
Semester-Long Internship Report
On

OpenFOAM GUI Development using Python on
Blender

Submitted by

Kartik Kumar Thakur
Kalinga Institute of Industrial Technology,

Bhubaneswar.

Under the guidance of

Prof. Janani Muralidharan
Department of Mechanical Engineering

IIT Bombay

And

Prof. Prabhu Ramachandran
Department of Aerospace Engineering

IIT Bombay

Acknowledgment

The Semester Long Internship, at FOSSEE, IIT Bombay selects interns from all over India
based on performance in solving problems announced on their website. This ensures having
the best possible team and I am glad that Co-Intern Mr. Rajdeep Adak (B. Tech in
Electronics and Telecommunication Engineering.K J Somaiya College of Engineering,
University of Mumbai) left no stone unturned in delivering the same. It gives me immense
pleasure to express my sincere gratitude to Prof. Janani Muralidharan (Mechanical
Engineering Dept. at IITB) for her valuable guidance and perceptive insight into the CFD
simulation process. I would also like to express my indebtedness to Prof. Prabhu
Ramachandran (Aerospace Engineering Dept. at IITB) whose critique formulated the very
structure of our project. Regular interaction with professors ensured clarification of every
concept required to strengthen our foundations. I highly value the iterative process of
development as it became instrumental to devise efficient solutions and enabled Venturial to
be a singular software for meshing and solving fluid flow problems. During the development
process, we were presented with a plethora of information from FOSSEE CFD team members
(Ashley Melvin and Divyesh Variya). They have been a source of direct feedback to
evaluate the capabilities of Venturial. Most visualization features of Venturial are a result of
suggestions from CFD team members. I would also like to extend my gratitude to Mr. Ankit
R. Javalkar (Software Engineer, IITB) who helped assimilate fragments of important
information from the preceding Reynolds software (by Mr. Deepak Surti). I thank Mrs.
Swetha Sridhar (Project Manager of FOSSEE at IITB) who ensured timely completion of
tasks with adequate adjustment of review meetings to assist interns in remaining
academically active. Throughout the project, our ideas were welcomed with alacrity and
commendations on achieving milestones were followed by encouragement to forge ahead.

I have developed an ardent admiration for FOSSEE’s initiative to promote learning with the
use of FLOSS (Free/Libre and Open Source Software) tools. I thank Prof. Kannan
Moudgalya (Chemical Engineering Dept. at IITB) and all associated members for bestowing
their knowledge and efforts in making such a venture possible.

Lastly, I hope our work has eased the process of CFD simulations with OpenFOAM. I am
grateful for the holistic internship experience at FOSSEE, IITB which remained highly
productive in WFH mode despite the appalling COVID pandemic. Skills gained during this
internship have been a boon to career development. I thereby offer prolonged support and
cooperation to FOSSEE and its future interns.

