
Summer Fellowship Report

On

Implementation of ATtiny Family of Micro-controllers

Submitted by

Sumanto Kar

Vadisa Yamini

Shubangi Mahajan

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

June 17, 2020

Acknowledgment

We would like to express our gratefulness to the FOSSEE team for giving us a
wonderful experience. When the world had broken down during the COVID-19
lock-down, the FOSSEE team bore us a wonderful opportunity to serve our coun-
try. It also gave us a fruitful experience of ”work from home” during the time of
lock-down which we might not have got from anywhere else.

We would like to express our gratefulness to Prof. Kannan M. Moudgalya for his
valuable and constructive suggestions during the planning and development of this
research work. His willingness to give his time so generously and being enthusiastic
all the time has been very much appreciated. His farsightnedness made us feel many
impossible things possible which increased our enthusiasm to a great extent.

We would also like to express our gratitude towards Prof. Madhav Desai for showing
us a clear path to the solutions where we were stuck and found ourselves helpless.
This not only increased our spirit but also helped us to regain our confidence. We
would like to thank the eSim team for helping us and providing us all the resources
required to work with and guiding us all throughout the project. We would like to
thank our mentors Mr. Saurabh Bansode, Mr. Rahul Paknikar, Mrs. Gloria Nandi-
hal, Mrs. Usha Vishwanathan and whole team for imparting immense of knowledge
and for enhancing various technical skills in us which would definitely help us in
near future. Their presence and their hard work for us day and night had made our
fellowship experience blissful. A special thanks to Mr. Ashutosh Jha for sharing his
knowledge with us and helping us whenever we were in need. His helping nature is
really to be appreciated.

We would utilize everything we got from here for our career growth as well as for
the betterment of our society. The wonderful experiences which we took from here
while the world had been passing through a crisis would be memorable throughout
our lives.

1

Contents

1 Introduction 4

2 Problem Statement 6
2.1 Framework Developed . 6
2.2 Approach . 7

3 Software Requirements 8
3.1 NGHDL . 8
3.2 Linux Commands . 8
3.3 AVR GCC . 9
3.4 eSim . 9

4 ATtiny x5 Family of Microcontrollers 10
4.1 Pin Configuration . 10
4.2 Block Diagram . 11
4.3 ATtiny Memories . 12

4.3.1 In-System Re-programmable Flash Program Memory 12
4.3.2 SRAM Data Memory . 12
4.3.3 EEPROM Data Memory . 12
4.3.4 I/O Memory . 12

5 Implementation of Instruction Set 14
5.1 C Code . 14

5.1.1 CP – Compare . 15
5.1.2 CPC – Compare with Carry 17
5.1.3 CPI – Compare with Immediate 18
5.1.4 ICALL – Indirect Call to Subroutines 19
5.1.5 IJMP – Indirect Jump . 20
5.1.6 SER – Set all Bits in Register 20
5.1.7 SBI – Set Bit in I/O Register 20
5.1.8 CBI – Clear Bit in I/O Register 21
5.1.9 AND – Logical AND . 22
5.1.10 EOR – Exclusive OR . 23
5.1.11 SBC- Subtract with carry . 24
5.1.12 SBR-Set Bits in Register . 26
5.1.13 SBRC- Skip if Bit in Register is Cleared 27
5.1.14 SBRS- Skip if Bit in Register is Set 28

2

5.1.15 SBIC- Skip is Bit in I/O register is cleared 28
5.1.16 PUSH . 29
5.1.17 POP . 29
5.1.18 RCALL-Relative Call to Subroutine 30
5.1.19 RET-Return from Subroutine 30
5.1.20 NEG-Two’s complement . 31
5.1.21 LSR- Logical Shift Right . 32
5.1.22 BSET- Bit set in SREG . 33
5.1.23 OR- logical OR . 34
5.1.24 BCLR-Bit Clear in SREG . 35
5.1.25 RETI- Return from Interrupt 35
5.1.26 MOV- Copy Register . 36
5.1.27 ROR- Rotate Right through Carry 36
5.1.28 BLD – Bit Load from the T Flag in SREG to a Bit in Register 38
5.1.29 BST – Bit Store from Bit in Register to T Flag in SREG . . . 38
5.1.30 SBIS – Skip if Bit in I/O Register is Set 39
5.1.31 ASR – Arithmetic Shift Right 39
5.1.32 BRBC – Branch if Bit in SREG is Cleared 40
5.1.33 BRBS – Branch if Bit in SREG is Set 42
5.1.34 SWAP – Swap Nibbles . 44
5.1.35 INC – Increment . 45
5.1.36 LD-Load Indirect from Data Space to Register using Index X 46
5.1.37 LDS (16-bit) – Load Direct from Data Space 47
5.1.38 ST – Store Indirect From Register to Data Space using Index X 47
5.1.39 STS (16-bit) – Store Direct to Data Space 48
5.1.40 Timer0 implementation . 50
5.1.41 Timer1 Implementation . 57

