

Semester-Long Internship Report

On

OpenFOAM GUI Development using Python
on Blender

 Submitted by

Rajdeep Adak
K J Somaiya College of Engineering,

University of Mumbai

Under the guidance of

Prof. Janani Muralidharan
Department of Mechanical Engineering

IIT Bombay

And

Prof. Prabhu Ramachandran
Department of Aerospace Engineering

IIT Bombay

October 13, 2021

Acknowledgment

The Semester Long Internship, at FOSSEE, IIT Bombay selects interns from all over India

based on performance in solving problems announced on their website. This ensures having

the best possible team and I am glad that Co-Intern Mr. Kartik Kumar Thakur (Computer

Science Engineering, Kalinga Institute of Industrial Technology, Bhubaneshwar) left no stone

unturned in delivering the same. It gives me immense pleasure to express my sincere gratitude

to Prof. Janani Muralidharan (Mechanical Engineering Dept. at IITB) for her valuable

guidance and perceptive insight into the CFD simulation process. I would also like to express

my indebtedness to Prof. Prabhu Ramachandran (Aerospace Engineering Dept. at IITB)

whose critique formulated the very structure of our project. Regular interaction with professors

ensured clarification of every concept required to strengthen our foundations. I highly value

the iterative process of development as it became instrumental to devise efficient solutions and

enabled Venturial to be a singular software for meshing and solving fluid flow problems.

During the development process, we were presented with a plethora of information from

FOSSEE CFD team members (Ashley Melvin and Divyesh Variya). They have been a source

of direct feedback to evaluate the capabilities of Venturial. Most visualization features of

Venturial are a result of suggestions from CFD team members. I would also like to extend my

gratitude to Mr. Ankit R. Javalkar (Software Engineer, IITB) who helped assimilate

fragments of important information from the preceding Reynolds software (by Mr. Deepak

Surti). I thank Mrs. Swetha Sridhar (Project Manager of FOSSEE at IITB) who ensured

timely completion of tasks with adequate adjustment of review meetings to assist interns in

remaining academically active. Throughout the project, our ideas were welcomed with alacrity

and commendations on achieving milestones were followed by encouragement to forge ahead.

I have developed an ardent admiration for FOSSEE’s initiative to promote learning with the

use of FLOSS (Free/Libre and Open Source Software) tools. I thank Prof. Kannan

Moudgalya (Chemical Engineering Dept. at IITB) and all associated members for bestowing

their knowledge and efforts in making such a venture possible.

Lastly, I hope our work has eased the process of CFD simulations with OpenFOAM. I am

grateful for the holistic internship experience at FOSSEE, IITB which remained highly

productive in WFH mode despite the appalling COVID pandemic. Skills gained during this

internship have been a boon to career development. I thereby offer prolonged support and

cooperation to FOSSEE and its future interns.