Contents

Contents 1

List of Figures 3

List of Tables 4

Chapter 1 Introduction 5

Background 5

Related Work 5

Venturial 5

Objective 6

Approach 6

Scope of the Project 6

System Requirements 7

Report Organization 7

Chapter 2 Frontend UI 8

Solver File System 8

Meshing Criteria and Solving Criteria 8

Addressable Block Shapes 9

Blockmesh UI 10

Solver UI 11

Chapter 3 Backend Design 12

Add-on Architecture 12

Version History 13

Blockmesh Add-on Version History 13

Solver Add-on version History 13

Automation Features 14

Blockmesh Add-on 14

Solver Add-on 14

Edge Resize Tool 14

1

Visualization Handlers 15

Application Handlers 15

Draw Handlers 15

Dictionary Parsers 16

Blockmesh parser 16

Pyfoam ParsedParameterFile 16

Solver Parameter Schema 16

Chapter 4 Application Scenario Implementation 18

Blockmesh Add-on 18

n-block Geometry (FOSSEE pipe tutorial) 19

n-block Geometry creation on Blender 19

Dictionary Generation Steps 20

Results on Paraview 21

Chapter 5 Conclusion 22

Conclusion 22

In Development 22

Future Scope 23

Developer’s Note 23

References 24

2

List of Figures

Figure Description

Figure 1 Approach of blockmesh add-on

Figure 2 Solver Directory hierarchy

Figure 3 Meshing Flowchart

Figure 4 Design Geometry panel

Figure 5 6V Prism

Figure 6 8V hexahedron

Figure 7 Blockmesh Add-on UI

Figure 8 Solver Developer Add-on UI

Figure 9 Solver User Add-on UI

Figure 10 Blockmesh add-on architecture

Figure 11 Edge Resize tool

Figure 12 Display origin using handlers

Figure 13 Display Vertex number using handlers

Figure 14 Parameters added in solver add-on

Figure 15 Blockmesh Step by Step usage

Figure 16 N-blocks geometry creation

Figure 17 Rules for numbering vertices in OpenFOAM

Figure 18 Blockmesh Dictionary file

Figure 19 Geometry on Paraview

3

List of Tables

Table Description

Table 1 Blockmesh add-on version history

Table 2 Solver add in version history

Table 3 Components of Blockmesh Add-on

Table 4 Components of Solver Add In

4

Chapter 1 Introduction

1.1 Background

OpenFOAM is a C++ based toolbox prominently used to solve fluid dynamics and heat
transfer problems using customizable solvers and pre-processing utilities (such as blockmesh
and snappyhexmesh). Post-Processing utilities allow solutions to be viewed graphically for
performance evaluation under various parameters. However, pre-processing and geometry
modelling via current methods requires the usage of multiple softwares, thorough knowledge
of meshing techniques, solving techniques and the OpenFOAM case-building procedure.
Reynolds, developed in 2016 at FOSSEE, IIT Bombay is a GUI add-on to Blender (a 3D
open-source computer graphics software) that has blockmesh and snappyhexmesh utilities for
solving. However, it was built for an older version of OpenFOAM and lacks the features
required to solve multi-block geometry problems. This serves as a baseline for our work.

1.2 Related Work

SwiftBlocks: SwiftBlocks is a Blender GUI add-on for the OpenFOAM® blockmesh utility,
which creates hexahedral block structured volume meshes for OpenFOAM simulations.

Reynolds-Blender: Reynolds-Blender is a reference implementation to demonstrate the
integration of pre-processing components from Reynolds to build a GUI for the
pre-processing steps of OpenFOAM.

1.3 Venturial

Venturial is a pair of add-ons to Blender designed by FOSSEE, IIT Bombay based on the
blockmesh utility of OpenFOAM to perform pre-processing, meshing, and solving
multi-block geometry fluid flow problems using a GUI. The 3D graphics development
capabilities of Blender are leveraged to generate blocks (fundamental units) that can be
manipulated to build a geometry. The blockmesh add-on has various panels that simplify
meshing by a semi-automated process to fetch information such as vertices, blocks, edges,
and faces dynamically from the geometry. Additional Geometry interaction features assist the
user in mesh visualization. A separate solver add-on has in-built and editable solvers inside a
dedicated solver directory. Opening a solver folder from this directory displays various
sub-folders containing parameter property files in a drop-down menu. Parameters of the
selected file can be edited using various editing options. Users can describe their own solvers
by creating parameters from the assigned parameter feature.

5

https://swiftblock.readthedocs.io/en/latest/swift.html
https://www.blender.org/
https://github.com/dmsurti/reynolds-blender

1.4 Objective

Venturial caters to the needs of new learners as well as experienced individuals. Hence
building algorithms to automate the process of meshing and solving to the farthest possible
extent has been given paramount importance. We intend for new learners to grasp various
aspects of solving fluid flow problems on OpenFOAM quickly and experienced individuals
to freely experiment with custom-built solvers. New learners can use automation features of
Venturial to quickly create blockmesh dictionary and parameter files without detailed
knowledge of meshing and solving techniques. These automation features have been built in
accordance with the meshing and solving rules of OpenFOAM. Additionally, visualization
features have been developed with minimal compute usage. Venturial is supported for
OpenFOAMv8 and Blender v2.8+.

