
en

t
ed

it
io

n
of

A
M

P
L

is
li

m
it

ed
to

30
0

va
ri

ab
le

s
an

d
30

0
co

n
st

ra
in

ts
an

d
ob

je
ct

iv
es

(a
ft

er
p

re
so

lv
e)

fo
r

n
on

li
n

ea
r

p
ro

b
le

m
s.

*
*

T
h

is
p

ro
gr

am
co

n
ta

in
s

Ip
o
p

t,
a

li
b

ra
ry

fo
r

la
rg

e-
sc

al
e

n
on

li
n

ea
r

op
ti

m
iz

at
io

n
.

Ip
op

t
is

re
le

as
ed

as
op

en
so

u
rc

e
co

d
e

u
n

d
er

th
e

E
cl

ip
se

P
u

b
li

c
L

ic
en

se
(E

P
L

).
F

or
m

o
re

in
fo

rm
a
ti

o
n

v
is

it
h
tt

p
s:

//
gi

th
u

b
.c

om
/c

oi
n

-o
r/

Ip
op

t

*
*
*

D
et

ai
ls

ab
o
u

t
th

e
ve

rs
io

n
s

o
f

th
e

re
la

te
d

co
m

p
on

en
ts

an
d

ot
h

er
p

ar
am

et
er

s
of

m
y

sy
st

em
ca

n
b

e
fo

u
n

d
h

er
e.

15

https://ampl.com/try-ampl/start/
https://neos-server.org/neos/solvers/nco:Ipopt/AMPL.html
https://github.com/coin-or/Ipopt
https://docs.google.com/document/d/1dO8NKdiNQkhFvbRBYxZDHDJtHAhkgY_2lVRkgUZU1Qs/edit?usp=sharing

Chapter 3

Task 2 - “Integer Constraints Not
Working” Issue raised on GitHub

3.1 About the task

Role assigned: documentor.

This issue, #43 on github has been raised earlier by a maintainer of the FOT from
outside India. It has been observed for the function fot intlinprog to have this problem of
the return values to be not integers.

A linear programming problem with integer constraints is mentioned in the issue where
the first 6 numbers are the optimised values using standard Scilab function, which are in
floating point. The next 6 numbers are supposed to be integers using the function
fot intlinprog with integer constraints, however, x(1) is a floating point number which is
not an integer.
The function does not take into account the number of integer constraints.

3.2 About the function fot intlinprog

fot intlinprog is a function available in the FOSSEE Optimization Toolbox which solves
a mixed-integer linear optimization problem in intlinprog format with CBC. The
function searches the minimum of a constrained optimization problem, specified by:

minx C> · x
Subjected to:

A · x ≤ b
Aeq · x = beq
lb ≤ x ≤ ub
xi ∈ Z, i ∈ intcon

CBC, an optimization library written in C++, is used for solving the linear
programming problems. The calls to fot intlinprog can be done in Scilab as follows:

16

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/issues/43

xopt = fot intlinprog(c,intcon,A,b)

xopt = fot intlinprog(c,intcon,A,b,Aeq,beq)

xopt = fot intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)

xopt = fot intlinprog(c,intcon,A,b,Aeq,beq,lb,ub,options)

xopt = fot intlinprog(‘path to mps file’)

xopt = fot intlinprog(‘path to mps file’,options)

[xopt,fopt,status,output] = fot intlinprog(...)

3.3 Contribution as a documentor

For the same example in the GitHub issue, the function now gives integer values in the
output:

A = [-40 0 0 1 0 0 ; 0 -60 0 0 1 0 ; 0 0 -85 0 0 1 ; 0 0 0 -1 -1 -1];

B = [0 0 0 -750]’;

C = [200 275 325 1.5 1.8 1.9]’;

lb = [1 1 1 1 1 1]’;

ub = [8 5 3 840 560 3*85]’;

xopt = fot intlinprog(C,[1 2 3 4 5 6]’,A,B,[],[],lb,ub);

--> disp(xopt);

5.

5.

3.

200.

300.

250.

I had noted all the changes made and details about the issue. The issue was due to the
reason that the function did not take into account integer constraints. numintcons in the
code file which was only initialized to 0, is now taken into account from the input.
I had documented all the details and tested the function with few example cases taken
from the github issue and MATLAB documentation.

17

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/issues/43#issue-618367030
https://in.mathworks.com/help/optim/ug/intlinprog.html

Chapter 4

Task 3 - Spoken Tutorials

4.1 About the task

Role assigned: manager.

There were a total 7 tutorial topics decided and the corresponding tutorial script had
been drafted. We were expected to verify the code file(s) involved in the tutorial and fix
it if it had any errors, solve assignments, report/correct any technical issues or
discrepancies in the script and slides.