1

 Contents

Contents 1

List of Figures 3

List of Tables 4

Chapter 1 Introduction 5

Background 5

Related Work 5

Venturial 5

Objective 6

Approach 6

Scope of the Project 6

System Requirements 7

Report Organization 7

Chapter 2 Frontend UI 8

Solver File System 8

Meshing Criteria and Solving Criteria 8

Addressable Block Shapes 9

Blockmesh UI 10

Solver UI 11

Chapter 3 Backend Design 12

Add-on Architecture 12

Version History 13

Blockmesh Add-on Version History 13

Solver Add-on version History 13

Automation Features 14

Blockmesh Add-on 14

Solver Add-on 14

Edge Resize Tool 14

Visualization Handlers 15

Application Handlers 15

2

Draw Handlers 15

Dictionary Parsers 16

Blockmesh parser 16

Pyfoam ParsedParameterFile 16

Solver Parameter Schema 16

Chapter 4 Application Scenario Implementation 18

Blockmesh Add-on 18

n-block Geometry (FOSSEE pipe tutorial) 19

n-block Geometry creation on Blender 19

Dictionary Generation Steps 20

Results on Paraview 21

Chapter 5 Conclusion 22

Conclusion 22

In Development 22

Future Scope 23

Developer’s Note 23

References 24

3

List of Figures

Figure Description

Figure 1 Approach of blockmesh add-on

Figure 2 Solver Directory hierarchy

Figure 3 Meshing Flowchart

Figure 4 Design Geometry panel

Figure 5 6V Prism

Figure 6 8V hexahedron

Figure 7 Blockmesh Add-on UI

Figure 8 Solver Developer Add-on UI

Figure 9 Solver User Add-on UI

Figure 10 Blockmesh add-on architecture

Figure 11 Edge Resize tool

Figure 12 Display origin using handlers

Figure 13 Display Vertex number using handlers

Figure 14 Parameters added in solver add-on

Figure 15 Blockmesh Step by Step usage

Figure 16 N-blocks geometry creation

Figure 17 Rules for numbering vertices in OpenFOAM

Figure 18 Blockmesh Dictionary file generated from Blockmesh Add-on

Figure 19 Geometry on Paraview

4

List of Tables

Table Description

Table 1 Blockmesh add-on version history

Table 2 Solver add in version history

Table 3 Components of Blockmesh Add-on

Table 4 Components of Solver Add In

5

Chapter 1 Introduction

1.1 Background

OpenFOAM is a C++ based toolbox prominently used to solve fluid dynamics and heat transfer
problems using customizable solvers and pre-processing utilities (such as blockmesh and
snappyhexmesh). Post-Processing utilities allow solutions to be viewed graphically for

performance evaluation under various parameters. However, pre-processing and geometry
modelling via current methods requires the usage of multiple softwares, thorough knowledge
of meshing techniques, solving techniques and the OpenFOAM case-building procedure.
Reynolds, developed in 2016 at FOSSEE, IIT Bombay is a GUI add-on to Blender (a 3D open-

source computer graphics software) that has blockmesh and snappyhexmesh utilities for
solving. However, it was built for an older version of OpenFOAM and lacks the features
required to solve multi-block geometry problems. This serves as a baseline for our work.

1.2 Related Work

SwiftBlocks: SwiftBlocks is a Blender GUI add-on for the OpenFOAM® blockmesh utility,
which creates hexahedral block structured volume meshes for OpenFOAM simulations.

Reynolds-Blender: Reynolds-Blender is a reference implementation to demonstrate the

integration of pre-processing components from Reynolds to build a GUI for the pre-processing
steps of OpenFOAM.

1.3 Venturial

Venturial is a pair of add-ons to Blender designed by FOSSEE, IIT Bombay based on the
blockmesh utility of OpenFOAM to perform pre-processing, meshing, and solving multi-block
geometry fluid flow problems using a GUI. The 3D graphics development capabilities of
Blender are leveraged to generate blocks (fundamental units) that can be manipulated to build

a geometry. The blockmesh add-on has various panels that simplify meshing by a semi-
automated process to fetch information such as vertices, blocks, edges, and faces dynamically
from the geometry. Additional Geometry interaction features assist the user in mesh
visualization. A separate solver add-on has in-built and editable solvers inside a dedicated
solver directory. Opening a solver folder from this directory displays various sub-folders

containing parameter property files in a drop-down menu. Parameters of the selected file can
be edited using various editing options. Users can describe their own solvers by creating
parameters from the assigned parameter feature.

https://swiftblock.readthedocs.io/en/latest/swift.html
https://www.blender.org/
https://github.com/dmsurti/reynolds-blender
https://github.com/dmsurti/reynolds-blender
https://github.com/dmsurti/reynolds-blender

6

1.4 Objective

Venturial caters to the needs of new learners as well as experienced individuals. Hence building

algorithms to automate the process of meshing and solving to the farthest possible extent has

been given paramount importance. We intend for new learners to grasp various aspects of

solving fluid flow problems on OpenFOAM quickly and experienced individuals to experiment

with custom-built solvers. New learners can use automation features of Venturial to quickly

create blockmesh dictionary and parameter files without detailed knowledge of meshing and

solving techniques. These automation features have been built in accordance with the meshing

and solving rules of OpenFOAM. Additionally, visualization features have been developed

with minimal compute usage. Venturial is supported for OpenFOAMv8 and Blender v2.8+.

