
Semester-Long Internship Report
On

FOSSEE Optimization Toolbox

Submitted by

Yasa Ali Rizvi
IIIT Senapati, Manipur

Under the guidance of

Prof. Ashutosh Mahajan
Industrial Engineering and Operations Research

IIT Bombay

Mentor

Mr. Rupak Rokade
FOSSEE, IIT Bombay

July 10, 2021

Acknowledgement

The internship opportunity I had with the FOSSEE Team, IIT Bombay, was a
great chance for learning and professional development. Therefore, I consider myself
a fortunate individual as I was provided with an opportunity to be a part of it.
Besides this, it was of special significance to me as I was studying ‘Optimization
Techniques’ this semester, and this internship allowed me to practically apply the
concepts that I studied in class. I am also grateful for having a chance to meet so
many wonderful people and professionals across the country with whom I worked
through this internship period.

I would like to use this opportunity to express my deepest gratitude and special
thanks to Prof. Ashutosh Mahajan, professor in Industrial Engineering and
Operations Research, for guiding the entire team through the various tasks and
taking an active part in all discussions to clarify any doubts that we had regarding
the mathematical concepts underlying the various functions provided in the
toolbox. His guidance and expertise were of great significance as it assisted us to
find the logical errors in otherwise syntactically correct functions, and allowed us
to mathematically formulate the problems/test cases correctly.

It is my radiant sentiment to place on record my best regards and deepest sense
of gratitude to our mentor, Mr. Rupak Rokade for his continuous support which
was extremely valuable for my internship both theoretically and practically. It was
his continued aid and encouragement which allowed me to complete all the assigned
tasks to the best of my ability.

I perceive this opportunity as a big milestone in my career development. I will
strive to use the gained skills and knowledge in the best possible way, and continue to
work on their improvement, in order to attain my desired career objectives. Lastly,
I wish to express my enthusiasm and hope to continue my work and cooperation
with the FOSSEE team in the future.

1

Contents

1 Introduction 3
1.1 Setting Up the Development Environment 4

1.1.1 GNU/Linux . 4
1.1.2 Windows . 4
1.1.3 System Specifications . 5

1.2 Tasks assigned . 5

2 FOSSEE Optimization Toolbox 6
2.1 Version Control . 6
2.2 Structure of the Toolbox . 7

3 Exploration of “limited memory” option of Ipopt 10
3.1 Description of the Task . 10
3.2 Contributions Made . 12

4 Fixing of Integer Constraints in fot intlinprog 15
4.1 Description of the Task . 15
4.2 Contributions Made . 17

5 Debugging FOT Spoken Tutorials 24
5.1 Description of the Task . 24
5.2 Contributions Made . 25

6 Conclusion 29

Useful Links 30

2

Chapter 1

Introduction

Mathematical optimization or mathematical programming is the selection of a best
element, with regard to some criterion, from some set of available alternatives. In
the simplest case, an optimization problem consists of maximizing or minimizing a
real function by systematically choosing input values from within an allowed set and
computing the value of the function. The generalization of optimization theory and
techniques to other formulations constitutes a large area of applied mathematics.

More generally, optimization includes finding “best available” values of some
objective function given a defined domain (or input), including a variety of different
types of objective functions and different types of domains. Optimization problems
of sorts arise in all quantitative disciplines from computer science and engineering
to operations research and economics, and the development of solution methods has
been of interest in mathematics for centuries1.

Thus, optimization is a significant interdisciplinary field in terms of academic
research and study, and being able to contribute to a software which deals with it
and is used by several eminent organizations worldwide to solve various real-world
problems, is a great opportunity in itself. The FOSSEE Optimization toolbox (FOT)
in Scilab allowed me to do just that, and the contributions I made to it helped me
to understand this fascinating subject better and instilled in me a sense of curiosity
towards its various aspects, which I will indeed continue to pursue in future as part
of my higher studies.

This report elaborates on every part of this internship opportunity right from the
very beginning, i.e. from setting up our development environment, and continues
to describe all the different kinds of contributions that were made by me to the
toolbox or the project in general. Section 1.1 describes the process of setting up
the development environment while section 1.2 throws light on the tasks that were
assigned during this internship – their timelines and a brief overview of each of them.

Chapter 2 gives the reader a glimpse of what the toolbox is, what it comprises
of and how its development takes place. Chapters 3, 4 and 5 describe the different
tasks and the work done during each of them. Finally, chapter 6 talks about the
significance of the work that was done during this internship and the goals that were
achieved by being part of it.

1https://en.wikipedia.org/wiki/Mathematical_optimization; accessed: 10-July-2021

3

https://en.wikipedia.org/wiki/Mathematical_optimization

1.1 Setting Up the Development Environment

In order to work on the toolbox, the development environment needs to be set up.
This requires a sequence of steps to be completed which are slightly different for
GNU/Linux and Windows. These steps are described in the following sections.

1.1.1 GNU/Linux

1. Fork the source repository and clone it on your system.

2. The source code has the thirdparty folder missing. This folder contains the
pre-built optimization libraries for windows and linux

3. Download the thirdparty folder for your OS from
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/

download-pre-built-optimization-library and paste it in the toolbox
directory.

4. Then type exec builder.sce in the Scilab console to run the builder.

5. Now run exec loader.sce in the Scilab console. The toolbox will be ready
to use.

1.1.2 Windows

1. Fork the source repository and clone it on your system.

2. The source code has the thirdparty folder missing. This folder contains the
pre-built optimization libraries for windows and linux

3. Download the thirdparty folder for your OS from
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/

download-pre-built-optimization-library and paste it in the toolbox
directory.