4.2 Contribution as a manager

As a manager, I had made an excel sheet and divided the work among all of us. I had
scheduled meetings according to the requirements and ensured that the task would be
completed within time. I had worked on the first 2 subfolders,
“2 Linear Programming using linprog function” and
“3 Integer Programming using intlinprog” in the main folder, “FOT ST tutorials” which
focused on the functions, fot intlinprog and fot linprog. More details are present in
further sections.

4.3 Changes made to the files in the subfolders

I have written the codes for the assignments and edited/updated the codes for the problems
mentioned. I have made suitable changes to the scripts and slides. These are present
in the original “FOT ST tutorials” folder. I have also tested the codes for the problems
mentioned and few other problems and compared them by writing AMPL code with AMPL
solver output. They can be found here.

4.3.1 Subfolder 2 Linear Programming using linprog function

• The solution to the assignment was slightly incorrect in the slides and the script.
This was corrected and the solution code to the assignment has been written in the
file assignment sol opt linprog.sce.

• Minor changes were done to opt linprog.sce

• The Scilab outputs, AMPL codes and AMPL outputs can be found here.

18

https://drive.google.com/drive/folders/14YQyCThUDg_6aZl1oeWPGgmoDI62zFHA?usp=sharing
https://drive.google.com/drive/folders/14F4RnOboACgLU1DZJFfOBvEQ4pVvX8mz?usp=sharing

• The slides file, linprog.pdf generated by modifying linprog.tex file (in the slides
folder) and scripts document, 2 Linear Programming using linprog function latest
were modified to match each other and the code files. Other changes such as
prefixing linprog with “fot ” according to the latest scilab toolbox version and
improving the content had been made.

4.3.2 Subfolder 3 Integer Programming using intlinprog

• The solution to the assignment was incorrect in the slides and the script. This
was corrected and the solution code to the assignment has been written in the file
assignment sol opt intlinprog.sce.

• Minor changes were done to opt intlinprog2.sce according to the latest version of
scilab, 0.4.1

• The solution to the example problem 1 mentioned in the slides which were present
in opt intlinprog.sce were re-written.

• The Scilab outputs, AMPL codes and AMPL outputs can be found here.

• The slides file, 3 Integer Programming using intlinprog.pdf generated by modifying
3 Integer Programming using intlinprog.tex file (in the slides folder) and scripts
document, 3 Integer Programming using intlinprog function were modified to
match each other and the code files. Other changes such as prefixing intlinprog
with “fot ” according to the latest scilab toolbox version and improving the
content has been made.

19

https://drive.google.com/drive/folders/1LF9sjVqLL17gEw1bR4a00LLFh6Koerkv?usp=sharing

Chapter 5

Other contributions

5.1 List of other contributions

• The MPS file can now be passed to the function fot intlinprog without throwing
any error. This issue has been fixed by making changes to the file,
sci gateway/cpp/sci intlinprog mpscpp.cpp in line 37 and line 40. [link]

• The exitflag types returned by Ipopt are more than 6 which are not mentioned in
the help section. So changes to output message has been done in fot fgoalattain.xml,
fot fminbnd.xml, fot fmincon.xml, fot fminimax.xml and fot fminunc.xml files. [link]

• Two examples in fot intlinprog.xml have been commented as they give different type
of result from that mentioned in the help section previously. [link] [link]

• The help content in fot fgoalattain.xml, fot fmincon.xml and fot fminimax.xml files
are modified to fix typos and logical errors. [link] [link]

• The default option is modified in help section of fot fminbnd.xml to match the one
present in .sci file.
The example 2 in fot intfminbnd.xml has been corrected to give expected
results(Optimal solution found). [link]

• The changelog.txt has been modified to include the chnages made to the latest
version, 0.4.1 [link]

• Generated binaries for the toolbox, raised pull requests and compiled an article with
all changes made to the toolbox from version 0.4.0 to 0.4.1

• Checked all the examples in the help section of the toolbox to the best of my abilities
before raising the pull request just before generating the binaries for version 0.4.1

• Identified some issues in the code files requiring many changes.

5.1.1 Details about the binaries for toolbox version 0.4.1

• The Linux binary available on https://atoms.scilab.org/toolboxes/FOT/ contains
384 files

• The Windows binary available on https://atoms.scilab.org/toolboxes/FOT/
contains 379 files

20

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/fdddbbcea0995ed498da7b34995d5da43baba6ab
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/f223edd44b202f49c361560602aafdaf394bc2c9
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/04a37c3b98ad9613e13d71756d546add5cf06d85
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/5130f6b93a7d67b881d24f458f2412a2cc09884b
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/78fede3977989ffc87524e141fec07b43d26d6f4
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/53feb4c0498fb6fe19a87a01aea3f99571b49577
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/5f788c964441cfb7c4ff31050149954693265fd9
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/pull/53/commits/7799d62149efff211d81bddca2e4fe6907412866

Chapter 6

Future enhancements

• The error handling can be improved to prevent crashes or unexpected results.