1.5 Approach

Venturial ensures the accurate and error-free generation of a solver case directory since

OpenFOAM has a stringent set of validity constraints for meshing. The meshing approach

followed in Venturial is building a geometry using blocks only available in the GUI. Blender

as a python module has been used to develop Venturial as it bundles programmable 3D

graphical blocks with a GUI. Hence, it reduces the effort of calculating geometry information

and removes the dependency on separate physical modeling software. Post-processing can be

done on Paraview once the solver case directory has been generated accurately.

Figure 1: Approach of blockmesh add-on

1.6 Scope of the Project

The blockmesh add-on in its current state can produce a blockmesh dictionary for multi-block

geometries via a combination of user-based input and automatic features. The solver add-on is,
however, limited to files with only single-line parameters. Visualization features use custom
blender handlers to display important information about the geometry to the user. Both add-
ons have a help section that documents the purpose of each feature. The default UI contains

features necessary for file generation. Every panel has an advanced section that displays the
visualization features when enabled.

7

1.7 System Requirements

● Blender 2.8+: For using the GUI add-on.

● PyFoam 0.6.8.1: ParsedParameterFile helps in parsing.

● OpenFOAMv8: Required to run simulations.

● User device that meets hardware requirements for Blender and OpenFOAM.

1.8 Report Organization

Chapter 1 introduces the idea of performing OpenFOAM CFD simulations using a GUI and
previous work done for the same. 2nd Chapter mentions all parts of the Frontend aspects of the

GUI pair. Architecture, Automation feature logic and version history milestones are detailed
in the 3rd Chapter. For users intending to quickly begin using the add-on, Chapter 4 provides
a step-by-step guide to solve a CFD problem (pipe flow simulation). Post-processing results
on Paraview are also presented. All results are produced solely via the add-on and no text

editing has been performed throughout the process.

8

Chapter 2 Frontend UI

2.1 Solver File System

 Figure 2: Solver Directory hierarchy

Venturial is intended to be developed with a library of pre-built solvers developed by the CFD
Team at FOSSEE, IIT Bombay. Each solver will have a file structure mentioned in figure 2.

The library of solvers will be a Solver Directory (as shown in figure 2) with a folder dedicated
to each solver. The solvers within this library are readable and editable by the solver add-on.
Any user can open the solver add-on and select their desired solver.

2.2 Meshing Criteria and Solving Criteria

Figure 3: Meshing Flowchart

Currently, Venturial consists of blockmesh add-on and Solver Add-on separately (see above

diagram). Users can use the same blender instance to run both the add-ons side-by-side. A

9

separate add-on for blockmesh was built to segregate geometry design steps from Solver steps.
However, the case directory files are generated in the same solver directory. The diagram above
is an overview of the case directory formation procedure. Blockmesh add-on has error handling

to display pop-ups when a mistake is identified by the software. Solver add-on restricts the user
to only use parameters of pre-defined data types (Integer, Float, Boolean, and List). This
eliminates the need for a text-based schema file. Users are provided with several editing options
required to make changes to the parameter file and save/update them at any time.

2.3 Addressable Block Shapes

Figure 4: Design Geometry panel

Within the Design Geometry Panel, a user can select among two shapes of blocks.

Figure 5: 6V Prism Figure 6: 8V hexahedron

8V Cube: A 3D shape consisting of 6 square planes (faces) each side of which is 2 meters in
length, 12 edges and 8 vertices.

6V Prism: A 3D shape with a prism angle less than 5 degrees, 6 vertices, 9 edges and 5 faces.

These blocks can be edited in shape, size and orientation to create a desired shape within the

following constraints:

a) The resultant block after editing in either case must retain the same number of edges,

vertices and faces.

b) No face should be non-planar. Blender doesn’t identify if a face has become non-planar

during editing. Such a face will have at least one extra edge. Blockmesh utility simply

calculates a face by the position of its vertices and the new edge isn’t taken into account.

10

Currently, Venturial doesn’t have a feature to identify if a face has become non-planar during
editing of blocks.

2.4 Blockmesh UI

Blockmesh UI consists of 7 floating and

hideable panels. By default, they appear

in the standard order. Initiating a

dictionary creates an empty blockmesh

dictionary which acts as a workspace

editable upon interaction with the UI.

The Design geometry section has features

which summon eligible blocks into the

viewport. Manipulating structure and

orientation of the blocks are at the user’s

discretion. For this, Blender provides an

array of simple shortcuts available here.

