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 Abstract  

This report studies the influence of turbulence models and various numerical scheme settings on 
simulation performance of transitional turbulence over a flat plate. The case chosen was the 
ERCOFTAC T3A case, and impact of various divergence schemes, solvers, solution algorithms 
and solver settings on the wall shear stress and turbulent kinetic energy plots was analyzed. 
Results from the LCTM k-Omega SST model and the standard k-Omega SST model were 
compared as well. It was concluded that the LCTM k-Omega SST model, coupled with the 
simpleFoam solver, coupled with the linear upwind divergence scheme and GAMG multigrid 
solvers provided a blend of high accuracy and relatively lower computational time. 

 
1. Introduction 

 
Transitional turbulence is defined as the process of a flow transitioning from laminar flow to 
turbulent flow. Transition to turbulence has often been described as proceeding through a series 
of stages. Depending upon the nature of the flow, the mechanisms governing transition differ. 
The ERCOFTAC T3A case was chosen to study transitional turbulence over a flat plate. The flow 
for the given scenario could be construed as a parallel flow. Therefore, the Orr Sommerfeld 
equation [1], with the help of which it is possible to determine if a perturbation introduced in a 
parallel, stratified flow will diminish or amplify, can be used to determine whether the flow will 
transition to turbulence. The equation can be expressed as: 
 

(𝑈 − 𝑐)൫𝜙௬௬ − 𝑘ଶ𝜙൯ −  𝑈௬௬𝜙 =  
1

𝑖𝑘 𝑅𝑒
[𝜙௬௬௬௬ − 2𝑘ଶ𝜙௬௬ + 𝑘ସ𝜙] 

(1) 

 
This equation cannot be evaluated as it involves 4th order derivatives. Assuming an inviscid flow, 
which simplifies the equation, it can be seen that stable solutions can only be calculated for a 
positive value of c. Furthermore, work by Rayleigh showed that for a parallel inviscid flow, a 
‘point of inflexion’ wherein Uyy = 0 needs to exist for a flow to transition to turbulence. For a 
Hagen Poiseuille flow case, which is the current flow case being considered, no such inflexion 
point is present, and therefore the flow remains laminar at high Reynolds numbers, as long as 
there is no obstacle or adverse pressure gradient. The flat plate acts as an ‘obstacle’ in this case. 
Modelling transitional turbulence has always been difficult due to varied mechanisms that govern 
transition depending upon the flow, and the large number of nonlocal calculations needed, which 
make implementing transitional turbulence models in modern CFD solvers, which rely on domain 
decomposition, impossible. The LCTM model [3], which is a modified version of the k-Omega  
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SST model cures these difficulties. The given model involves solving two convection diffusion 
equations for intermittency, which is a non-dimensional quantity designed to predict the onset of 
turbulence and also for transition momentum thickness Reynolds number. The source terms in 
these equations depend upon empirical correlations created from experimental data. The 
objective of this report is to study the impact various discretization options and solver settings 
have on the performance of the LCTM model, as well as a comparison of the results obtained by 
using the k-Omega SST model and the LCTM model. 
   

 
2. Problem Statement  

 
Flat plate transitional 2D boundary layer flows with or without pressure gradient, and no 
temperature variations. Free stream turbulence intensity was set to 3.3% and velocity 
magnitude equal to 12 m/s in the x direction [4]. Kinematic viscosity was set as 1.5x10-5 m2/s. 
Details of the experimental setup and the flat plate are shown in the figure below. 

  

Figure 1: Experimental Setup and test plate details[4] 

3. Governing Equations  
 
Two turbulence models were used in the case study, first one being the the k-Omega SST model 
[2] and second being the LCTM Gamma-Re-Theta model [3]. The equations for the k-Omega 
SST model are as follows: 
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𝜕(𝜌𝑘)

𝜕𝑡
+  

𝜕൫𝜌𝑢௝𝑘൯

𝜕𝑥௝
= 𝑃 − 𝛽∗𝜌𝜔𝑘 +  

𝜕

𝜕𝑥௝
ቈ(𝜇 + 𝜎௞𝜇௧)

𝜕𝑘

𝜕𝑥௝
቉ (2) 

 

 
 

𝜕(𝜌𝜔)

𝜕𝑡
+  

𝜕൫𝜌𝑢௝𝜔൯

𝜕𝑥௝

=  
𝛾

𝜗௧
𝑃 − 𝛽∗𝜌𝜔ଶ + 

𝜕

𝜕𝑥௝
ቈ(𝜇 + 𝜎ఠ𝜇௧)

𝜕𝜔

𝜕𝑥௝
቉ + 2(1

− 𝐹ଵ)
𝜌𝜎ఠଶ

𝜔

𝜕𝑘

𝜕𝑥௝

𝜕𝜔

𝜕𝑥௝
 

(3) 

 
     
(2)  Is a transport equation for the turbulent kinetic energy, and (3) is a transport equation for 
the specific dissipation.  
 