5.2 Implemented Examples . 61
5.2.1 Example to test ATtiny25:Driving LEDs circuit: 61
5.2.2 Example to test ATtiny45:PPM Generator: 62
5.2.3 Example to test ATtiny85:Square Wave Generator 64
5.2.4 Example to test ATtiny85:Triangular Wave Generator 68

6 Conclusion and Future Scope 70

Bibliography 71

3

Chapter 1

Introduction

FOSSEE (Free/Libre and Open Source Software for Education) project promotes
the use of FLOSS tools to improve the quality of education in our country. It aims
to reduce dependency on proprietary software in educational institutions. It en-
courages the use of FLOSS tools through various activities to ensure commercial
software is replaced by equivalent FLOSS tools. It also develops new FLOSS tools
and upgrade existing tools to meet requirements in academia and research.[1]

The FOSSEE project is part of the National Mission on Education through
Information and Communication Technology (ICT), Ministry of Human Resource
Development (MHRD), Government of India.

Microcontroller contains on chip central processing unit (CPU), Read only mem-
ory (ROM), Random access memory (RAM), input/output unit, interrupts con-
troller etc. Therefore a microcontroller is used for high speed signal processing
operation inside an embedded system. It acts as major component used in design-
ing of an embedded system.[2]

AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by
Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC
single-chip microcontrollers. AVR was one of the first microcontroller families to use
on-chip flash memory for program storage, as opposed to one-time programmable
ROM, EPROM, or EEPROM used by other microcontrollers at the time.[2]

Some mostly used AVR microcontrollers are:-

• ATtiny and family of microcontrollers

• ATmega8 microcontroller

• ATmega16 microcontroller

• ATmega32 microcontroller

• ATmega328 microcontroller

4

Our project deals with the implementation of ATtiny microcontrollers in eSim. The
ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR en-
hanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATtiny25/45/85 achieves throughputs approaching 1 MIPS per MHz allowing
the system designer to optimize power consumption versus processing speed.[4]

eSim is a free/libre and open source EDA tool for circuit design, simula- tion,
analysis and PCB design developed by FOSSEE, IIT Bombay. It is an integrated
tool built using free/libre and open source software such as KiCad, Ngspice, NGHDL
and GHDL. eSim is released under GPL. Because of this, it has the necessary pack-
ages and tools to integrate microcontroller into it.[5]

eSim offers similar capabilities and ease of use as any equivalent proprietary
software for schematic creation, simulation and PCB design, without having to pay
a huge amount of money to procure licenses. Hence it can be an affordable al-
ternative to educational institutions and SMEs. It can serve as an alternative to
commercially available/licensed software tools like OrCAD, Xpedition and HSPICE.

In this project, the ATtiny x5 family of microcontrollers is implemented using
NGHDL (mixed mode simulation feature of eSim). With NGHDL one can define
new digital models by writing a vhdl code and do mixed mode simulation using
ngspice.Thus this feauture of eSim is used to efficiently describe the behavior of the
Attiny microcontrollers.

5

Chapter 2

Problem Statement

Implementing the ATtiny x5 family of microcontrollers in eSim using
NGHDL module present already in eSim so that the user can easily
simulate microcontroller based projects by uploading a HEX Code of
the C file written by compilers like AVR-GCC, Arduino IDE, etc.

2.1 Framework Developed

The framework which was already developed for the micro-controller implementa-
tion in eSim is to design the the layout and peripherals of the micro-controller (pin
configurations) in VHDL language and simulating its internal processing in C lan-
guage and co-simulating them (by linking them together) during run time. This
method is selected to be most optimal because we already have NGHDL module in
eSim by which we create new models by writing its functionality in a VHDL code
and utilizes the best parts of the two programming languages C (ease and flexibility
of writing)and VHDL(ease of defining a digital component).

Figure 2.1: Framework Developed

6

2.2 Approach

As the framework to implement the micro-controller is already designed, the next
step was to write the internal processing of the micro-controllers in C code. Thus
66 instructions of the ATtiny family micro-controllers were implemented by us in
the C code(while some were implemented earlier) by the following methodology:

• Each instruction is identified by its opcode by using a if else ladder and the
functionality of the instruction is defined in that code.

• At the end of each instruction the PC value is incremented or jumped according
to the instruction working.

• Each instruction is tested after implementation in eSim by giving its opcode
to the hex file and edited if changes required

Modules like timer 0 and timer 1 were also implemented by following method:

• Define the functionality in C file as a function.