This section is also used to name and

build the final geometry. “Building” a

geometry here means to join all selected

blocks sharing at least one edge and

remove common vertices, edges and

faces.

The next four panels are the sections of a

blockmesh dictionary which describe the

geometry in a “text” form interpretable by

OpenFOAM. Users can interact with the

geometry and the UI to populate the

blockmesh dictionary. Each of the four

panels also have visualization features.

The Fill Dictionary section is used to

update the blockmesh dictionary upon

clicking the Add Lists to Dictionary

button.

The Blockmesh UI acts as a palette to

deliver information to the blockmesh

dictionary dynamically.

 Figure 7: Blockmesh Add-on UI

https://download.blender.org/documentation/BlenderHotkeyReference.pdf

11

2.5 Solver UI

Developer Add-on:

● Set File structure for Case Directory:

Contains the directory to the template folder and

options to select the file that needs to be edited.

● Edit Label: Contains all the required options

to add new parameters.

● Property: Type of parameter

● Assign: Adds the parameter to the list

● Remove: removes the selected parameter

from the list

● Edit File: Contains the list of added

parameters with their values and checkbox to

select them

● Save: Creates the template in the templates

folder with all parameters added to it.

Figure 8: Solver Developer Add-on UI

User Add-on:

● Set File structure for Case Directory:

Contains the directory to the case folder and

options to select the file that needs to be created.

● Edit File: Contains all the parameter files for

the user to manipulate values.

● Save: Saves the file to the desired location

Figure 9: Solver User Add-on UI

12

Chapter 3 Backend Design

3.1 Add-on Architecture

 Figure 10: Blockmesh add-on architecture

The above diagram depicts the interaction capabilities of various nodes with the User.
A Viewport Node is an in-built feature of blender which allows manipulation of structure,
position, and orientation of 3D objects (blocks) by simple mouse clicks and drag.
An item feature node is a set of all in-built Blender options for any modifications necessary.

The GUI node consists of two add-ons which receive commands independently from the user.
Based on the commands the GUI node can invoke storage privileges from Dynamic Memory
and Permanent Memory of the device.
A Keymap Node is used to track a special identifiable Keyboard event for performing a

geometry edge length edit function. It expects a Keyboard event (shift + F) to open up a dialog
box for user input. The required change in edge length is then communicated over a
unidirectional message bus. Changes executed will be reflected on the Viewport.
Draw Function Node is a set of visualization handler features which ships with the add-on.

They can be enabled/disabled from the add-on interface. Inter-communication of various nodes
occurs on the basis of the direction type of message bus. For example: to enable a Draw
Function Node for observing data of geometry graphically on the Viewport, a command must
be given to the GUI Node via a mouse event. The GUI Node then sends a response to the

Master Node to enable the appropriate Visualization Handler. The Visualization Handler will
produce required data over the Viewport UI by sending the data over a unidirectional message
bus.
Venturial comprises the GUI Node, Item Feature Node, Keymap Node and Draw Function

Node. Remaining Nodes are already present in Blender.

13

3.2 Version History

The blockmesh add-on and solver add-on of Venturial have been developed separately through
continuous iterations. Critique and demands of CFD FOSSEE Team have been addressed based
on priority of each feature present in the add-ons. Over a span of 5 months blockmesh add-on

has been revised 32 times and solver add-on has been revised 7 times. During each of these
revisions, a new feature has been added. As OpenFOAM requires a text based directory system,
Venturial follows a method to dynamically edit text files based on user interactions with
geometry. Each version has been built with the intention of minimizing the need to directly edit

a text file. The following tables mentions the major milestones achieved by consequent
revisions of blockmesh add-on and solver add-on versions.

3.2.1 Blockmesh Add-on Version History

Blockmesh Add-on

Version Milestone

Version 1 Add vertices section manually

Version 2 Add vertices section manually and automatically

Version 4 Add Blocks section manually

Version 5 Add Edges Section

Version 8 Add Faces section

Version 9 Separate section for geometry design

Version 12 Multiple features added for geometry section

Version 13 Added vertex visualization handler

Version 14 Added Block visualization handler, Save dictionary button

Version 16 Built Magicblocks feature and integrated to blockmesh add-on.