 
For the LCTM Gamma-Re-Theta model, two additional transport equations for the 
intermittency and transition momentum Reynolds number need to be solved, along with a 
modified version of the k-Omega SST model equations, as mentioned in section 1. The 
equations for intermittency can be expressed as follows: 
                                                                     

 
𝜕(𝜌𝛾)

𝜕𝑡
+ 

𝜕൫𝜌𝑢௝𝛾൯

𝜕𝑥௝
=  𝑃ఊ − 𝐸ఊ + 

𝜕

𝜕𝑥௝
ቈቆ𝜇 +

𝜇௧

𝜎௙
ቇ

𝜕𝛾

𝜕𝑥௝
቉ (4) 

 𝑃ఊ =  𝐹௟௘௡௚௧௛𝑐௔ଵ𝜌𝑆[𝛾𝐹௢௡௦௘௧]଴.ହ(1 − 𝛾) (5) 

 

  The equation for transition momentum thickness Reynolds Number can be expressed as     
follows: - 

 
𝜕൫𝜌𝑅𝑒ఏ௧൯

𝜕𝑡
+  

𝜕൫𝜌𝑢௝𝑅𝑒ఏ௧൯

𝜕𝑥௝
= 𝑃ఏ௧ + 

𝜕

𝜕𝑥௝
ቈ𝜎ఏ௧(𝜇 + 𝜇௧)

𝜕𝑅𝑒ఏ௧

𝜕𝑥௝
቉ (6) 

 𝑃ఏ௧ =  𝑐ఏ௧

𝜌

𝑡
(𝑅𝑒ఏ௧ −  𝑅𝑒ఏ௧)(1.0 − 𝐹ఏ௧) (7) 

 𝑡 =  
500𝜇

𝜌𝑈ଶ
 (8) 
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The equations for turbulent kinetic energy and specific dissipation rate are as follows: 

 
𝜕(𝜌𝑘)

𝜕𝑡
+ 

𝜕൫𝜌𝑢௝𝑘൯

𝜕𝑥௝
= 𝑃෨௞ − 𝐷෩௞ +  

𝜕

𝜕𝑥௝
ቈ(𝜇 + 𝜎௞𝜇௧)

𝜕𝑘

𝜕𝑥௝
቉ (9) 

 
𝜕(𝜌𝜔)

𝜕𝑡
+  

𝜕൫𝜌𝑢௝𝜔൯

𝜕𝑥௝
=  

𝛼

𝜗௧
𝑃௞ − 𝐷ఠ + 𝐶𝑑ఠ + 

𝜕

𝜕𝑥௝
ቈ(𝜇 + 𝜎ఠ𝜇௧)

𝜕𝜔

𝜕𝑥௝
቉ (10) 

 𝑃௞
෪ =  𝛾௘௙௙𝑃௞ (11) 

 𝜇௧ = ൤
𝜌𝑘

𝜔
;
𝑎ଵ𝜌𝑘

𝑆𝐹ଶ
൨ (12) 

 

4. Simulation Procedure 
 
4.1 Geometry and Mesh  

 
The blockMesh utility was used to generate the mesh for the given case. The geometry has 
been described in figure 1, accordingly a meshing strategy was formulated, with increased 
mesh resolution at the leading edge of the plate, since it can be seen from the experimental 
data that the boundary layer transitions from a laminar to turbulent profile post impact with 
the leading edge of the plate. The geometry and mesh can be seen as follows: 
 

 

 

Figure 2: Mesh over the domain 
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Figure 3: Close up of mesh around the leading edge of the plate 

4.2 Initial and Boundary Conditions  
 
The mesh was divided into 5 patches, inlet, outlet, above, top and plate. Front and back were 
assigned as empty, since the case in consideration is a 2D case. The above and top were 
designated as slip walls, such that no turbulent kinetic energy production could take place at  
these walls, only transport of turbulent energy can take place, as the objective is to ensure that     
the transition process occurs only once the flow hits the leading edge of the plate. The turbulent 
kinetic energy at the inlet was calculated using the following equation: 

 
𝑘௜௡௟௘௧ =

3

2
(𝑈𝐼)ଶ 

(13) 

 
 Where U stands for the velocity and I is the turbulence intensity at the inlet. The specific 
dissipation rate at the inlet was calculated using the following expression: 
 

𝜔 =  
𝐶ఓ

ଷ
ସ𝑘

ଵ
ଶ

𝑙
 

(14) 

 
Cμ is a constant whose value is equal to 0.09, k denotes turbulent kinetic energy, and l is the 
turbulent length scale. 
The plate patch was assigned a no slip condition, with wall functions for turbulent kinetic energy 
and specific dissipation rate. Since the case is two dimensional in nature, the front and back 
patches were assigned as empty. 
 