1.5 Approach

Venturial ensures the accurate and error-free generation of a solver case directory since
OpenFOAM has a stringent set of validity constraints for meshing. The meshing approach
followed in Venturial is building a geometry using blocks only available in the GUI. Blender
as a python module has been used to develop Venturial as it bundles programmable 3D
graphical blocks with a GUI. Hence, it reduces the effort of calculating geometry information
and removes the dependency on separate physical modeling software. Post-processing can be
done on Paraview once the solver case directory has been generated accurately.

Figure 1: Approach of blockmesh add-on

1.6 Scope of the Project

The blockmesh add-on in its current state can produce a blockmesh dictionary for multi-block
geometries via a combination of user-based input and automatic features. The solver add-on
is, however, limited to files with only single-line parameters. Visualization features use
custom blender handlers to display important information about the geometry to the user.

6

Both add-ons have a help section that documents the purpose of each feature. The default UI
contains features necessary for file generation. Every panel has an advanced section that
displays the visualization features when enabled.

1.7 System Requirements

● Blender 2.8+: For using the GUI add-on.
● PyFoam 0.6.8.1: ParsedParameterFile helps in parsing.
● OpenFOAMv8: Required to run simulations.
● User device that meets hardware requirements for Blender and OpenFOAM.

1.8 Report Organization

Chapter 1 introduces the idea of performing OpenFOAM CFD simulations using a GUI and
previous work done for the same. 2nd Chapter mentions all parts of the Frontend aspects of
the GUI pair. Architecture, Automation feature logic and version history milestones are
detailed in the 3rd Chapter. For users intending to quickly begin using the add-on, Chapter 4
provides a step-by-step guide to solve a CFD problem (pipe flow simulation).
Post-processing results on Paraview are also presented. All results are produced solely via the
add-on and no text editing has been performed throughout the process.

7

Chapter 2 Frontend UI

2.1 Solver File System

Figure 2: Solver Directory hierarchy

Venturial is intended to be developed with a library of pre-built solvers developed by the
CFD Team at FOSSEE, IIT Bombay. Each solver will have a file structure mentioned in
figure 2. The library of solvers will be a Solver Directory (as shown in figure 2) with a folder
dedicated to each solver. The solvers within this library are readable and editable by the
solver add-on. Any user can open the solver add-on and select their desired solver.

2.2 Meshing Criteria and Solving Criteria

Figure 3: Meshing Flowchart

8

Currently, Venturial consists of blockmesh add-on and Solver Add-on separately (see above
diagram). Users can use the same blender instance to run both the add-ons side-by-side. A
separate add-on for blockmesh was built to segregate geometry design steps from Solver
steps. However, the case directory files are generated in the same solver directory. The
diagram above is an overview of the case directory formation procedure. Blockmesh add-on
has error handling to display pop-ups when a mistake is identified by the software. Solver
add-on restricts the user to only use parameters of pre-defined data types (Integer, Float,
Boolean, and List). This eliminates the need for a text-based schema file. Users are provided
with several editing options required to make changes to the parameter file and save/update
them at any time.

2.3 Addressable Block Shapes

Figure 4: Design Geometry panel

Within the Design Geometry Panel a user can select among two shapes of blocks.

Figure 5: 6V Prism Figure 6: 8V hexahedron

8V Cube: A 3D shape consisting of 6 square planes (faces) each side of which is 2 meters in
length, 12 edges and 8 vertices.

6V Prism: A 3D shape with a prism angle less than 5 degrees, 6 vertices, 9 edges and 5 faces.

These blocks can be edited in shape, size and orientation to create a desired shape within the
following constraints:

a) The resultant block after editing in either case must retain the same number of edges,
vertices and faces.