4. In windows you need MinGW installed along with its toolbox. See
https://atoms.scilab.org/toolboxes/mingw/8.3.0 and Step 0, 1, 2 of
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/

Scilab-6/doc/INSTALL.mingw

5. Then type exec builder.sce in the Scilab console to run the builder.

6. After you build the toolbox successfully, follow instructions given in
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/

Scilab-6/doc/windows.edits

7. Now run exec loader.sce in the Scilab console. The toolbox will be ready
to use.

4

https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/ download-pre-built-optimization-library
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/ download-pre-built-optimization-library
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/ download-pre-built-optimization-library
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/ download-pre-built-optimization-library
https://atoms.scilab.org/toolboxes/mingw/8.3.0
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/doc/INSTALL.mingw
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/doc/INSTALL.mingw
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/doc/windows.edits
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/doc/windows.edits

1.1.3 System Specifications

The specifications of the system that was used by me to perform the various
development and testing tasks on this toolbox are as follows:

� RAM : 4 GB

� Operating System : Ubuntu 20.04 (Focal Fossa), Windows 8.1

� OS Type : 64-bit

1.2 Tasks assigned

The tasks that were assigned during this internship are as follows:

� Exploration of “limited memory” option of Ipopt to reduce
computation time : This task involved the addition of the option,
HessianApproximation to the function fot fmincon provided by the
toolbox. This option allows the user the facility of choosing whether he
wants the exact Hessian for the Langrangian function to be calculated, which
is preferable in case of small problems, or he wants it to be approximated
using quasi-Newton approximation method provided by Ipopt via the
“limited memory” option, as is generally required for very large/dense
problems. The user can toggle the approximation of the Hessian by simply
passing a 1 or 0 for the corresponding parameter in the options struct for
the function. Chapter 3 gives a description of this task and the various
contributions that were made to the toolbox as part of it.

� Fixing of integer constraints in fot intlinprog : This task mainly
involved fixing an issue raised on the FOT GitHub repository regarding the
integer constraints not working in the function fot intlinprog. The task
fixed the issue thus causing the function to work correctly and return the
expected results. Other subtasks that were undertaken during the same time
interval were exhaustively testing the entire help section, so as to render it
free of all errors, and ensure that each example works fine and returns results
as expected by the corresponding problem statements. Chapter 4 gives a
description of this task and the various contributions that were made to the
toolbox as part of it.

� Debugging of files and removal of technical discrepancies from FOT
Spoken Tutorials : This final task did not involve any direct contribution to
the toolbox, rather it included tasks to check for technical errors in the Spoken
Tutorials that are being created for this toolbox. This being said, it involved
checking the narration script and slides of the Spoken Tutorials, debugging
the associated code files, and adding the solutions to the assignments provided
along with each tutorial. Chapter 5 gives a description of this task and the
various contributions that were made to the toolbox as part of it.

5

Chapter 2

FOSSEE Optimization Toolbox

FOSSEE Optimization Toolbox (FOT) for Scilab offers several optimization
routines including, but not limited to, linear optimization, integer linear
optimization, unconstrained optimization, bounded optimization and constrained
optimization. The function calls and outputs are similar to those available in
MATLAB. These routines call optimization libraries in the backend, most of which
are COIN-OR libraries. It uses CLP for linear programming, CBC and
SYMPHONY for integer linear programming, Ipopt (with MUMPS) for nonlinear
optimization and Bonmin for integer nonlinear optimization. There are also
routines for specific optimization problems like linear and nonlinear least squares,
minimax, and goal programming using these solvers1. Section 2.1 throws light on
the version control system used by this toolbox, while section 2.2 gives the reader
a brief overview of the importance and utility of the different files and directories
contained in the toolbox.

2.1 Version Control

The toolbox uses the well known version control system, Git, for source code
management. Git is software for tracking changes in any set of files, usually used
for coordinating work among programmers collaboratively developing source code
during software development. Its goals include speed, data integrity, and support
for distributed, non-linear workflows (thousands of parallel branches running on
different systems).

To realise the full functionality of Git in software collaboration, the toolbox like
so many other Free/Libre and Open Source Software (FLOSS), uses the popular
online Git repository hosting service, GitHub. GitHub offers the distributed
version control and source code management (SCM) functionality of Git, plus its
own features. It provides access control and several collaboration features such as
bug tracking, feature requests, task management, continuous integration and wikis
for every project. As described in section 1.1, the GitHub repository for FOT was
forked and cloned on our systems, so that we can easily make any changes locally

1https://scilab.in/fossee-scilab-toolbox/optimization-toolbox; accessed: 10-July-
2021

6

https://www.coin-or.org/
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox

and push them upstream, which can then be merged in the main repository by
simply raising a pull request.