Version 19 Built advanced section for experienced users

Version 21 Added reference axes, Error handling and pop-ups

Version 24 Added Keymap feature for editing edge

Version 25 Added set cells feature

Version 28 New Look for GUI

Version 30 Advanced section modified to icons only buttons

Version 31 Help section added

Table 1: Blockmesh add-on version history

3.2.2 Solver Add-on Version History

Solver Add-on

Version Milestone

 Version 1 Adding variables to a scene using a button

 Version 3 Created method to select file

 Version 4 Created Developer add-on

 Version 5 Multiple editing options built

 Version 6 User Add-on

Table 2: Solver add in version history

14

3.3 Automation Features

The automation features of Venturial are primarily meant for new learners of CFD but the
original purpose is to reduce time and effort required to write a blockmesh dictionary. All
automation features can also be used by advanced users. As OpenFOAM follows unique vertex

indexing criteria for a geometry, algorithms were designed to automate writing various sections
of blockmesh. Vertex indexing for 3D objects in Blender do not follow the same criteria in
OpenFOAM. Hence, the following features were built to seamlessly generate the required case
directory file system with minimum effort from the user side.

3.3.1 Blockmesh Add-on

Blockmesh Add-on Method

Add/Update vertices One click to add/update all vertices

Add to Viewport One-click to add all required blocks to Viewport

Merge Blocks One-click to remove all common faces, edges and vertices

Magic Blocks One-click to add all blocks to a geometry

Keymap Shift + F

Table 3: Components of Blockmesh Add-on

3.3.2 Solver Add-on

Solver Add-on Method

Fill Blockmesh Dictionary One click to add or update a blockmesh

Assign One click to add a single parameter to file

Update Update selected parameter

Insert Insert a new parameter at desired location

Remove Remove a parameter

Clear Clear all parameters

Table 4: Components of Solver Add-on

3.4 Edge Resize Tool

To resize the edges of a geometry a
utility tool has been added. On clicking

SHIFT+F a pop up menu will appear
with the help of which, an edge can be
resized.

 Figure 11: Edge Resize tool
There are 2 options for resizing:

15

● Resize from center: It scales the vertex keeping the central point fixed

● Resize from Vertex: It scales the edge keeping one vertex of the edge fixed. The vertex to

be fixed can be chosen.

3.5 Visualization Handlers

A Handler in Blender executes a function to update scene data on the basis of a predefined
condition. Conditions can be predefined or user-defined. Venturial uses 2 types of handlers
namely Application Handler and Draw Handlers.

3.5.1 Application Handlers

An Application Handler is used to display the reference axis of each block before and after a

geometry is built. Upon adding a new block into viewport reference axes are also drawn to

indicate the orientation of the block. The reference axes are parented to the 0th vertex of the

block. But parenting to a vertex doesn’t allow the same change in orientation. In order to keep

the orientation same as well an application handler is used which constantly equalizes the orientation

of the reference axes and the blocks. To make sure this occurs in the most efficient way, a dependency graph

update application handler is used.

Application Handler usage:

def app_handler_function(scene):

 # Do something

register():
bpy.app.handlers.depsgraph_update_post.append

(app_handler_function)

unregister():
bpy.app.handlers.depsgraph_update_post.remove

(app_handler_function)

 Figure 12: Display origin using handlers

The figure above shows an 8V cube where its shape has been edited within constraints and orientation change

of block and reference axes remain the same.

3.5.2 Draw Handlers

The purpose of Draw Handlers is to help users visualize properties of a geometry in the
Viewport. Draw Handler and the font drawing module are used in conjunction to display
information in font style specified within the draw function. The draw function is passed as an
argument to the draw handler. The draw handler calls the function whenever a change is

observed in the scene. This causes a rise in CPU usage but only momentarily during scene
change. Once scene data is drawn CPU usage returns to normal.

Draw Handler Usage:

def draw_handler_function():

#Do something

bpy.types.SpaceView3D.draw_handler_add

(disp_vco_list, (bpy.context, None), 'WINDOW', 'POST_PIXEL')

Figure 13: Display Vertex number using handlers

16

The figure above displays vertex coordinates and indices drawn on the viewport using a draw
handler.