9

b) No face should be non-planar. Blender doesn’t identify if a face has become
non-planar during editing. Such a face will have at least one extra edge. Blockmesh
utility simply calculates a face by the position of its vertices and the new edge isn’t
taken into account.

Currently, Venturial doesn’t have a feature to identify if a face has become non-planar during
editing of blocks.

2.4 Blockmesh UI

Blockmesh UI consists of 7 floating and
hideable panels. By default, they appear
in the standard order. Initiating a
dictionary creates an empty blockmesh
dictionary which acts as a workspace
editable upon interaction with the UI.

The Design geometry section has
features which summon eligible blocks
into the viewport. Manipulating structure
and orientation of the blocks are at the
user’s discretion. For this, Blender
provides an array of simple shortcuts
available here. This section is also used
to name and build the final geometry.
“Building” a geometry here means to
join all selected blocks sharing at least
one edge and remove common vertices,
edges and faces.

The next four panels are the sections of a
blockmesh dictionary which describe the
geometry in a “text” form interpretable
by OpenFOAM. Users can interact with
the geometry and the UI to populate the
blockmesh dictionary. Each of the four
panels also have visualization features.

The Fill Dictionary section is used to
update the blockmesh dictionary upon
clicking the Add Lists to Dictionary
button.

The Blockmesh UI acts as a palette to
deliver information to the blockmesh
dictionary dynamically.

Figure 7: Blockmesh Add-on UI

10

https://download.blender.org/documentation/BlenderHotkeyReference.pdf

2.5 Solver UI

Developer Add-on:

● Set File structure for Case Directory:
Contains the directory to the template folder and
options to select the file that needs to be edited.
● Edit Label: Contains all the required options
to add new parameters.
● Property: Type of parameter
● Assign: Adds the parameter to the list
● Remove: removes the selected parameter
from the list
● Edit File: Contains the list of added
parameters with their values and checkbox to
select them
● Save: Creates the template in the templates
folder with all parameters added to it.

Figure 8: Solver Developer Add-on UI

User Add-on:

● Set File structure for Case Directory:
Contains the directory to the case folder and
options to select the file that needs to be created.
● Edit File:Contains all the parameter files for
the user to manipulate values.
● Save: Saves the file to the desired location

Figure 9: Solver User Add-on UI

11

Chapter 3 Backend Design

3.1 Add-on Architecture

Figure 10: Blockmesh add-on architecture

The above diagram depicts the interaction capabilities of various nodes with the User.
A Viewport Node is an in-built feature of blender which allows manipulation of structure,
position, and orientation of 3D objects (blocks) by simple mouse clicks and drag.
An item feature node is a set of all in-built Blender options for any modifications necessary.
The GUI node consists of two add-ons which receive commands independently from the user.
Based on the commands the GUI node can invoke storage privileges from Dynamic Memory
and Permanent Memory of the device.
A Keymap Node is used to track a special identifiable Keyboard event for performing a
geometry edge length edit function. It expects a Keyboard event(shift+F) to open up a dialog
box for user input. The required change in edge length is then communicated over a
unidirectional message bus. Changes executed will be reflected on the Viewport.
Draw Function Node is a set of visualization handler features which ships with the add-on.
They can be enabled/disabled from the add-on interface. Inter-communication of various
nodes occurs on the basis of the direction type of message bus. For example: to enable a
Draw Function Node for observing data of geometry graphically on the Viewport, a
command must be given to the GUI Node via a mouse event. The GUI Node then sends a
response to the Master Node to enable the appropriate Visualization Handler. The
Visualization Handler will produce required data over the Viewport UI by sending the data
over a unidirectional message bus.
Venturial comprises the GUI Node, Item Feature Node, Keymap Node and Draw Function
Node. Remaining Nodes are already present in Blender.