2.2 Structure of the Toolbox

The toolbox has several folders and files each of which have their own roles in making
it work. A summary of the different components of this toolbox is presented below.

demos

The use of the demos folder is quite apparent from its name. It contains a collection
of files named in the format <function-name>.dem.sce which are demos for the
functions after which the particular file is named. These files allow the user to
demonstrate how the different functions work, and to test the use of the toolbox in
general.

doc

The doc folder contains files describing the steps to build the toolbox in Windows.
The file INSTALL.mingw lists the steps to compile the toolbox in Windows using
MinGW compiler, while the other file windows.edits contains the content that is
to added in the loader file within the sci gateway/cpp folder in order to run it
successfully, and thus load the toolbox without any errors.

etc

The etc folder contains the initialization and finalization script of the toolbox which
are run at the beginning and termination of the toolbox. They are executed while
executing the loader and unloader files. The name of the initialization script for a
toolbox is the name of the toolbox followed by “.start”. In our case, the name of
the file is “FOSSEE Optimization Toolbox.start”, which is executed when we run
the loader. Its purpose is to load the function libraries from macros directory, the
gateway and shared libraries from sci gateway and thirdparty directory, the help
from the help directory, and the demos from demos directory. The name of the
finalization script for a toolbox is the name of the toolbox followed by “.quit”.
In our case, the name of the file is “FOSSEE Optimization Toolbox.quit”. The
FOSSEE Optimization Toolbox.quit file is executed when we run the unloader. Its
purpose is to unlink the toolbox libraries and remove any preferences that were set
by the toolbox.

help

The help folder contains the all the XML help files for the different functions provided
in the toolbox. These files are used to render the help section of the toolbox, and can
be modified in order to improve them or correct any errors found in the examples
provided by them.

7

jar

The jar folder contains a single file, scilab en US help.jar which is used to generate
files in the help section.

macros

The macros folder is the main folder of the toolbox. It contains Scilab function
files (macros) which are compiled when the builder is run. The macro files in turn
call C++ files containing gateway functions, which call the optimization solvers
and return the solution to the user. The macro files generally contain help page
comments, input retrieval, error checks, input modifications, calls to the C++
library, output retrieval, checks and modifications.

sci gateway

The sci gateway folder contains gateway files, which as the name suggests, act as a
gateway between Scilab and C++. The inputs from Scilab are not compatible with
other languages and hence Scilab provides an array of API functions to accomplish
this. The sci gateway files generally are used to get input form Scilab, pass it to the
respective library, retrieve the results and pass the results back to Scilab.

tests

The tests folder contains two subfolders – general tests and unit tests. The unit tests
folder contains files used to test the various functions to see whether they return
the expected results, whereas the folder general tests contains the files to test the
different parameters and parts of the functions, and see whether the functions are
able to handle all such cases efficiently.

builder.sce

The builder.sce file is used to build the toolbox – it creates binaries of the toolbox
that are loaded into the Scilab memory. This file executes other builder files which
compile the required directories with respective commands. It also builds a
loader.sce which is used to load the binary files into Scilab memory and a
cleaner.sce file to remove them.

cleaner.sce

The cleaner.sce file is responsible for removing all the binary files, loader and
unloader files created by builder.

loader.sce

The loader.sce file is responsible for loading the binaries created by builder into the
Scilab memory.

8

unloader.sce

The unloader.sce file is responsible for unloading the binaries from the Scilab
memory.

changelog.txt

The changelog.txt file lists all the changes made in the toolbox across different version
releases, in the reverse chronological order.

9

Chapter 3

Exploration of “limited memory”
option of Ipopt

The first task of this internship involved reading the comments given to the
FOSSEE team by CNES (Centre national d’études spatiales), the French
government space agency, regarding the improvements that could be made to the
function, fot fmincon, so as to enhance its usability and make it as versatile as
the similar function provided by MATLAB. One of the many suggestions was the
addition of HessianApproximation option to allow the user to choose the method
of computing the Hessian. Since, the addition of this option was categorized as of
“major” importance, this was the task that was taken up during this assignment.
Section 3.1 enunciates the assigned task, and section 3.2 mentions the work that
was done by me in the course of completing it.

3.1 Description of the Task

CNES mentioned in their comments that the quasi-Newton approximation method
of calculating the Hessian is of particular importance as it would enable saving time.
This method is available in the library Ipopt via the option “limited-memory”. Thus,
this task involved the exploration of this option of Ipopt so that it can be used to
approximate the Hessian in fot fmincon and save time for problems having dense
coefficient matrices, as for such problems calculating the exact Hessian would be too
time-consuming.

According to [1], Ipopt (Interior Point Optimizer, pronounced “Eye-Pea-Opt”)
is an open source software package for large-scale nonlinear optimization. It can be
used to solve general nonlinear programming problems of the form:

min
x∈R

f(x)

s.t. gL ≤ g(x) ≤ gU (NLP)

xL ≤ x ≤ xU

where x ∈ Rn are the optimization variables (possibly with lower or upper bounds,
xL ∈ (R ∪ {−∞})n and xU ∈ (R ∪ {+∞})n), f : Rn → R is the objective function,

10

https://drive.google.com/file/d/1V6UCAuEsOfKPok-XplHusKmLUSYQ_AJg/view

and g : Rn → Rm are the general nonlinear constratints. The functions f(x) and
g(x) can be linear or nonlinear and convex or non-convex (but should be twice
continuously differentiable). The constraint functions, g(x), have lower and upper
bounds, gL ∈ (R∪{−∞})m and gU ∈ (R∪{+∞})m. Note that equality constraints
of the form gi(x) = ḡi can be specified by setting gLi = gUi = ḡi. Ipopt implements
an interior point line search method that aims to find a local solution of (NLP).

As mentioned in [2], Ipopt has an option to approximate the Hessian of the
Lagrangian by a limited-memory quasi-Newton method (L-BFGS). This feature can
be used by setting the option hessian approximation to the value “limited-memory”.
In this case, it is not necessary to implement the Hessian computation method
Ipopt::TNLP::eval h. If the C or Fortran interface is being used, these functions
still need to be implemented, but they should return false or IERR=1, respectively,
and don’t need to do anything else.