3.6 Dictionary Parsers

To convert the data to a OpenFOAM readable format it must be parsed to a dictionary file. For
that 2 types of parser have been used.

3.6.1 Blockmesh parser

This is used in the Blockmesh add-on, when clicked on Add lists to dictionary, all the data

present in the add-on is first saved into a JSON file which is stored as a data block inside
blender’s memory and from there is it parsed into the blockmesh dictionary in a OpenFOAM
readable format.
JSON data block is used for the persistent storage of geometric data inside blenders memory

as the geometric data could be required in some case file

3.6.2 Pyfoam ParsedParameterFile

This is used in the solver add-on which utilizes Pyfoam’s ParsedParameterFile to read and
parse data into OpenFOAM readable dictionaries. It is also used to generate templates for case

files that are used by the User Solver Add-on.

3.7 Solver Parameter Schema

To remove the need for drafting a schema file for every solver, the solver add-on uses dynamic
memory to generate a schema within a UI List Table. As UI Lists are easily editable, they are

used to preserve and edit schema information during an active instance of blender. The
developers only panel in the solver add-on is a way for developers to view the schema in which
file parameter information is stored. The solver add-on however doesn’t allow users to view
this panel. At a time only one solver can be viewed/edited. As Venturial uses a dynamic

memory, schema information will be lost if not saved. If a saved solver is viewed, Venturial
will read schema information to display solver parameters on the Solver add-on.

17

Figure 14: Parameters added in solver add-on

In figure 14, 3 parameters have been added using the solver add-on. The developers only panel
displays the schema information in a UI List of 3 columns in the following format:

parameter name parameter type parameter properties

Parameter name, type and properties are added from the Edit Label Panel above the Edit File
Panel.
Parameter properties are stored in the following manner:

integer minimum/;maximum/;default

float minimum/;maximum/;default

boolean default

List Options Option1/;Option2/;…… and so on

18

Chapter 4 Application Scenario
Implementation

4.1 Blockmesh Add-on

Step: 1 Mention Dictionary name and location. Step:2 Select Block type and click Add

to Viewport

Figure 15: Blockmesh Step by Step usage

Step 3: Name the block and

click on Assign Name while

the geometry is selected in

the Viewport

Step 4: Click on Add/Update

Vertices button to add all the

vertices belonging to the

block directly.

Step 5: Click on Merge
Blocks while the
geometry is selected.
Click on Magic Blocks to

view block information in
Block Panel.

Step 6: Select an Edge
type and number of
interpolation points.
Select any two vertices of
an edge and click on the

add edges button.

Step 7: Name faces or

group of faces and click on
Add Faces to append Face
list.
Step 8: Select a face type

from the drop down for

each face or group of face.

Step 9: Once all

blockmesh data is
confirmed, click on Add
Lists to Dictionary to
create a new blockmesh or

update blockmesh.

19

4.2 n-block Geometry (FOSSEE pipe tutorial)

Please visit this link to see a video tutorial on n-block geometry design on Blender and
blockmesh file generation using blockmesh add-on.

4.2.1 n-block Geometry creation on Blender

To create a geometry with n number of blocks in blender the following steps can be used:
Step 1: With the add-on loaded and dictionary initialized, enter n in Number of blocks in the

design geometry panel then click on add to viewport.
Step 2: The blocks should be visible on the viewport, now enable snapping and choose vertex
mode in blender.
Step 3: Now the blocks can be arranged to block the geometry required. Once a block is brought

close to another block it should snap together in place.
Step 4: To change the size of an edge press on TAB to go to the edit mode and click on the
edge that needs to be resized then Press Shift +F on keyboard to bring up the edge resize menu.
Now the edge length can be changed as required.

Step 5: Once the required geometry is made switch back to object mode and click on Merge
blocks to merge all the blocks as one object.

 Figure 16: N-blocks

geometry creation

To add vertices to blocks
manually, enable advanced
options in the add blocks section

and then select the vertices in the
order given in Figure 16 and then
click on add block.

 Figure 17 (a)

https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZNI3ppKOatZY0_/view?usp=sharing

20

Figure 17a and 17b: Rules for numbering vertices in OpenFOAM

4.2.2 Dictionary Generation Steps

To create a new parameter file in developer Add-on (Developer Add-on):

● A basic template of a new parameter with a header is created and placed in the templates

folder of the add-on.