4.3 Divergence Schemes  
 
 Divergence schemes approximate the divergence of a given flux. Gauss Divergence Theorem, 
which links the surface integrals and volume integrals, is used in the process. Three most 
commonly used divergence schemes are tested, namely linear Upwind, upwind and QUICK  
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(Quadratic Upstream Interpolation for Convective Kinematics). The upwind divergence scheme 
sets the flux face value equal to the flux value in the upstream direction. For a single dimension, 
this can be expressed as [5]: 
 𝑎௉𝜙௉ =  𝑎ௐ𝜙ௐ + 𝑎ா𝜙ா (15) 

Where, 
 

𝑎ௐ = ൬
Γ

𝑑𝑥
൰

௪
+ max(𝜌𝑢௪, 0) 

(16) 

 
𝑎ா = ൬

Γ

𝑑𝑥
൰

௘
− max(−𝜌𝑢௘ , 0) 

(17) 

                                                                                                     
Where Γ is the diffusivity coefficient. 
The Linear upwind scheme is a modification of the upwind scheme, which switches between 
the Mac Cormack scheme and the upwind differencing scheme via a blending operator ϵ which 
assumes values of either zero or one. The switching operators are only applied when a local 
eigenvalue returns a positive value. For a differential equation of the type expressed as- 
 𝜕𝑢

𝜕𝑥
+ 

𝜕𝐹(𝑢)

𝜕𝑡
= 0 

(18) 

 
The linear Upwind divergence scheme can be expressed as [6]: 
 

𝑢௝
௜ାଵ = 0.5൫𝑢௝

௜ାଵ + 𝑢௝
௜൯ − 0.5

∆𝑡

∆𝑥
ൣ𝜖௝𝐹௝

௡ − ൫𝜖௝ − 𝜖௝ିଵ൯𝐹௝ିଵ
௡ + 𝜖௝ିଵ𝐹௝ିଶ

௡ ൧

− 0.5
∆𝑡

∆𝑥
ൣ−𝜖௝ିଵ𝐹௝ିଵ

௡ାଵ − ൫𝜖௝ − 𝜖௝ିଵ − 1൯𝐹௝
௡ାଵ + (1 − 𝜖௝ିଵ)𝐹௝ାଵ

௡ାଵ൧ 

(19) 

 
Where, 
 

൫𝜖௝, 𝜖௝ିଵ൯ =  

⎩
⎨

⎧
(0,0) 𝑀𝑎𝑐𝐶𝑜𝑟𝑚𝑎𝑐𝑘 𝑠𝑐ℎ𝑒𝑚𝑒

(0,1) 𝑀𝑈 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

(1,0) 𝑈𝑀 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

(1,1) 𝑈𝑝𝑤𝑖𝑛𝑑 𝑠𝑐ℎ𝑒𝑚𝑒

 

(20) 

 
                                                                         
 
The QUICK scheme is an extension of the upwind scheme. It is expressed, for a 1 D 
convection-diffusion equation as [7]: 
 𝑎௉𝜙௉ =  𝑎ௐ𝜙ௐ + 𝑎ா𝜙ா +  𝑎ௐௐ𝜙ௐௐ + 𝑎ாா𝜙ாா  (21) 

 Where, 
   
 𝑎௉ =  𝑎ௐ + 𝑎ா + 𝑎ாா + 𝑎ௐௐ + (𝜌𝑢௘ − 𝜌𝑢௪) (22) 

 𝑎ௐ = ൬
Γ

𝑑𝑥
൰

௪
+ 0.75𝛼௪(ρ𝑢௪) + 0.125𝛼௘(ρ𝑢௘) − 0.375(1 − 𝛼௪)ρ𝑢௪ (23) 

 𝑎ௐௐ =  −0.125𝛼௪ρ𝑢௪ (24) 

 𝑎ா = ൬
Γ

𝑑𝑥
൰

௘
− 0.375𝛼௘(ρ𝑢௘) − 0.75𝛼௘(ρ𝑢௘) − 0.125(1 − 𝛼௪)ρ𝑢௪  (25) 