In general, when second derivatives can be computed with reasonable
computational effort, it is usually a good idea to use them, since then Ipopt
normally converges in fewer iterations and is more robust. An exception might be
in cases, where the optimization problem has a dense Hessian, i.e., a large
percentage of non-zero entries in the Hessian. In such a case, using the
quasi-Newton approximation might be better, even if it increases the number of
iterations, since with exact second derivatives the computation time per iteration
might be significantly higher due to the very large number of non-zero elements in
the linear systems that Ipopt solves in order to compute the search direction.

In this task, an option called HessianApproximation was added to the options

struct, and the user could toggle the quasi-Newton approximation “on” or “off” by
simply passing 1 or 0 as an argument to the parameter. By default, it is off. i.e. the
exact Hessian is calculated for any problem. The option can be used as follows:

options = struct("MaxIter", [3000], "CpuTime",

[600],"HessianApproximation", [1])

Giving the value 0 passes the value of hessian approximation as "exact" in
Ipopt, whereas a value of 1 passes the value of hessian approximation as
"limited-memory". The line in the file sci gateway/cpp/sci ipoptfmincon.cpp
where this occurs (line 205) is shown below, where ha takes the value "exact" or
"limited-memory" accordingly.

app->Options()->SetStringValue("hessian approximation", ha);

Apart from this, a selection of problems were made from the CUTE set of
PrincetonLib which were to be implemented in Scilab as test cases for this newly
added option in fot fmincon. According to the information present on [3],
PrincetonLib is a collection of nonlinear programming (NLP) models. The purpose
of the collection is to provide algorithm developers of nonlinear optimization codes
with a large and varied set of both theoretical and practical test models. It also
aids in the software quality assurance process by providing a set of tools to
facilitate benchmarking and performance analysis. The original models are in
AMPL format and collected by Robert Vanderbei and his colleagues at Princeton

11

https://coin-or.github.io/Ipopt/OPTIONS.html#OPT_hessian_approximation
https://coin-or.github.io/Ipopt/classIpopt_1_1TNLP.html#a26b9145267e2574c53acc284fef1c354
http://gamsworld.org/performance/princetonlib/htm/group5stat.htm
http://gamsworld.org/performance/princetonlib/htm/group5stat.htm

University. They were translated to GAMS by Andre Savitsky.

3.2 Contributions Made

The role that was assigned to me during this task was that of a documenter. As
a documenter, I analysed all the different files where changes were made so that I
could document them properly, and see what effects did they have on the output
of the fot fmincon function. The main files that were changed were the macro
and gateway file associated with the function in order to add the option, and the
help file to include this newly added feature in the documentation. The sources
of the CUTEst test cases, and the procedure to execute them was also properly
documented. The documentation for this task can be found here.

The next contribution that I made as part of this task was adding six CUTEst
test cases to the FOSSEE-Optimization-Toolbox/tests/general tests/CUTEst folder.
The problems were translated from AMPL to Scilab and such problems were selected
which have a large number of variables and equations. In order to test the problems
conveniently, the number of variables had to be decreased (for instance, from 10000
to 1000) so as to keep them within the processing capacity of the testing systems.
In order to verify the value of the optimal solution, and the optimal value of the
objective function at these reduced values, NEOS Ipopt/AMPL Solver has been
used. The optimal values of the decision variables computed were plotted alongwith
those obtained from NEOS to verify that they are the same. This was done to ease
the process of manually cross-checking several hundred values. The values obtained
from NEOS have been mentioned on top of each test file for the feasibility of a future
user/tester of the code. The problems that were translated by me are as follows:

� broydn3d

� hager1

� mancino

� msqrtb

� reading2

� tfi2

The plots for the optimal values obtained for these problems in Scilab are shown
in figure 3.1. The test cases written can be executed in Scilab by the following these
steps:

1. Open Scilab and load the FOSSEE Optimization Toolbox by running exec

loader.sce on the Scilab console. If the toolbox has not been built, run exec

builder.sce before the previous command.

2. Navigate to the CUTEst tests folder by executing the command:
cd FOSSEE-Optimization-Toolbox/tests/general tests/CUTEst

12

https://drive.google.com/file/d/156fisfx4kcd8h4hCur0Dk-xbFrEy0yjb/view
https://neos-server.org/neos/solvers/nco:Ipopt/AMPL.html
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/broydn3d.sce
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/hager1.sce
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/mancino.sce
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/msqrtb.sce
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/reading2.sce
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/blob/Scilab-6/tests/general_tests/CUTEst/tfi2.sce

3. Now the individual test cases can be executed by running the corresponding
files. A problem can be executed by executing the command – exec

<problem name>.sce, where <problem name> can be replaced by any of the
problem names mentioned above. For instance, to execute the problem
broydn3d, execute the command – exec broydn3d.sce.

13

(a) broydn3d (b) hager1

(c) mancino (d) msqrtb

(e) reading2 (f) tfi2

Figure 3.1: Plots for optimal values of CUTEst problems

14

Chapter 4

Fixing of Integer Constraints in
fot intlinprog

The second task of this internship involved fixing an issue raised on the toolbox’s
GitHub repository (issue #43) regarding the integer constraints in the function
fot intlinprog. Section 4.1 describes the assigned task while section 4.2 elaborates
the contributions that were made by me to the toolbox during this assignment.