• Test the implemented modes by verifying the timer waveform and the output
frequency with the standard frequency formula defined for each mode .

7

Chapter 3

Software Requirements

The above architecture depends upon some software. These software provide a
platform for our proposed implementation. The software used are listed below:

3.1 NGHDL

Ngspice supports mixed mode simulation. It can simulate both digital and analog
components.

Ngspice has something called code-model which defines the behavior of your
component and can be used in the netlist. For example you can create a full-adder’s
code-model in Ngspice and use it in any circuit netlist of Ngspice.[8]

Now the question is if we already have digital model creation in Ngspice, then
why this interfacing?

Well, in Ngspice, it is difficult to write your own digital code-models. Though,
many people are familiar with GHDL and can easily write the VHDL code. So the
idea of interfacing is just to write VHDL code for a model and use it as a dummy
model in Ngspice. Thus, whenever Ngspice looks for that model, it will actually
call GHDL to get the results. GHDL’s foreign language interface is used for this
inter-process communication.

This framework is tried and tested, and gives accurate simulation results. Also
NGHDL is only available for Ubuntu v16.04 as of 30th May,2020.[8]

3.2 Linux Commands

As of now NGHDL is based on the Ubuntu operating system. Therefore, in order
to work with the NGHDL, one must be very much familiar with the Linux com-
mands. Here in the proposed implementation as well the linux commands were used
exhaustively. As of now NGHDL is compatible with Ubuntu 16.04-18.04.

8

3.3 AVR GCC

AVR GCC is an open source compiler which is used to convert user made C code
to hex code. This is not integrated in the framework at the moment as the user is
intended to directly upload hex file (compiling C to hex himself/herself). But may
be integrated inside eSim in the future - which will allow user to directly upload the
C code.

3.4 eSim

As discussed earier, eSim (previously known as Oscad / FreeEDA) is a free/libre
and open source EDA tool for circuit design, simulation, analysis and PCB design.
The proposed implementation is carried out using eSim in order to build the circuit
using the blocks generated by NGHDL and the components already present in the
eSim. The circuit to be tested and simulated is build in the EEschema. The circuit
is then converted to Ngspice using KiCAD to Ngspice Converter. The simulation is
carried out using the NGHDL feature of eSim.

9

Chapter 4

ATtiny x5 Family of
Microcontrollers

The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cy-
cle, the ATtiny25/45/85 achieves throughputs approaching 1 MIPS per MHz allow-
ing the system designer to optimize power consumption versus processing speed.[4]

4.1 Pin Configuration

Figure 4.1: Pin Configuration

10

4.2 Block Diagram

Figure 4.2: Block Diagram

11

The AVR core combines a rich instruction set with 32 general purpose working
registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU),
allowing two independent registers to be accessed in one single instruction executed
in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

4.3 ATtiny Memories

4.3.1 In-System Re-programmable Flash Program Memory

The ATtiny25/45/85 contains 2/4/8K bytes On-chip In-System Reprogrammable
Flash memory for program storage. Since all AVR instructions are 16 or 32 bits
wide, the Flash is organized as 1024/2048/4096 x 16.

4.3.2 SRAM Data Memory

The lower 224/352/607 Data memory locations address both the Register File, the
I/O memory and the internal data SRAM. The first 32 locations address the Regis-
ter File, the next 64 locations the standard I/O memory, and the last 128/256/512
locations address the internal data SRAM.

The five different addressing modes for the Data memory cover: Direct, Indirect
with Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-
increment. In the Register File, registers R26 to R31 feature the indirect addressing
pointer registers. The direct addressing reaches the entire data space. The Indirect
with Displacement mode reaches 63 address locations from the base address given
by the Y- or Zregister.

4.3.3 EEPROM Data Memory

The ATtiny25/45/85 contains 128/256/512 bytes of data EEPROM memory. It is
organized as a separate data space, in which single bytes can be read and written.
The EEPROM has an endurance of at least 100,000 write/erase cycles. The ac-
cess between the EEPROM and the CPU is described in the following, specifying
the EEPROM Address Registers, the EEPROM Data Register, and the EEPROM
Control Register.

4.3.4 I/O Memory

All ATtiny25/45/85 I/Os and peripherals are placed in the I/O space. All I/O
locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions,
transferring data between the 32 general purpose working registers and the I/O
space. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible
using the SBI and CBI instructions. In these registers, the value of single bits can
be checked by using the SBIS and SBIC instructions. Refer to the instruction set

12

section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data
space using LD and ST instructions, 0x20 must be added to these addresses.