12

3.2 Version History

The blockmesh add-on and solver add-on of Venturial have been developed separately
through continuous iterations. Critique and demands of CFD FOSSEE Team have been
addressed based on priority of each feature present in the add-ons. Over a span of 5 months
blockmesh add-on has been revised 32 times and solver add-on has been revised 7 times.
During each of these revisions, a new feature has been added. As OpenFOAM requires a text
based directory system, Venturial follows a method to dynamically edit text files based on
user interactions with geometry. Each version has been built with the intention of minimizing
the need to directly edit a text file. The following tables mentions the major milestones
achieved by consequent revisions of blockmesh add-on and solver add-on versions.

3.2.1 Blockmesh Add-on Version History
Blockmesh Add-on

Version Milestone
Version 1 Add vertices section manually
Version 2 Add vertices section manually and automatically
Version 4 Add Blocks section manually
Version 5 Add Edges Section
Version 8 Add Faces section
Version 9 Separate section for geometry design
Version 12 Multiple features added for geometry section
Version 13 Added vertex visualization handler
Version 14 Added Block visualization handler, Save dictionary button
Version 16 Built Magicblocks feature and integrated to blockmesh add-on.
Version 19 Built advanced section for experienced users
Version 21 Added reference axes, Error handling and pop-ups
Version 24 Added Keymap feature for editing edge
Version 25 Added set cells feature
Version 28 New Look for GUI
Version 30 Advanced section modified to icons only buttons
Version 31 Help section added

Table 1: Blockmesh add-on version history

3.2.2 Solver Add-on Version History
Solver Add-on

Version Milestone

 Version 1 Adding variables to a scene using a button

 Version 3 Created method to select file

 Version 4 Created Developer add-on

 Version 5 Multiple editing options built

 Version 6 User Add-on

Table 2: Solver add in version history

13

3.3 Automation Features

The automation features of Venturial are primarily meant for new learners of CFD but the
original purpose is to reduce time and effort required to write a blockmesh dictionary. All
automation features can also be used by advanced users. As OpenFOAM follows unique
vertex indexing criteria for a geometry, algorithms were designed to automate writing various
sections of blockmesh. Vertex indexing for 3D objects in Blender do not follow the same
criteria in OpenFOAM. Hence, the following features were built to seamlessly generate the
required case directory file system with minimum effort from the user side.

3.3.1 Blockmesh Add-on

Blockmesh Add-on Method

Add/Update vertices One click to add/update all vertices

Add to Viewport One-click to add all required blocks to Viewport

Merge Blocks One-click to remove all common faces, edges and vertices

Magic Blocks One-click to add all blocks to a geometry

Keymap Shift+F

Table 3: Components of Blockmesh Add-on

3.3.2 Solver Add-on

Solver Add-on Method

Fill Blockmesh Dictionary One click to add or update a blockmesh

Assign One click to add a single parameter to file

Update Update selected parameter

Insert Insert a new parameter at desired location

Remove Remove a parameter

Clear Clear all parameters

Table 4: Components of Solver Add-on

3.4 Edge Resize Tool

To resize the edges of a geometry a
utility tool has been added.On
clicking SHIFT+F a pop up menu will
appear with the help of which, an
edge can be resized.

Figure 11: Edge Resize tool

14

There are 2 options for resizing:

● Resize from center: It scales the vertex keeping the central point fixed
● Resize from Vertex: It scales the edge keeping one vertex of the edge fixed. The vertex to

be fixed can be chosen.

3.5 Visualization Handlers

A Handler in Blender executes a function to update scene data on the basis of a predefined
condition. Conditions can be predefined or user-defined. Venturial uses 2 types of handlers
namely Application Handler and Draw Handlers.

3.5.1 Application Handlers

An Application Handler is used to display the reference axis of each block before and after a
geometry is built. Upon adding a new block into viewport reference axes are also drawn to
indicate the orientation of the block. The reference axes are parented to the 0th vertex of the
block. But parenting to a vertex doesn’t allow the same change in orientation. In order to
keep the orientation same as well an application handler is used which constantly equalizes the
orientation of the reference axes and the blocks. To make sure this occurs in the most efficient way, a
dependency graph update application handler is used.