4.1 Description of the Task

The fot intlinprog function available in FOT is used to solve mixed-integer linear
optimization problem with CBC (Coin-OR Branch-and-Cut) solver. According to
the issue on GitHub, integer constraints were not working when a user was trying to
solve a linear programming problem with integer constraints. He had constrained all
the variables to have integral values, however one decision variable was not returning
an integral value. The problem executed in Scilab gave the following result.

--> A = [-40 0 0 1 0 0 ; 0 -60 0 0 1 0 ; 0 0 -85 0 0 1 ; 0 0 0 -1 -1

-1];

--> B = [0 0 0 -750]’;

--> B = [0 0 0 -750]’;

--> C = [200 275 325 1.5 1.8 1.9]’;

--> lb = [1 1 1 1 1 1]’;

--> ub = [8 5 3 840 560 3*85]’;

--> [xopt,fopt,status,output] = fot_intlinprog(C,[1 2 3 4 5

6]’,A,B,[],[],lb,ub)

xopt =

15

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/issues/43

4.875

5.

3.

195.

300.

255.

fopt =

4642.

status =

0.

output =

relativegap = 0

absolutegap = 0

numnodes = 0

numfeaspoints = 0

numiterations = 4

numberthreads = 0

constrviolation = 0

message = "Optimal Solution"

As can be seen in the above result, the first value of xopt is a floating point
number, when it should have been an integer. This problem was fixed in this task,
by correctly passing the integer constraints from the macro to the gateway file, and
properly initializing the required variables. After making the necessary changes,
the problem was executing correctly and returning the expected results. The result
obtained after correcting the integer constraints is shown below.

--> A = [-40 0 0 1 0 0 ; 0 -60 0 0 1 0 ; 0 0 -85 0 0 1 ; 0 0 0 -1 -1

-1];

--> B = [0 0 0 -750]’;

--> C = [200 275 325 1.5 1.8 1.9]’;

--> lb = [1 1 1 1 1 1]’;

--> ub = [8 5 3 840 560 3*85]’;

--> [xopt,fopt,status,output] = fot_intlinprog(C,[1 2 3 4 5

6]’,A,B,[],[],lb,ub)

xopt =

5.

5.

16

3.

200.

300.

250.

fopt =

4665.

status =

0.

output =

relativegap = 0

absolutegap = 0

numnodes = 2

numfeaspoints = 6

numiterations = 7

numberthreads = 0

constrviolation = 0

message = "Optimal Solution"

4.2 Contributions Made

The role that was assigned to me during this task was that of a developer. As the
developer, I investigated all the files pertaining to the function, fot intlinprog.
It was found that the integer constraints were being received as a vector in the file
/macros/cbcmatrixintlinprog.sci but the number of integer constraints was not
being stored in any variable, and hence not being passed to the gateway file,
/sci gateway/cpp/sci intlinprog matrixcpp.cpp. Similarly, the gateway file had
declared a variable numintcons with initial value 0 which was not being
re-intialized to store the number of integer constraints. Therefore, the following
code (lines 184-185 in sci intlinprog matrixcpp.cpp) to set integer constraints in the
solver was not being executed, and consequently, no integer constraints were being
passed to the solver causing it to neglect the integer constraints in the problem
altogether.

for (int i = 0; i < numintcons; i++) ...line 184
solver1.setInteger(intcon[i] - 1); ...line 185

In order to solve this problem, the size of the integer constraints vector (or, the
number of integer constraints) was stored as a variable numintcons in the macro file
cbcmatrixintlinprog.sci. A line was added to the file (line 229) in order to implement
this change as follows.

numintcons = int32(size(intcon,1));

17

And this variable was passed as the last parameter to the gateway function
matintlinprog in line 262 of the macro file as shown below.

[xopt,fopt,status,nodes,nfpoints,L,U,niter] =

matintlinprog(int32(nbVar),nbCon,c,intcon,conMatrix,conLB,conUB,

lb,ub,objSense,optval,numintcons);

In the gateway file sci intlinprog matrixcpp.cpp, a line was added (line 99) to
intialize the numintcons variable so that the integer constraints can be set for the
solver, and it can return correct results. The line is shown below.

scilab getInteger32(env, in[11], &numintcons);

After making these changes to the pertinent files, the issue of “integer constraints
not working” was fixed and the main assignment was completed. Other integer
programming functions were also inspected to ensure that they do not have a similar
issue with the integer constraints, however no such problem was found. In addition
to this, exhaustive testing of the help section was conducted so as to ensure all
examples run successfully, and that the code written in each example matches with
the problem statement given alongwith it. Several changes were made while testing
the examples which are as follows:

� The examples given in the help for fot lsqnonlin were giving an “Invalid
Index” error, as shown in the figure 4.1. This is because incorrect indices
were being used to reference options, which is a struct but was being
referred to, as a list. On correcting the indices in lines 289 and 310 in the file
/macros/fot lsqnonlin.sci from options(6) to options("GradObj"), the
examples were executing correctly, and returning the expected results. The
lines that were changed are shown below.

if (options("GradObj") == "on") ...line 289

options("GradObj") = fGrad; ...line 310

Figure 4.1: Error on executing examples in fot lsqnonlin

18

� In fot intfminimax, example 6 was giving an error indicating “Unknown
string passed in gradobj” as shown in figure 4.2, due to the example passing
wrong parameters to the options struct. The options struct accepts only
"on" or "off" values for the parameters "GradObj" and "GradCon" but the
example passed the names of the functions – "myfungrad" and "cgrad" as
the arguments for these parameters, thus producing the error. The example
was rewritten so as to pass the correct arguments, and the gradients of the
objective function and nonlinear constraints were included in the functions
themselves. This change was implemented by modifying lines 415–440 in the
file /help/fot intfminimax.xml. The corrected example executes successfully
as shown in figure 4.3.