13

Chapter 5

Implementation of Instruction Set

5.1 C Code

The following has been used and defined before executing the instructions:

int debugMode=1;

int PB0,PB1,PB2,PB3,PB4,PB5,wait_Clocks=0;

int PC = 0;

int SP = 512;

Debug Mode – It will show the execution of the instructions steps and the up-
dated SREG (Status Register).

PB0-PB5 – The INOUT ports.

PC- Program counter. A program counter is a register that contains the addr
(location) of the instruction being executed at the current time. As each instruction
gets fetched, the program counter increases its stored value by 2.

SP- Stack Pointer. The Stack is mainly used for storing temporary data, like lo-
cal variables and return addresses after interrupts and subroutine calls.The Stack
Pointer Register always points to the top of the Stack. The Stack is filled from higher
memory locations to lower memory locations that is from bottom to top therefore,
SP is initialised as 512 which is the bottom most location. This implies that a Stack
PUSH command will decrease the SP and PULL will increase the SP.

struct memory//Structure to store RAM and other registers

{

unsigned char data;

}prog_mem[size],GPR[32],SREG[8],IOREG[64],SRAM[512];

struct BinArrays

{

14

int arr[8];

}bin[3];

Struct Memory–It is the structure defined for storing the Program Memory
(prog mem), General Purpose Registers (GPR), Status Registers (SREG), I/O Reg-
isters (IOREG), Internal RAM (SRAM). The size of all the registers is 8 bit as they
are defined by unsigned char.

Struct BinArray–It is the structure to define Binary arrays, there are three Bin-
sArray of size 8 bit. These are defined for temporary use and for ease of writing code.

Few more functions are defined before the instructions are performed. They are:

• clearbins(to clear bin arrays),

• Hex2Bin(to convert hex to binary, this makes use of BinArrays),

• Maptoram (to map to external hex file),

• Void input

• Timer

• Setpins(to set pins PB0-PB5 for displaying output)

• Timer1

• Void compute(to perform main computations under which all instructions are
defined)

The 16 bit opcode of the instructions is represented by b1,b2,b3,b4 (4 bits each)
which are used in the below code . For example if the opcode is -1001 1100 0110
0001 then b1 is 1001, b2 is 1100, b3 is 0110 and b4 is 0001. Instructions are decoded
by the opcodes and executed.

5.1.1 CP – Compare

else if(b1==0x1 && b2>=4 && b2<=7)

{

if(debugMode==1)

printf("\nCP instruction decoded\n");

//Comparing Rd and Rr (Reg data doesn't have to be modified)

unsigned char r=((b2>>1)&1)*16+b4,

d=(b2&1)*16+b3;↪→

if(debugMode == 1)

printf("\n%X - %X = %d\n",GPR[d].data,GPR[r].data,GPR[d].data

-GPR[r].data);↪→

15

//UPDATE FLAGS

if(GPR[d].data < (GPR[r].data))

SREG[0].data = 1;// carry flag

else

SREG[0].data = 0;

if(GPR[d].data - GPR[r].data == 0)

SREG[1].data = 1;//zero flag

else

SREG[1].data=0;

unsigned char dl=GPR[d].data & 0x80;

unsigned char rl=GPR[r].data & 0x80;

unsigned char fl=(GPR[d].data - GPR[r].data) & 0x80;

if (fl==0x80)// negative flag

SREG[2].data=1;

else

SREG[2].data=0;

unsigned char f=(GPR[d].data & 0xf);//half carry flag

unsigned char g=(GPR[r].data & 0xf);

printf("%X,%X",f,g);

if (f<g)

SREG[5].data=1;

else

SREG[5].data=0;//overflow flag

if(dl==0 && rl==0x80 && fl==0x80)

SREG[3].data=1;

else if(dl==0x80 && rl==0 && fl==0)

SREG[3].data=1;

else

SREG[3].data=0;

SREG[4].data=SREG[3].data ^ SREG[2].data;//signed flag

PC += 0x2;

}

This instruction performs a compare between two registers Rd and Rr. None of the
registers are changed. All conditional branches can be used after this instruction.[11]
In this code, Rr and Rd have been defined as per the opcode and then compared.
After that, the status register flags are updated. At the end PC is incremented by
two to execute the instruction at next location.

