FOSSEE Case Report 1- Transitional
Modelling of flow over flat plate
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Objective

The objective of the present work was to simulate the T3A ERCOFTAC case (Flow over
flat plate), using the Gamma-Re-Theta model

Multiple numerical settings were tested and the optimum configuration was
determined.
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Problem Statement

Flat plate transitional 2D boundary layer flows with or without pressure gradient, and no
temperature variations.

Free stream turbulence intensity was set to 3.3% and velocity magnitude equal to 12 m/s in the x
direction [4].

Kinematic viscosity was set as 1.5x10-°> m?/s. Details of the experimental setup and the flat plate
are shown in the figure below.

Turbulence
Grid

Boundary Laver Bleed

i

Flap —

—Gauze
. - H“‘*\—

2.5:1
Contraction

260nn

éﬂnn.

kiard  Verticat  Floor Diffusing
& axial For Zero dp/dx on
Traverse Test Plate
DETAIL OF TEST PLATE
200mnm
15mm dia |
Leading edge ~

20nn

A1700mm
—

24-08-2021 CASE STUDY REPORT




Mesh and Geometry
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Configurations tested and convergence

Pressure Velocity
Coupling

Relaxation Factors Convergence Residual Targets

Divergence
Scheme

linearUpwind Pressure: GAMG SIMPLE 0.9 for all equations  Yes, 269 iterations  10-5 for pressure, 10-¢ for velocity,
Rest -GaussSeidel 10-4for other variables
upwind Pressure: GAMG SIMPLE 0.9 for all equations Yes, 281 Iterations 10-5 for pressure, 10-¢ for velocity,
I Rest- GaussSeidel 10-4for other variables
QUICK Pressure: GAMG SIMPLE 0.9 for all equations  No 10-5 for pressure, 10-¢ for velocity,
. Rest- GaussSeidel 10-4for other variables
. linearUpwind GAMG SIMPLE 0.9 for all equations Yes, 193 iterations 10-5 for pressure, 10-¢ for velocity,
10-4for other variables
. linearUpwind GAMG SIMPLE 0.3 for pressure, 0.7 No 10-% for pressure, 10-¢ for velocity,
for other variables 10-4for other variables
' linearUpwind Pressure: GAMG PIMPLE 0.3 for all equations ~ Solution Diverging  10-5 for pressure, 10-¢ for velocity,
Rest- GaussSeidel 10-4for other variables
linearUpwind GAMG PIMPLE 0.3 for all equations No 10-5 for pressure, 10-¢ for velocity,
and 0.8 for final 10-4for other variables
iteration
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Results - Divergence Schemes
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Results- Solver Comparison
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Results- Pressure-Velocity Coupling Algorithms
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Results- Turbulence Model comparison
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Conclusions

Linear Upwind proves to be the best divergence scheme, providing the most accurate
results and reasonable convergence rates

GAMG proves to be the best solver to use, providing the highest rate of convergence

SIMPLE algorithm proves to be the best pressure velocity coupling algorithm, providing
accurate results with lesser computational cost.
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