Figure 4.2: Error on executing example 6 in fot intfminimax

� Example 7 in fot intfminimax was giving an error indicating wrong size
for the input argument as shown in figure 4.4. This error was due to the
input arguments being passed in the wrong order – intcon should be passed
as the third argument after x0. On correcting this line in the file /help/
fot intfminimax.xml (line 478), the example executed successfully. In addition
to this, example 5 failed to pass nonlinear constraints nlc even though the
problem statement specified the same. This was corrected by modifying line
391 in the file /help/fot intfminimax.xml to pass nlc as an argument to the
function as shown below.

[x,fval,maxfval,exitflag] = fot intfminimax(myfun,

x0,intcon,A,b,Aeq,beq,lb,ub,nlc)

� In the function fot intfmincon, problem statements in examples 1 and 6 were
corrected to correspond with the code given in the examples. Lines 159, 394,
395 and 401 in the file /help/fot intfmincon.xml were modified to implement
these changes. Example 4 was executing correctly but an extra parameter –
options, was being passed to the function. Line 334 in this file was modified

19

Figure 4.3: After modification, example 6 in fot intfminimax runs correctly

Figure 4.4: Error on executing example 7 in fot intfminimax

20

to remove this parameter and ensure that the code was written as specified in
the problem statement.

� LATEX rendering was incorrect for examples 1 and 7 in both
fot intquadprog and fot quadprogmat as shown in figures 4.5 and 4.6
respectively. The incorrect rendering was due to the prime symbol used in
eqnarray environment. The error was corrected by replacing the prime
symbol (′) with superscript ‘T ’ to denote the transpose of matrices. Besides
this, other instances of incorrect rendering were resolved by correcting the
LATEX code in multiple places (see the GitHub file changes).

Figure 4.5: Incorrect LATEX rendering in fot intquadprog

Figure 4.6: Incorrect LATEX rendering in fot quadprogmat

In addition to this, the coefficient matrix for linear equality constraints Aeq

was corrected in examples 3–7 in both the files, fot intquadprog and
fot quadprogmat. All the examples executed successfully after corrections
were made to them except examples 6 and 7 in fot intquadprog. An issue
is already open on the toolbox’s GitHub repository (issue #18) regarding
fot intquadprog crashing on infeasible problems, which explains the failure
of example 6 to execute. As for example 7 which pertains to unbounded
problems, it was giving an optimal solution before correcting the value of
Aeq when it should have been returning an unbounded solution. On running
the example after making the required corrections, it was observed that
Scilab crashes due to a segmentation fault error in a somewhat similar
fashion as example 6. Thus, it was concluded that fot intquadprog crashes

21

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/commit/5568f160d748a2917fc829d8e2782e21443d2744#diff-c3ae474a951fcecb456cfaffae50aa595e68dea90b192e7697437f8dde87a6e5
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox/issues/18

Scilab on unbounded problems as well. The crash error message obtained can
be seen in the figure 4.7.

Figure 4.7: Scilab crashes on executing unbounded problems in fot intquadprog

� Example 5 in fot fminimax was corrected in order to pass nonlinear
constraints nlc to the function, as it was required by the problem statement.
The change was implemented by updating line 441 in fot fminimax.xml as
shown below.

[x,fval,maxfval,exitflag,output,lambda] =

fot fminimax(myfun, x0,A,b,Aeq,beq,lb,ub,nlc)

� Example 1 in fot quadprogCLP and all examples in fot quadprog were
updated to pass correct values of H – the Hessian of the quadratic problem
and f – the vector containing the coefficients of the linear terms in the
quadratic problem. Besides this, the constraints in examples 1, 4 and 5 in
fot quadprog were corrected to correspond with the given code.

� The coefficient matrix for linear inequality constraints, A was corrected in
example 7 of the function fot fmincon, so as to correspond with the
constraints specified in the problem statement and return the correct results.
Line 461 was updated in the file fot fmincon.xml to implement this change.

� In fot fminbnd.xml lines 42 and 44 were updated to remove LATEX rendering
from the description section of the help, so that it is consistent with the rest
of the help files.

� The function name was corrected in a comment in example 7 of
fot fgoalattain in order to make it absolutely error free. Line 502 was
updated in the file fot fgoalattain.xml in order to implement this change.

22

� In fot linprog, LATEX rendering was fixed in examples 4 and 5. The incorrect
LATEX rendering for this function is shown in figure 4.8. Apart from this, the
value of c – the vector containing coefficients of the objective function was
corrected for both the examples, and the value of Aeq – the matrix containing
the coefficients for linear equality constraints was corrected for example 4.

Figure 4.8: Incorrect LATEX rendering in fot linprog

Besides this, line 41 in the file /sci gateway/cpp/sci fotversion.cpp was updated
to change the version of the toolbox to “0.4.1”. Lastly, the changelog was written
and the Linux 64-bit binary for this toolbox was generated so that it could be
published on the ATOMS page alongwith the new version release of this toolbox.