• In some places the names in the perspective of a user seem to be very confusing
which can be changed. Eg: ‘params’ could be changed to ‘options’.

• Sparse matrices can be used in the functions.

• The correctness of the exitflags need to be verified. I found that the exitflags in
the code files were differing from that mentioned in the help document for some
functions.

• In some function codes, there is an issue with the options.

• If possible, few other functions like genetic algorithm could be added to improve the
scope of the toolbox.

21

Chapter 7

Conclusions

I learned a lot during my internship that will help me professionally and personally.
Most of my coding experience had been centered around personal projects or
assignments for college. These tend to be very specific to their intended audience and
generally aren’t very consequential to the wider community.
In contrast, open source projects tend to have a much wider reach, so it was interesting
to think about the potential scale of my contributions’ impact. This made me feel like
my work was consequential, and that made it feel worthwhile.

This internship program helped me gain important knowledge on various aspects of
software development. I gained more proficiency in languages such as C++, Scilab,
MATLAB. I learned to write and test programs in AMPL, theoretical concepts related
to optimization, Travis CI, and also got a chance to explore a large codebase. This gave
me exposure to the work environment, development process and much more. Personal
lessons
The internship program has increased my teamwork capabilities. Team discussions and
brainstorming helped me identify and solve numerous issues.

In a nutshell, this internship has been an excellent and rewarding experience. I can
conclude that there have been a lot I’ve learnt and much more to explore. This has
certainly helped in improving my coding skills in terms of testing, developing and
debugging. I will strive to use the gained skills and knowledge in the best possible way,
and I will continue to work on their improvement, in order to attain desired career
objectives.
In the end, I would like to thank and appreciate everyone who made my fellowship a
superb learning and memorable experience.

22

Some useful links

• FOT on ATOMS: https://atoms.scilab.org/toolboxes/FOT/

• FOT: https://scilab.in/fossee-scilab-toolbox

• FOT source code: https://github.com/FOSSEE/FOSSEE-Optimization-toolbox

• Link to my forked repository:
https://github.com/Sharvani2002/FOSSEE-Optimization-toolbox/tree/Scilab-6

• AMPL solver: https://ampl.com/try-ampl/start/

• NEOS Server (Ipopt): https://neos-server.org/neos/solvers/nco:Ipopt/AMPL.html

References

• https://scilab.in/

• https://in.mathworks.com/help/optim/ug/writing-scalar-objective-
functions.htmlbsj1e55

• https://in.mathworks.com/help/optim/ug/fmincon.html

• https://github.com/FOSSEE/FOSSEE-Optimization-toolbox

• https://coin-or.github.io/Ipopt/SPECIALS.html

• https://coin-or.github.io/Ipopt/

• https://slidetodoc.com/unconstrained-optimization-rong-jin-logistic-regression-the-
optimization/

• https://www.cs.umd.edu/users/oleary/a607/2008/607unc2hand.pdf

• https://www.math.ntnu.no/emner/TMA4180/2014v/Misc/lecture09.pdf

• https://epubs.stfc.ac.uk/manifestation/9327/RAL-TR-2013-005.pdf

23

https://atoms.scilab.org/toolboxes/FOT/
https://scilab.in/fossee-scilab-toolbox
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox
https://github.com/Sharvani2002/FOSSEE-Optimization-toolbox/tree/Scilab-6
https://ampl.com/try-ampl/start/
https://neos-server.org/neos/solvers/nco:Ipopt/AMPL.html

	Introduction
	Scilab
	FOSSEE Optimization toolbox

	Task 1 - Exploring and implementing the ``limited-memory" option of IPOPT for reducing the computation time
	About the task
	Issue as stated in the CNES report

	About the function fot_fmincon
	Contribution as a tester
	Finding the appropriate method
	Writing Examples and testing extensively
	CUTEst
	Translating and testing
	Limitations and challenges faced

	Executing the files
	Steps to locate and execute the CUTEst problems
	Steps to Run all the files at once and obtain any output

	Comparison of the outputs

	Task 2 - ``Integer Constraints Not Working" Issue raised on GitHub
	About the task
	About the function fot_intlinprog
	Contribution as a documentor

	Task 3 - Spoken Tutorials
	About the task
	Contribution as a manager
	Changes made to the files in the subfolders
	Subfolder 2_Linear_Programming_using_linprog_function
	Subfolder 3_Integer_Programming_using_intlinprog

	Other contributions
	List of other contributions
	Details about the binaries for toolbox version 0.4.1

	Future enhancements
	Conclusions