16

5.1.2 CPC – Compare with Carry

else if(b1==0x0 && b2>=4)

{

if(debugMode==1)

printf("\nCPC instruction decoded\n");

unsigned char r=((b2>>1)&1)*16+b4;//setting r and d as per opcode

unsigned char d=(b2&1)*16+b3;

unsigned char c=SREG[0].data;

if(debugMode == 1)

printf("\n%X - %X -%X = %d\n",GPR[d].data,GPR[r].data,c,GPR[d].data

-GPR[r].data- c);↪→

//UPDATE FLAGS

if(GPR[d].data < (GPR[r].data + c))// carry flag

SREG[0].data = 1;

else

SREG[0].data = 0;

if(GPR[d].data - GPR[r].data - c == 0)//unchanged zero flag

SREG[1].data = SREG[1].data;

else

SREG[1].data=0;

unsigned char dl=GPR[d].data & 0x80;

unsigned char rl=GPR[r].data & 0x80;

unsigned char fl=(GPR[d].data - GPR[r].data - c) & 0x80;

if (fl== 0x80)// negative flag

SREG[2].data=1;

else

SREG[2].data=0;

unsigned char f=GPR[d].data & 0xf;//half carry flag

unsigned char g=GPR[r].data & 0xf;

if (f<(g+c))

SREG[5].data=1;

else

SREG[5].data=0;//overflow flag

if(dl==0 && rl==0x80 && fl==0x80)

SREG[3].data=1;

else if(dl==0x80 && rl==0 && fl==0)

SREG[3].data=1;

else

SREG[3].data=0;

17

SREG[4].data=SREG[3].data ^ SREG[2].data;//signed flag

PC += 0x2;

}

This instruction performs a compare between two registers Rd and Rr and also takes
into account the previous carry. None of the registers are changed. All conditional
branches can be used after this instruction.[11] In this code, Rr , Rd and carry
flag have been defined as per the opcode and then compared. After that, the status
register flags are updated. Then PC is incremented by 2 to execute next instruction.

5.1.3 CPI – Compare with Immediate

else if(b1==0x03)

{

if(debugMode==1)

printf("\n CPI instruction decoded\n");

unsigned char k = b2*16 + b4;//setting k reg as per opcode

if(debugMode == 1)

printf("\n%X - %X = %d\n",GPR[b3].data,k,GPR[b3].data - k);

//UPDATE FLAGS

if(GPR[b3].data == k)// zero flag

SREG[1].data = 1;

else if(GPR[b3].data != k)

SREG[1].data = 0;

if(GPR[b3].data < k)// carry flag

SREG[0].data = 1;

else

SREG[0].data = 0;

unsigned char rl=GPR[b3].data & 0x80;

unsigned char kl=k & 0x80;

unsigned char fl=GPR[b3].data-k & 0x80;

if (fl==0x80)// negative flag

SREG[2].data=1;

else

SREG[2].data=0;

unsigned char f=GPR[b3].data & 0xf;//half carry flag

k= k & 0xf;

if (f<k)

SREG[5].data=1;

18

else

SREG[5].data=0;//overflow flag

if(rl==0 && kl==0x80 && fl==0x80)

SREG[3].data=1;

else if(rl==0x80 && kl==0 && fl==0)

SREG[3].data=1;

else

SREG[3].data=0;

SREG[4].data=SREG[3].data ^ SREG[2].data;//signed flag

PC += 0x2;

}

This instruction performs a compare between register Rd and a constant. The
register is not changed. All conditional branches can be used after this instruction.
In the code we perform compare and then set the status register flags after it.Then
PC is incremented by 2 to execute next instruction.

5.1.4 ICALL – Indirect Call to Subroutines

else if(b1==0x9 && b2==0x5 && b3==0 && b4==0x9)

{

if(debugMode==1)

printf("\nICALL instruction decoded\n");

int k=PC+2;

SRAM[SP-1].data=k;//lower 8 bits

SRAM[SP].data=k>>8;//upper 8 bits

SP -= 2;

PC = GPR[30].data + GPR[31].data*256;// Z pointer register

}

Calls to a subroutine within the Program memory. The return address (to the in-
struction after the CALL) will be stored onto the Stack. The Stack Pointer uses a
post-decrement scheme during CALL. In the code, pc+2 (pc of the next instruction)
is given to k. The upper and lower bits of k are given to the stack as pointed by the
stack pointer , SP. Later the SP is decremented by 2 because we filled stack by two
addresses (Stack is filled from higher memory locations to lower memory locations
). Now it points to the top of the stack. Then we call the subroutine as given by
the z pointer register.

19

5.1.5 IJMP – Indirect Jump

else if(b1==0x9 && b2==0x4 && b3==0 && b4==0x9)

{

if(debugMode==1)

printf("\nIJMP instruction decoded\n");

PC = GPR[30].data + GPR[31].data*256;// Z pointer register

}

Indirect jump to the address pointed to by the Z (16 bits) Pointer Register in the
Register File. The Z- pointer Register is 16 bits wide (Register 30 and 31 in register
file).Then PC is incremented by 2 to execute next instruction.