23

https://atoms.scilab.org/toolboxes/FOT/0.4.1/

Chapter 5

Debugging FOT Spoken Tutorials

The final task of this internship did not entail any direct development/testing of the
toolbox. Rather it involved working on removing all kinds of technical errors from
the files on Spoken Tutorials being designed for this toolbox. The aforementioned
files consist of the narration script, the slides for various tutorial topics, and the
accompanying code files for each tutorial. Section 5.1 sheds light on the Spoken
Tutorial project and the assigned task, while section 5.2 describes my contributions
to these tutorials.

5.1 Description of the Task

Spoken Tutorial is a multi-award winning educational content portal. According to
[4], the platform is where one can learn various Free and Open Source Software all
by oneself. Their self-paced, multi-lingual courses ensure that anybody with a
computer and a desire for learning, can learn from any place, at any time and in a
language of their choice. All the content published on the Spoken Tutorial website
are shared under the CC BY SA license. End-of-Course online tests and
certificates are available for those who wish to test their expertise in a particular
software. These certificates give an edge to students during placement by
increasing their employability potential. The Spoken Tutorial project is funded by
the National Mission on Education through Information and Communication
Technology (ICT), launched by the erstwhile Ministry of Human Resources and
Development, Government of India.

The task assigned here involved scanning all the files associated with Spoken
Tutorials being prepared for FOT. There were seven tutorials being prepared, viz.
the installation of FOT, linear programming using fot linprog, integer
programming using fot intlinprog, unconstrained optimization using
fot fminunc and fot intfminunc, bounded optimization using fot fminbnd and
fot intfminbnd, consrained optimization using fot fmincon and
fot intfmincon, and quadratic optimization using fot quadprog and
fot intquadprog. These tutorials were distributed among the team, and each
member had to remove the technical discrepancies (if any) present in the narration
script and slides of the tutorial, check if the associated code files execute without
any errors on the Scilab console (and correct them if required), and add solutions

24

https://spoken-tutorial.org/

to the assignment problems given in each tutorial, after verifying that they execute
successfully in Scilab.

5.2 Contributions Made

The tutorials that were worked upon by me during this task were ‘bounded
optimization using fot fminbnd and fot intfminbnd’, and ‘constrained
optimization using fot fmincon and fot intfmincon’. All the files in both the
tutorials referred to the functions as fminbnd, fmincon, etc. that is without the
prefix fot , conforming to an older version of the toolbox. Thus, all occurrences of
these names were corrected in the script, slides and code files. The problems
specified in the slides were cross-checked with the course outline for the tutorials to
ensure that they conform to the guidelines laid out for them. Investigating the
slides for the tutorial on bounded optimization revealed several errors in the
example problems given as well as the assignment. The changes that were made to
this tutorial are as follows:

� The example given for the function fot fminbnd was supposed to be example
1 from the help documentation of the same function, according to the course
outline. However, the constraints of the example given in the slides did not
match the example given in the help section as shown in figure 5.1. The upper
bound for x should have been 1000, but the value specified was 100, and hence,
it was corrected.

Figure 5.1: Wrong constraints in the fot fminbnd example

� There were typographical errors in the objective function of the assignment
problem because of which it became ambiguous as shown in figure 5.2. The

25

https://docs.google.com/document/d/15KuZCtvdZ8QK1KLDRj1S5vTZMB1rDMGbdraElFWTVF0/edit?usp=sharing
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox/functions/fminbnd

same was rectified after referring to the source of the problem, and the slide and
narration script was updated. Besides this, the LATEX rendering was corrected
in order to make it more readable and the assignment solution was added to
the tutorial files and its answer updated in the slides after verifying it in Scilab.

Figure 5.2: Erroneous assignment problem in bounded optimization

� Lastly, certain sections of the script and the comments in the code files
opt fminbnd.sce and opt intfminbnd.sce were updated to remove wrong
output arguments for the functions and add the correct ones instead.

Similar kind of errors were encountered on examining the files associated with
the tutorial on constrained optimization. The changes that were made here are as
follows:

� The examples given in the slides for both fot fmincon and fot intfmincon

were wrongly written, and did not correspond to their source available here.
The examples given had the wrong objective function, wrong specification of
the nonlinear constraints, and no mention of the upper and lower bounds for
the decision variables as shown in figure 5.3. All these errors were rectified
and the slides were updated.

� The integer constraints were being passed in an incorrect manner in the code
file opt intfmincon.sce thus giving an “invalid index” error as shown in
figure 5.4. The error was due to the integer constraints vector being named as
int which conflicts with the function available in Scilab for rounding towards
zero. It was rectified by simply renaming the vector to intcon.

26

https://github.com/FOSSEE/FOT_Examples/blob/master/code/fminbnd/Chichinadze.sce
https://github.com/FOSSEE/FOT_Examples/blob/master/code/intfmincon/Pressure%20vessel%20design.sce

Figure 5.3: Erroneous example for fot fmincon in constrained optimization

Figure 5.4: Error given in Scilab on executing opt intfmincon.sce

27

� The assignment problem given in the slides had specified an unknown variable
h in the constraints, thus making it ambiguous. This is shown in figure 5.5.
The source of the problem was referred to deduce the fact that it ought to
be replaced with the variable x2. The correction was made and the slide was
updated. Lastly, the assignment solution was added to the tutorial files.

Figure 5.5: Assignment in constrained optimization had an unknown variable h

� The final changes were made in sections of the narration script and the
corresponding comments in the code files, in order to remove the wrong
output arguments from the functions and replace them with the correct ones.
For instance, the output arguments given in the file opt intfmincon.sce,
namely output and lambda were wrong, and hence they were replaced with
the correct ones – gradient and hessian.