● The templates folder of the User Add-on is chosen for the Case Directory.

● The template file which needs to be edited is selected.

● On clicking add Lists to Dictionary button, the dictionary is loaded in memory

● In the edit label section new parameters can be added.

● In the property type, the type of parameter needs to be selected and then the name of the

parameter including some metadata is to be defined.

● Click on assign and it should be visible on the Edit File panel.

● New parameters can be added or old ones removed from this panel.

● Once all the parameters have been added to the Edit File section, Click on Save. This will

add the template to the user add-on directory with all the required metadata.

To use the user add-on for changing values of parameters (User Add-on)-

● With the add-on installed, navigate to the add-on panel

● Select the directory where the simulation files are.

● Select the solver type and the dictionary which needs to be created.

● Click on Add Lists to Dictionary to load the parameters.

● The parameters will be visible on the edit file section. Change the values as required.

● Click on save to save the final dictionary to the case Directory.

21

Figure 18: Blockmesh Dictionary file generated from Blockmesh Add-on.

4.3 Results on Paraview

Edge arcs were added to create a customized 8V cube to the following shape using the Add

Edges Panel.

Figure 19: Geometry on Paraview

22

Chapter 5 Conclusion

5.1 Conclusion

Geometry design capabilities of Blender are used in conjunction with a GUI to integrate the
process of geometry modelling and text file generation all within the same software with
graphical visualization of geometry and a GUI to edit parameters removing the need to
manually edit OpenFOAM files.

5.2 In Development

Both the add-ons are fully functional to serve their purpose but more visualization capabilities,
hotkeys for geometry modelling and automation features are under development to aid faster
file generation without manually editing any text.

a) Edge Length Viewing Handler: Select an edge to view its length on Viewport by

enabling a checkbox in Add Edge Panel.

b) Edge Length Text Size : Enlarge or reduce size of Edge length text.

c) Face Name Viewing Handler: View name of selected Face from Add Face panel on

the Viewport.

d) Face Name Text Size : Enlarge or reduce size of Face name text.

e) Face Color Checkbox: Enable this checkbox to view geometry with colored faces. By

default, colors are randomly assigned to the face/group of faces. A color template for

each face/group of faces in the face list is already assigned. However, a checkbox to

enable viewing colored faces on viewport is under development.

f) Collate Option for Edges : Collates all edge panels together as blockmesh mentions all

types of edges within the geometry under the same section.

g) Help Box: A dialog box appears when the Help button is clicked beside each Panel.

Information within this dialog box provides documentation on usage of Panel features.

h) Editing of Geometry after Build: The Merge Block feature builds geometry by

removing common vertices, edges and faces without remembering them. Hence blocks

must be merged only when geometry is finalized. Amending this stipulation is currently

under development and a revision of Merge Blocks will enable editing of geometry

even after blocks are merged.

i) Free motion of geometry: Rotation and Translation of Geometry is disabled and

viewing is done by changing user view perspective.

j) Hotkeys for Geometry Editing: Currently blockmesh add-on consists of only one

hotkey built with a Keymap for editing the length of an edge. More hotkeys are under

development to aid editing of geometry.

k) Vertex Snapping: Currently, users can snap blocks to nearby vertices by enabling snap

by vertex feature which is in-built in Blender. This requires the user to remain informed

about the snapping feature without which joining blocks isn’t convenient. A one-click

snapping feature within the add-on can help users identify this feature as it can be

documented as well.

23

l) Mergepatchpairs : blockmesh add-on in its current state doesn’t support flow problems

that require mergepatchpairs.

m) Singular Add-on Structure : The blockmesh add-on and solver add-on are intended to

be merged in later versions and are currently separate for ease of development.

n) Advanced Set Cells : Within the meshing rules two blocks sharing a common edge

must have the same number of cells along the common edge. Venturial doesn’t identify

if two blocks share one or more than one edge. Hence, the user has to be aware of

OpenFOAM set cells rules. Identification of blocks sharing at least one edge is currently

being developed. Number of cells along a particular axis for two blocks sharing at least

one common edge will automatically be equalized.

o) Assigning Nested Parameters : Some OpenFOAM files have one or more parameters

nested within a single parameter. Solver add-on has an Assign button which can assign

only single-line parameters upon button click. Thus Venturial can generate files like

control parameter files easily. Addressing Nested Parameters is integral to the

generation of discretisation schemes file, equation solvers file etc. and is currently our

top priority in the development process.

p) Time Directory Files (Velocity Field, Pressure Field etc.): Some time directory files

acquire information from blockmesh and data can either be initial values or boundary

conditions which a user has to specify. A panel for these files is also a prioritized task

under development.

q) Error Checklist for Solver Add-on will be assigned based on inputs from the CFD

team to prevent errors during the solving process.