5.1.6 SER – Set all Bits in Register

else if(b1==0xD && b2==0xF && b4==0xF)

{

if(debugMode==1){

printf("SER instruction decoded\n");

printf("\nBefore execution: Reg[%d] = %X\n",b3,GPR[b3].data);

}

GPR[b3].data = 0xFF;// loading in Rd

if(debugMode==1)

printf("\nAfter execution: Reg[%d] = %X\n",b3,GPR[b3].data);

PC += 0x2;

}

Loads 0xFF directly to register Rd. In the code , Rd is given by GPR[b3]. Then
PC is incremented by 2 to execute next instruction.

5.1.7 SBI – Set Bit in I/O Register

else if(b1==0x9 && b2==0xA)

{

char b,bits;

if (b4>7)

b=b4-8;

else

b=b4;

char A= b3*2 + (b4>>3);

20

if(debugMode==1){

printf("\nSBI instruction decoded\n");

printf("\nBefore execution: Reg[%d] =

%X\n",A,IOREG[A].data);↪→

}

if(b==0)

bits=1;

else if(b==1)

bits=2;

else if(b==2)

bits=4;

else if(b==3)

bits=8;

else if(b==4)

bits=16;

else if(b==5)

bits=32;

else if(b==6)

bits=64;

else if(b==7)

bits=128;

IOREG[A].data = IOREG[A].data | bits;

if (debugMode==1)

printf("\nAfter execution: Reg[%d] =

%X\n",A,IOREG[A].data);↪→

PC += 0x2;

}

Sets a specified bit in an I/O Register. This instruction operates on the lower 32 I/O
Registers – addresses 0-31. In the code, A refers to the I/O Register number and
b refers to the bit number. After that, OR is performed between IOREG and the
bits , to set the specific bit. Then PC is incremented by 2 to execute next instruction.

5.1.8 CBI – Clear Bit in I/O Register

else if(b1==0x9 && b2==8)

{

char b,bits;

if (b4>7)

b=b4-8;

else

b=b4;

21

char A= b3*2 + (b4>>3);

if(debugMode==1){

printf("\nCBI instruction decoded\n");

printf("\nBefore execution: Reg[%d] =

%X\n",A,IOREG[A].data);↪→

}

if(b==0)

bits=0xfe;

else if(b==1)

bits=0xfd;

else if(b==2)

bits=0xfb;

else if(b==3)

bits=0xf7;

else if(b==4)

bits=0xef;

else if(b==5)

bits=0xdf;

else if(b==6)

bits=0xbf;

else if(b==7)

bits=0x7f;

IOREG[A].data = IOREG[A].data & bits;

if (debugMode==1)

printf("\nAfter execution: Reg[%d] =

%X\n",A,IOREG[A].data);↪→

PC += 0x2;

}

Clears a specified bit in an I/O register. This instruction operates on the lower 32
I/O registers – addresses 0-31. In the code, A refers to the I/O Register number
and b refers to the bit number. After that, AND is performed between IOREG and
the bits , to clear the specific bit. Then PC is incremented by 2 to execute next
instruction.

5.1.9 AND – Logical AND

else if(b1==0x2 && b2>=0 && b2<=3)

{

unsigned char r=((b2>>1)&1)*16+b4,d=(b2&1)*16+b3;//setting r and d as

per opcode↪→

22

if(r == d && debugMode==1)

printf("\nTST instruction decoded\n");//TST = AND Rd,Rd

else if (r != d && debugMode==1)

printf("\nAND instruction decoded\n");

if(debugMode == 1)

printf("\n%X AND %X = %X\n",GPR[d].data,GPR[r].data,GPR[d].data &

GPR[r].data);↪→

GPR[d].data = GPR[d].data & GPR[r].data;

//UPDATE FLAGS

if(GPR[d].data == 0X0)

SREG[1].data = 1;//zero flag

else

SREG[1].data=0;

unsigned char dl=GPR[d].data & 0x80;

if (dl==0x80)// negative flag

SREG[2].data=1;

else

SREG[2].data=0;

SREG[3].data=0;//overflow flag

SREG[4].data=SREG[3].data ^ SREG[2].data;//signed flag

PC += 0x2;

}

Performs the logical AND between the contents of register Rd and register Rr, and
places the result in the destination register Rd. In the code , Rd and Rr are identi-
fied as per opcode then and is performed. If Rd and Rr are equal, TST instruction
is executed which performs AND between a register and itself. TST – Test for Zero
or Minus. Then status register is updated and PC is incremented by 2 to execute
next instruction.