 
 
                                                                          
                                   
        
 𝑎ாா = 0.125(1 − 𝛼௘)𝜌𝑢௘ (26) 

 
𝛼௪ > 0 𝑓𝑜𝑟 ρ𝑢௪ > 0, 𝛼௪ < 0 𝑓𝑜𝑟 ρ𝑢௪ < 0,  𝛼௘ > 0 𝑓𝑜𝑟 ρ𝑢௘ > 0 𝑎𝑛𝑑 𝛼௘

< 0 𝑓𝑜𝑟 ρ𝑢௘ < 0 
(27) 
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4.4    Pressure-Velocity coupling algorithms and solvers  
                         
Multiple solver configurations were tested in the given case study. The first approach chosen 
was using simpleFoam as the pressure velocity coupling algorithm, and using GAMG 
(multigrid) solvers for pressure and symmetric Gauss Seidel solvers for the remaining variables. 
Relaxation factor was set as 0.9 for all equations. The second configuration used was 
simpleFoam with multigrid solvers for all variables, with relaxation factors unchanged. Third 
configuration employed the same setup as the second configuration, but with different relaxation 
factors detailed for every field and equation. The fourth and fifth configurations employed 
pimpleFoam, a transient solver, with solver setups identical to the first and second setup 
respectively, and changed relaxation factors and residual targets. The first configuration, which 
is identical to the tutorial configuration for the T3A case present in OpenFOAM documentation 
[8], was run twice with different residual targets for each run. The solver runtime was set as 
1000s, with a timestep of 1s. A summary of various configurations tested and convergence 
results can be found in Table 1. 
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Sr. 

No

. 

Divergence 

Scheme 

Solver Pressure Velocity 

Coupling 

Algorithm 

Relaxation Factors Convergence  Residual Targets 

1 linearUpwind Pressure: GAMG 

Rest -GaussSeidel 

SIMPLE 0.9 for all equations Yes, 269 iterations 10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 

2 upwind Pressure: GAMG 

Rest- GaussSeidel 

 

SIMPLE 0.9 for all equations Yes, 281 Iterations 10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 

 
3 QUICK Pressure: GAMG 

Rest- GaussSeidel 

SIMPLE 0.9 for all equations No 10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 

4 linearUpwind GAMG SIMPLE 0.9 for all equations Yes, 193 iterations 10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 

5 linearUpwind GAMG SIMPLE 0.3 for pressure, 0.7 

for other variables 

No 10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 

6 linearUpwind Pressure: GAMG 

Rest- GaussSeidel  

PIMPLE 0.3 for all equations Solution 

Diverging 

10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 

7 linearUpwind GAMG PIMPLE 0.3 for all equations 

and 0.8 for final  

iteration 

No 10-5 for pressure, 10-6 for velocity, 

10-4 for other variables 
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As can be seen from Table 1, several configurations and solver settings were tested for the 
LCTM k-Omega SST Turbulence model. A detailed discussion of each case is presented below: 
 

4.5 Comparison between various divergence schemes  
 

 
 

              Figure 4: Wall shear stress plots for linear upwind, upwind and QUICK divergence 

schemes 

Figure 4 depicts the variation of Wall shear stress magnitude with respect to the plate length, for 
three different divergence schemes. It is visible from the plot that the wall shear stress magnitude 
obtained at the leading edge of the plate is highest for the upwind case, and lowest for the linear 
upwind case. The overall plots of linear upwind and upwind are quite identical, but the curvature 
of the plot is noticeably different for the QUICK case. The linear upwind scheme, on many 
occasions, has proven itself to be the best divergence scheme to be used for bluff body turbulent 
flows [9] and here too, it can be seen as the scheme with the best performance, with the linear 
upwind case plots tallying most closely with the experimental values. This can be attributed to 
the capability of linear upwind to switch between the Mac Cormack and second order upwind 
scheme, which has proven to reduce spurious oscillations encountered at discontinuities. The 
upwind scheme also displays the same characteristic curve for the wall shear stress plot as linear 
upwind, but since it is a first order scheme and also does not have any special provisions for 
treating discontinuities, we see a significantly higher wall shear stress magnitude at the leading 
edge of the plate. QUICK was the worst performing scheme of the three; the configuration 
employing QUICK did not converge even after 1000 iterations; the residuals were oscillating. 
The QUICK scheme also failed to predict the wall shear stress as accurately as the other two 
schemes. The lack of convergence can be attributed to the existence of negative coefficients in 
the scheme, which gives rise to stability problems. Furthermore, QUICK is prone to overshoots 
and undershoots [10], which might be the reason for the deviation in the wall shear stress plots. 
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4.6 Comparison between solvers  
 