5.3 Future Scope

The Reynolds Add-on has a User interface for both blockmesh and snappyhexmesh utilit ies
but provides support to solve a single fluid flow problem using blockmesh. Venturial doesn’t
support snappyhexmesh utility but envisions to provide users with full support to blockmesh
for all levels of skill. As Venturial is yet to be released as a stable version, major ensuing tasks

involve repetitive testing and revision based on direct feedback from CFD Team. Further
developmental tasks are to present blockmesh or snappyhexmesh as an option for utility choice.
As Venturial is a project under FOSSEE, it is built with the intention to help promote usage in
academia and research. For this purpose, detailed standard operating procedure, tutorial videos,

version control and documentation will be made available for the users.

5.4 Developer’s Note

The development team of FOSSEE Blender and Python Interns are always available for
support. As Venturial is open-source community-centric software we welcome feedback from

our users and work backwards to cater to their needs. This process of development has been
followed since the very beginning of the project. We will also be delighted to know if Venturial
has aided the learning process of people novice to CFD.
Lastly, we ardently hope that Venturial can become a reliable alternative to aid in performing

OpenFOAM CFD simulations.

24

References

CFD FOSSEE https://cfd.fossee.in/home

Blender https://www.blender.org/

OpenFoam https://openfoam.org/

Reynolds-Blender https://github.com/dmsurti/reynolds-blender

SwiftBlocks https://swiftblock.readthedocs.io/en/latest/swift.html

Vertex Ordering
Blockmesh

https://www.openfoam.com/documentation/user-guide/4-
mesh-generation-and-conversion/4.3-mesh-generation-with-

the-blockmesh-utility

PyFoam https://pypi.org/project/PyFoam/

N-Block geometry

using Venturial

https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZ

NI3ppKOatZY0_/view?usp=sharing

https://cfd.fossee.in/home
https://www.blender.org/
https://openfoam.org/
https://github.com/dmsurti/reynolds-blender
https://swiftblock.readthedocs.io/en/latest/swift.html
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://pypi.org/project/PyFoam/
https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZNI3ppKOatZY0_/view?usp=sharing
https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZNI3ppKOatZY0_/view?usp=sharing

	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Venturial
	1.4 Objective
	1.5 Approach
	1.6 Scope of the Project
	1.7 System Requirements
	1.8 Report Organization

	Chapter 2 Frontend UI
	2.1 Solver File System
	2.2 Meshing Criteria and Solving Criteria
	2.3 Addressable Block Shapes
	2.4 Blockmesh UI
	2.5 Solver UI

	Chapter 3 Backend Design
	3.1 Add-on Architecture
	3.2 Version History
	3.2.1 Blockmesh Add-on Version History
	3.2.2 Solver Add-on Version History

	3.3 Automation Features
	3.3.1 Blockmesh Add-on
	3.3.2 Solver Add-on

	3.4 Edge Resize Tool
	3.5 Visualization Handlers
	3.5.1 Application Handlers
	3.5.2 Draw Handlers

	3.6 Dictionary Parsers
	3.6.1 Blockmesh parser
	3.6.2 Pyfoam ParsedParameterFile

	3.7 Solver Parameter Schema

	Chapter 4 Application Scenario Implementation
	4.1 Blockmesh Add-on
	4.2 n-block Geometry (FOSSEE pipe tutorial)
	4.2.1 n-block Geometry creation on Blender
	4.2.2 Dictionary Generation Steps

	4.3 Results on Paraview

	Chapter 5 Conclusion
	5.1 Conclusion
	5.2 In Development
	5.3 Future Scope
	5.4 Developer’s Note

	References