Application Handler usage:

def app_handler_function(scene):
Do something

register():
bpy.app.handlers.depsgraph_update_post.append
(app_handler_function)

unregister():
bpy.app.handlers.depsgraph_update_post.remove
(app_handler_function)

Figure 12: Display origin using handlers

The figure above shows an 8V cube where its shape has been edited within constraints and orientation
change of block and reference axes remain the same.

3.5.2 Draw Handlers

The purpose of Draw Handlers is to help users visualize properties of a geometry in the
Viewport. Draw Handler and the font drawing module are used in conjunction to display
information in font style specified within the draw function. The draw function is passed as
an argument to the draw handler. The draw handler calls the function whenever a change is
observed in the scene. This causes a rise in CPU usage but only momentarily during scene
change. Once scene data is drawn CPU usage returns to normal.

Draw Handler Usage:

15

def draw_handler_function():

#Do something

bpy.types.SpaceView3D.draw_handler_add
(disp_vco_list, (bpy.context, None), 'WINDOW', 'POST_PIXEL')

Figure 13: Display Vertex number using handlers

The figure above displays vertex coordinates and indices drawn on the viewport using a draw
handler.

3.6 Dictionary Parsers

To convert the data to a OpenFoam readable format we need to parse the data to a dictionary
file.For that 2 types of parser has been used.

3.6.1 Blockmesh parser

This is used in the Blockmesh add-on, when clicked on Add lists to dictionary, all the data
present in the add-on is first saved into a JSON file which is stored as a data block inside
blender’s memory and from there is it parsed into the blockmesh dictionary in a OpenFOAM
readable format.
JSON data block is used for the persistent storage of geometric data inside blenders memory
as the geometric data could be required in some case file

3.6.2 Pyfoam ParsedParameterFile

This is used in the solver add in which utilizes Pyfoam’s ParsedParameterFile to read and
parse data into OpenFOAM readable dictionaries. It is also used to generate templates for
case files that is used by the User Solver Add-on.

3.7 Solver Parameter Schema

To remove the need for drafting a schema file for every solver, the solver add-on uses
dynamic memory to generate a schema within a UI List Table. As UI Lists are easily editable,
they are used to preserve and edit schema information during an active instance of blender.
The developers only panel in the solver add-on is a way for developers to view the schema in
which file parameter information is stored. The solver add-on however doesn’t allow users to
view this panel. At a time only one solver can be viewed/edited. As Venturial uses a dynamic
memory, schema information will be lost if not saved. If a saved solver is viewed, Venturial
will read schema information to display solver parameters on the Solver add-on.

16

Figure 14: Parameters added in solver add-on

In figure 14, 3 parameters have been added using the solver add-on. The developers only
panel displays the schema information in a UI List of 3 columns in the following format:

parameter name parameter type parameter properties

Parameter name, type and properties are added from the Edit Label Panel above the Edit File
Panel.
Parameter properties are stored in the following manner:

integer minimum/;maximum/;default
float minimum/;maximum/;default
boolean default
List Options Option1/;Option2/;…… and so on

17

Chapter 4 Application Scenario
Implementation

4.1 Blockmesh Add-on

Step: 1 Mention Dictionary name and location. Step:2 Select Block type and click Add
to Viewport

18

Figure 15: Blockmesh Step by Step usage

4.2 n-block Geometry (FOSSEE pipe tutorial)

Please visit this link to see a video tutorial on n-block geometry design on Blender and
blockmesh file generation using blockmesh add-on.