 

Figure 5: Wall shear stress magnitude plotted against plate length for different solvers 

 
Figure 5 depicts the variation of the wall shear stress magnitude with respect to the plate length, 
for different solver setups.  
It is visible from the plot that the results are identical; there is no noticeable difference in the 
plots, from which it can be said that the choice of solvers, keeping the relaxation factors same 
does not impact the output result fields. However, as mentioned in Table 1, the configuration 
with GAMG solvers converged 71 iterations earlier than the tutorial setup. In any system of 
equations which are to be solved iteratively, the long wavelength errors decay relatively slowly. 
The Restriction and prolongation steps employed in the GAMG method, ensure the long 
wavelength errors are transformed into short wavelength errors which decay quickly, 
consequently ensuring that the rate of convergence is higher than other solving methods. This 
mechanism is why a quicker rate of convergence is seen when all variables are solved using 
multigrid (GAMG) solvers. 
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Figure 6: Variance of wall shear stress magnitude with respect to plate length, for two different 
solver setups with varied relaxation factors 

 
Figure 6 depicts the variation of the wall shear stress magnitude with respect to the plate length, 
for different solver setups with different relaxation factors. Here, the standard plot depicts the 
tutorial setup, while the revised plot is with GAMG used for all variables, and a relaxation factor 
of 0.7 for all equations except pressure field, which was assigned a relaxation coefficient of 0.3. 
These relaxation factors were chosen from literature [11].  It is observed that the results are 
identical for the front half of the plate while there is some minute deviation in the rear half of the 
plate, with the wall shear stress magnitude for the multigrid case being slightly lesser than the 
tutorial setup.  
Also, the solver did not converge even after 1000 iterations, while the tutorial setup converged 
in 269 iterations. This proves that the original relaxation factors are most appropriate for the given 
case. 
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Figure 7: Variance of Wall shear stress along plate length for two different solvers 

 

Figure 7 depicts the variation of the wall shear stress magnitude with respect to the plate length, 
for different solver setupsS. PimpleFoam is a transient solver; effectively the SIMPLE algorithm 
is run for every time step. The algorithm is quite tough to stabilize; it has a tendency to diverge 
quickly. Initial run with multigrid solvers for pressure and Gauss Seidel solvers for other 
variables began to diverge almost immediately. The second run was with multigrid solvers for 
all variables and changed relaxation factors, with lower residual targets, the results of which are 
present in the plot above. The combination of changed relaxation factors and quicker rate of 
convergence afforded by the multigrid solvers managed to successfully stabilize.  Overall, it can 
be concluded that using PIMPLE is not justified in this case, as the computational cost is too 
high. 
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Figure 8: Variance of Wall shear stress along plate length for two different residual values 

 

Figure 8 depicts the variation of the wall shear stress magnitude with respect to the plate length, 
for different residual targets. It can be observed that there is almost no difference between the 
two wall shear stress magnitude plots. Also, the run with lower residuals took 361 iterations to 
converge, so consequently there is no reason to justify the reduced residual targets. 
 
 

4.7 Comparison between LCTM k-Omega SSTSST and K-Omega SST 
 
To see the exact difference between the standard K-Omega SST and LCTM model predictions, 
a comparative study was made, with the same solver and discretization settings used (Gauss 
Linear Upwind was chosen as the divergence scheme, with the GAMG used for pressure and  
symmetric Gauss Seidel for other variables. 
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Figure 9: Wall shear stress plotted as a function of plate length for two different turbulence 

models 
 Figure 9 depicts the variation of the wall shear stress magnitude with respect to the plate length, 
for two different turbulence models. It can be inferred from the plots that the transition process 
was not captured by the K-Omega SST model, wherein the boundary layer momentum thickness 
first follows a laminar profile, and then the momentum thickness begins to increase as the flow 
transitions to turbulence. Eventually the boundary layer assumes a fully turbulent profile. 
Velocity plots around the leading edge of the plate are shown below:- 
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Figure 10: Velocity plot; K-Omega SST plot on the right, and LCTM model plot on the left 

 

It is visible from the above plot that the viscous sublayer is noticeably thicker in the LCTM k-
Omega SSTSST plot. This is because the flow is transitioning to turbulence; the boundary layer 
profile is not fully turbulent at that stage, rather it is closer resembling the laminar boundary layer 
at that stage. 
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