5.1.10 EOR – Exclusive OR

else if(b1==0x2 && b2>=4 && b2<=7)

{

unsigned char r=((b2>>1)&1)*16+b4, d=(b2&1)*16+b3;//setting r and d

as per opcode↪→

23

if(r==d && debugMode==1)

printf("\nCLR instruction decoded\n");//CLR = EOR Rd,Rd

else if(r !=d && debugMode==1)

printf("\nEOR instruction decoded\n");

if(debugMode == 1)

printf("\n%X XOR %X = %X\n",GPR[d].data,GPR[r].data,GPR[d].data ^

GPR[r].data);↪→

GPR[d].data = GPR[d].data ^ GPR[r].data;

//UPDATE FLAGS

if(GPR[d].data == 0)

SREG[1].data = 1;//zero flag

else

SREG[1].data=0;

unsigned char dl=GPR[d].data & 0x80;

if (dl==0x80)// negative flag

SREG[2].data=1;

else

SREG[2].data=0;

SREG[3].data=0; //overflow flag

SREG[4].data=SREG[3].data ^ SREG[2].data;//signed flag

PC += 0x2;

}

Performs the logical EOR between the contents of register Rd and register Rr and
places the result in the destination register Rd. In the code, Rd and Rd are identi-
fied and exclusive OR is performed between them. If Rd is equal to Rr , then CLR
instruction is performed. CLR – Clear Register. Later the status register is updated
and PC is incremented by 2 to go to the next instruction.

5.1.11 SBC- Subtract with carry

else if(b1==0x00 && b2 >= 0x08 && b2 <= 0x0B)

{

if(debugMode==1)

printf("\nSBC instruction decoded\n");

int dbits[5],rbits[5],Rd=0,Rr=0;

//For finding Rd and Rr

Hex2Bin(0,b2);

24

Hex2Bin(1,b3);

Hex2Bin(2,b4);

rbits[4] = bin[0].arr[1];

dbits[4] = bin[0].arr[0];

for(i=0;i<4;i++)

{

dbits[i] = bin[1].arr[i];

rbits[i] = bin[2].arr[i];

}

for(i=0;i<5;i++)

{

Rd += dbits[i]*pow(2,i);

Rr += rbits[i]*pow(2,i);

}

ClearBins(0); ClearBins(1); ClearBins(2);

if(debugMode == 1)

printf("\nBefore execution\nReg[%d] = %X\nReg[%d] =

%X\n",Rd,GPR[Rd].data,Rr,GPR[Rr].data);↪→

//For finding difference

Hex2Bin(0,GPR[Rd].data);

Hex2Bin(1,GPR[Rr].data);

//Rd = Rd - Rr-C

GPR[Rd].data =GPR[Rd].data - GPR[Rr].data - SREG[0].data;

Hex2Bin(2,GPR[Rd].data);

//For setting SREG

//For setting Carry flag bit

SREG[0].data = (!bin[0].arr[7]&bin[1].arr[7]) |

(bin[1].arr[7]&bin[2].arr[7]) |↪→

(bin[2].arr[7]&!bin[0].arr[7]);

//For setting Zero flag bit

SREG[1].data = !bin[2].arr[0] & !bin[2].arr[1] & !bin[2].arr[2] &

!bin[2].arr[3] &↪→

!bin[2].arr[4] & !bin[2].arr[5] &

!bin[2].arr[6] &

!bin[2].arr[7];

↪→

↪→

//For setting Negative flag bit

SREG[2].data = bin[2].arr[7];

//For setting Overflow flag bit

SREG[3].data = (bin[0].arr[7]&!bin[1].arr[7]&!bin[2].arr[7]) |

(!bin[0].arr[7]&bin[1].arr[7]&bin[2].arr[7]);

//For setting Signed bit

SREG[4].data = SREG[2].data ^ SREG[3].data;

//For setting Half Carry flag bit

SREG[5].data = (!bin[0].arr[3]&bin[1].arr[3]) |

(bin[1].arr[3]&bin[2].arr[3]) |↪→

25

(bin[2].arr[3]&!bin[0].arr[3]);

if(debugMode==1)

printf("\nAfter execution\nReg[%d] = %X\nReg[%d] =

%X\n",Rd,GPR[Rd].data,Rr,GPR[Rr].data);↪→

ClearBins(0); ClearBins(1); ClearBins(2);

PC += 0x2;

}

SBC instruction subtracts 2 registers(Rd and Rr) along with carry and saves the
result in the first register. Thus from the opcode of SBC Rd and Rr are identified
as per opcode by bin arrays and then subtraction along with carry option takes
place. All status register bits are changed accordingly and at the end PC value is
incremented.