4.2.1 n-block Geometry creation on Blender
To create a geometry with n number of blocks in blender the following steps can be used:
Step 1: With the add-on loaded and dictionary initialized, enter n in Number of blocks in the
design geometry panel then click on add to viewport.
Step 2: The blocks should be visible on the viewport, now enable snapping and choose vertex
mode in blender.
Step 3: Now the blocks can be arranged to block the geometry required. Once a block is
brought close to another block it should snap together in place.
Step 4: To change the size of an edge press on TAB to go to the edit mode and click on the
edge that needs to be resized then Press Shift +F on keyboard to bring up the edge resize
menu. Now the edge length can be changed as required.
Step 5:Once the required geometry is made switch back to object mode and click on Merge
blocks to merge all the blocks as one object.

Figure 16: N-blocks geometry
creation

To add vertices to blocks
manually, enable advanced
options in the add blocks section
and then select the vertices in the
order given in Figure 16 and then
click on add block.

Figure 17 (a)

19

https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZNI3ppKOatZY0_/view?usp=sharing

Figure 17a and 17b: Rules for numbering vertices in OpenFOAM

4.2.2 Dictionary Generation Steps

To create a new parameter file in developer Add-on (Developer Add-on):

● A basic template of a new parameter with a header is created and placed in the templates
folder of the add-on.

● The templates folder of the User Add-on is chosen for the Case Directory.
● The template file which needs to be edited is selected.
● On clicking add Lists to Dictionary button, the dictionary is loaded in memory
● In the edit label section new parameters can be added.
● In the property type, the type of parameter needs to be selected and then the name of the

parameter including some metadata is to be defined.
● Click on assign and it should be visible on the Edit File panel.
● New parameters can be added or old ones removed from this panel.
● Once all the parameters have been added to the Edit File section, Click on Save. This

will add the template to the user add-on directory with all the required metadata.

To use the user add-on for changing values of parameters(User Add-on)-

● With the add-on installed, navigate to the add-on panel
● Select the directory where the simulation files are.
● Select the solver type and the dictionary which needs to be created.
● Click on Add Lists to Dictionary to load the parameters.

20

● The parameters will be visible on the edit file section. Change the values as required.
● Click on save to save the final dictionary to the case Directory.

Figure 18 Blockmesh Dictionary file

4.3 Results on Paraview

Figure 19: Geometry on Paraview

21

Chapter 5 Conclusion

5.1 Conclusion

Geometry design capabilities of Blender are used in conjunction with a GUI to integrate the
process of geometry modelling and text file generation all within the same software with
graphical visualization of geometry and a GUI to edit parameters removing the need to
manually edit OpenFOAM files.

5.2 In Development

Both the add-ons are fully functional to serve their purpose but more visualization
capabilities, hotkeys for geometry modelling and automation features are under development
to aid faster file generation without manually editing any text.

a) Edge Length Viewing Handler: Select an edge to view its length on Viewport by
enabling a checkbox in Add Edge Panel.

b) Edge Length Text Size: Enlarge or reduce size of Edge length text.
c) Face Name Viewing Handler: View name of selected Face from Add Face panel on

the Viewport.
d) Face Name Text Size: Enlarge or reduce size of Face name text.
e) Face Color Checkbox: Enable this checkbox to view geometry with colored faces. By

default, colors are randomly assigned to the face/group of faces. A color template for
each face/group of faces in the face list is already assigned. However, a checkbox to
enable viewing colored faces on viewport is under development.

f) Collate Option for Edges: Collates all edge panels together as blockmesh mentions all
types of edges within the geometry under the same section.

g) Help Box: A dialog box appears when the Help button is clicked beside each Panel.
Information within this dialog box provides documentation on usage of Panel
features.

h) Editing of Geometry after Build: The Merge Block feature builds geometry by
removing common vertices, edges and faces without remembering them. Hence
blocks must be merged only when geometry is finalized. Amending this stipulation is
currently under development and a revision of Merge Blocks will enable editing of
geometry even after blocks are merged.

i) Free motion of geometry: Rotation and Translation of Geometry is disabled and
viewing is done by changing user view perspective.

j) Hotkeys for Geometry Editing: Currently blockmesh add-on consists of only one
hotkey built with a Keymap for editing the length of an edge. More hotkeys are under
development to aid editing of geometry.