28

https://github.com/FOSSEE/FOT_Examples/blob/master/code/fmincon/Tankprob.sci

Chapter 6

Conclusion

The contributions made during the various assignments have been able to meet the
objectives and deadlines laid out for them by the FOSSEE team. The work done
during this internship and the contributions made to the FOSSEE Optimization
Toolbox have been quite significant in improving the functionality and correctness
of its various aspects. As a result of the changes made to the toolbox by me, the
functions fot lsqnonlin and fot intlinprog execute correctly now and return
the expected results. The help section has been made free from all kinds of errors
thus enhancing its quality and the CUTEst test cases added will aid in the future
testing and development of this toolbox. Lastly, the corrections made in the FOT
Spoken Tutorial files will help the team recording them do their job correctly, which
will in turn prove beneficial to their audience and allow them to successfully use
this toolbox for their varied purposes. Thus, to conclude, it is befitting to say that
all the work has been done to the best of my abilities and that working with this
toolbox has indeed been an enjoyable learning opportunity.

29

Appendix

Useful Links

� FOT GitHub repository :
https://github.com/FOSSEE/FOSSEE-Optimization-toolbox

� FOT Website :
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox

� FOT ATOMS page:
https://atoms.scilab.org/toolboxes/FOT/0.4.1/

� CUTE set of PrincetonLib:
http://gamsworld.org/performance/princetonlib/htm/group5stat.htm

� Comments given by CNES on FOT:
https:

//drive.google.com/file/d/1V6UCAuEsOfKPok-XplHusKmLUSYQ_AJg/view

� Documentation for Task 1:
https:

//drive.google.com/file/d/156fisfx4kcd8h4hCur0Dk-xbFrEy0yjb/view

� Work Spreadsheet for this Internship:
https://docs.google.com/spreadsheets/d/

1xaxIIrAdWMvkfjCuYhF9XRfF9t8APfEZa5BE-Ao2Lpc/edit#gid=0

� My GitHub Repository:
https://github.com/YasaAliRizvi/FOSSEE-Optimization-toolbox

30

https://github.com/FOSSEE/FOSSEE-Optimization-toolbox
https://scilab.in/fossee-scilab-toolbox/optimization-toolbox
https://atoms.scilab.org/toolboxes/FOT/0.4.1/
http://gamsworld.org/performance/princetonlib/htm/group5stat.htm
https://drive.google.com/file/d/1V6UCAuEsOfKPok-XplHusKmLUSYQ_AJg/view
https://drive.google.com/file/d/1V6UCAuEsOfKPok-XplHusKmLUSYQ_AJg/view
https://drive.google.com/file/d/156fisfx4kcd8h4hCur0Dk-xbFrEy0yjb/view
https://drive.google.com/file/d/156fisfx4kcd8h4hCur0Dk-xbFrEy0yjb/view
https://docs.google.com/spreadsheets/d/1xaxIIrAdWMvkfjCuYhF9XRfF9t8APfEZa5BE-Ao2Lpc/edit#gid=0
https://docs.google.com/spreadsheets/d/1xaxIIrAdWMvkfjCuYhF9XRfF9t8APfEZa5BE-Ao2Lpc/edit#gid=0
https://github.com/YasaAliRizvi/FOSSEE-Optimization-toolbox

References

[1] Andreas Wächter (Department of Industrial Engineering and Management
Sciences, Northwestern University) Stefan Vigerske (GAMS Software GmbH).
Ipopt overview. https://coin-or.github.io/Ipopt/index.html#Overview.
[Online; accessed 10-July-2021].

[2] Andreas Wächter (Department of Industrial Engineering and Management
Sciences, Northwestern University) Stefan Vigerske (GAMS Software GmbH).
Quasi-Newton approximation of second derivatives. https://coin-or.github.
io/Ipopt/SPECIALS.html#QUASI_NEWTON. [Online; accessed 10-July-2021].

[3] Hans D. Mittelmann (Arizona State University, Editor in-chief at
Performance World). Princeton Library of Nonlinear Programming Models.
http://gamsworld.org/performance/princetonlib/princetonlib.htm.
[Online; accessed 10-July-2021].

[4] Kannan M. Moudgalya (Department of Chemical Engineering, IIT Bombay
and PI, The Spoken Tutorial Project) Nancy Varkey (Content Creation Team
Head, The Spoken Tutorial Project). The Spoken Tutorial Project. https:

//spoken-tutorial.org/about-us/. [Online; accessed 10-July-2021].

31

https://coin-or.github.io/Ipopt/index.html#Overview
https://coin-or.github.io/Ipopt/SPECIALS.html#QUASI_NEWTON
https://coin-or.github.io/Ipopt/SPECIALS.html#QUASI_NEWTON
http://gamsworld.org/performance/princetonlib/princetonlib.htm
https://spoken-tutorial.org/about-us/
https://spoken-tutorial.org/about-us/

	Introduction
	Setting Up the Development Environment
	GNU/Linux
	Windows
	System Specifications

	Tasks assigned

	FOSSEE Optimization Toolbox
	Version Control
	Structure of the Toolbox

	Exploration of ``limited memory" option of Ipopt
	Description of the Task
	Contributions Made

	Fixing of Integer Constraints in fot_intlinprog
	Description of the Task
	Contributions Made

	Debugging FOT Spoken Tutorials
	Description of the Task
	Contributions Made

	Conclusion
	Useful Links