22

k) Vertex Snapping: Currently, users can snap blocks to nearby vertices by enabling snap
by vertex feature which is in-built in Blender. This requires the user to remain
informed about the snapping feature without which joining blocks isn’t convenient. A
one-click snapping feature within the add-on can help users identify this feature as it
can be documented as well.

l) Mergepatchpairs: blockmesh add-on in its current state doesn’t support flow problems
that require mergepatchpairs.

m) Singular Add-on Structure: The blockmesh add-on and solver add-on are intended to
be merged in later versions and are currently separate for ease of development.

n) Advanced Set Cells: Within the meshing rules two blocks sharing a common edge
must have the same number of cells along the common edge. Venturial doesn’t
identify if two blocks share one or more than one edge. Hence, the user has to be
aware of OpenFOAM set cells rules. Identification of blocks sharing at least one edge
is currently being developed. Number of cells along a particular axis for two blocks
sharing at least one common edge will automatically be equalized.

o) Assigning Nested Parameters: Some OpenFOAM files have one or more parameters
nested within a single parameter. Solver add-on has an Assign button which can
assign only single-line parameters upon button click. Thus Venturial can generate files
like control parameter files easily. Addressing Nested Parameters is integral to the
generation of discretisation schemes file, equation solvers file etc. and is currently our
top priority in the development process.

p) Time Directory Files (Velocity Field, Pressure Field etc.): Some time directory files
acquire information from blockmesh and data can either be initial values or boundary
conditions which a user has to specify. A panel for these files is also a prioritized task
under development.

q) Error Checklist for Solver Add-on will be assigned based on inputs from the CFD
team to prevent errors during the solving process.

5.3 Future Scope

The Reynolds Add-on has a User interface for both blockmesh and snappyhexmesh utilities
but provides support to solve a single fluid flow problem using blockmesh. Venturial doesn’t
support snappyhexmesh utility but envisions to provide users with full support to blockmesh
for all levels of skill. As Venturial is yet to be released as a stable version, major ensuing
tasks involve repetitive testing and revision based on direct feedback from CFD Team.
Further developmental tasks are to present blockmesh or snappyhexmesh as an option for
utility choice. As Venturial is a project under FOSSEE, it is built with the intention to help
promote usage in academia and research. For this purpose, detailed standard operating
procedure, tutorial videos, version control and documentation will be made available for the
users.

23

5.4 Developer’s Note

The development team of FOSSEE Blender and Python Interns are always available for
support. As Venturial is open-source community-centric software we welcome feedback from
our users and work backwards to cater to their needs. This process of development has been
followed since the very beginning of the project. We will also be delighted to know if
Venturial has aided the learning process of individuals novice to CFD.
Lastly, we ardently hope that Venturial can become a reliable alternative to aid in performing
OpenFOAM CFD simulations.

References
CFD FOSSEE https://cfd.fossee.in/home

Blender https://www.blender.org/

OpenFoam https://openfoam.org/

Reynolds-Blender https://github.com/dmsurti/reynolds-blender

SwiftBlocks https://swiftblock.readthedocs.io/en/latest/swift.html

Vertex Ordering
Blockmesh

https://www.openfoam.com/documentation/user-guide/4-m
esh-generation-and-conversion/4.3-mesh-generation-with-t
he-blockmesh-utility

PyFoam https://pypi.org/project/PyFoam/

N-Block geometry
using Venturial

https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZ
NI3ppKOatZY0_/view?usp=sharing

24

https://cfd.fossee.in/home
https://www.blender.org/
https://openfoam.org/
https://github.com/dmsurti/reynolds-blender
https://swiftblock.readthedocs.io/en/latest/swift.html
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://pypi.org/project/PyFoam/
https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZNI3ppKOatZY0_/view?usp=sharing
https://drive.google.com/file/d/1D_hBFSV0kfUIK4hkwhZNI3ppKOatZY0_/view?usp=sharing