5.1.12 SBR-Set Bits in Register

else if(b1==0x06)

{

unsigned char k = b2*16 + b4;//constant value

if(debugMode == 1)

{

printf("\nSBR instruction decoded\n");

printf("\nReg[%d](%X) or %X =

%X\n",b3,GPR[b3].data,k,GPR[b3].data | k);↪→

}

//Rd=Rd or k(to set specific bit in Rd)

GPR[b3].data = GPR[b3].data | k;

//overflow is always zero

SREG[3].data=0;

//setting negative flag

if(GPR[b3].data>=80)

SREG[2].data = 1;

else

SREG[2].data = 0;

//sign flag(as v=0,signflag=negflag)

SREG[4].data = SREG[2].data;

//checking zero flag

if(GPR[b3].data == 0x0)

SREG[1].data = 1;

else

SREG[1].data = 0;

26

PC += 0x02;

}

SBR instruction sets a particular bit in the register(Rd).Thus first register Rd and
constant(K) value are identified and then perform OR operation between k and reg-
ister.Thus turning kth bit of Rd. status bits are changed accordingly.Overflow flag
is always zero as overflow doesn’t takes place,thus sign flag is equated to negative
flag.

5.1.13 SBRC- Skip if Bit in Register is Cleared

else if(b1==0x0F && (b2==0x0C || b2==0x0D) && (b4>=0x00 && b4<=0x07))

{

if(debugMode == 1)

{

printf("\nSBRC instruction decoded\n");

}

unsigned char r= (b2 & 1)*16 + b3;//Rr value

unsigned char d=0;

//finding b value

bin[0].arr[b4]=1;

for(i=0;i<8;i++)

d += bin[0].arr[i]*pow(2,i);//converting decimal

//checking if Rr(b) = 0

unsigned char k= GPR[r].data & d;

if (k == 0)

PC= PC+0x04;

else

PC=PC+0x02;

ClearBins(0);

}

SBRC checks if the kth bit of a general purpose register is 1 or zero and then jumps
or changes PC value accordingly .So,first register(r) and constant(d) values are found
.Later d value is convered into binary(by use of bin array) such that dth bit of that
binary is 1and then converted into decimal for bitwise AND operation.Now bitwise
AND between r and d operation decides if the bit is 0 and 1.If zero it skips next
instruction and pc increments by 4 or else pc as usually increments by 2.

27

5.1.14 SBRS- Skip if Bit in Register is Set

else if(b1==0x0F && (b2==0x0E || b2==0x0F) && (b4>=0x00 && b4<=0x07))

{

if(debugMode == 1)

printf("\nSBRS instruction decoded\n");

unsigned char r= (b2 & 1)*16 + b3;

unsigned char d=0;

//finding b value

bin[0].arr[b4]=1;

for(i=0;i<8;i++)

d += bin[0].arr[i]*pow(2,i);//converting decimal

//checking if Rr(b) = 1

unsigned char k= GPR[r].data & d;

if (k == d)

PC= PC+0x04;

else

PC=PC+0x02;

ClearBins(0);

}

SBRC checks if the kth bit of a general purpose register is 1 or zero and then jumps
or changes PC value accordingly .So,first register(r) and constant(d) values are found
.Later d value is convered into binary(by use of bin array) such that dth bit of that
binary is 1and then converted into decimal for bitwise AND operation.Now bitwise
AND between r and d operation decides if the bit is 0 and 1.If one it skips next
instruction and pc increments by 4 or else pc as usually increments by 2.

5.1.15 SBIC- Skip is Bit in I/O register is cleared

else if(b1==0x09 && b2==0x09)

{

if(debugMode == 1)

printf("\nSBIC instruction decoded\n");

unsigned char r= b3*2 + (b4 & 8)%8;// finding IO register A

unsigned char d=0;

//finding b value

bin[0].arr[b4 & 7]=1;

for(i=0;i<8;i++)

d += bin[0].arr[i]*pow(2,i);

//checking id A(b)=0

unsigned char k= IOREG[r].data & d;

if (k == 0)

28

PC= PC+0x04;

else

PC=PC+0x02;

ClearBins(0);

}

SBIC checks if the kth bit of a Inout register is 1 or zero and then jumps or changes
PC value accordingly .So,first register(r) and constant(d) values are found .Later d
value is convered into binary(by use of bin array) such that dth bit of that binary
is 1and then converted into decimal for bitwise AND operation.Now bitwise AND
between r and d operation decides if the bit is 0 and 1.If zero it skips next instruction
and pc increments by 4 or else pc as usually increments by 2

5.1.16 PUSH

else if(b1==0x09 && (b2==0x02 || b2== 0x03) && b4==0x0F)

{

if(debugMode==1)

printf("\nPUSH instruction decoded\n");

unsigned char k =(b2 & 1)*16 + b3;//Rd value

SRAM[SP].data=GPR[k].data;//pushing into stack

printf("\n SRAM[SP]: %X \n",SRAM[SP].data);//for testing

SP=SP-1;

PC=PC+0x02;

}

PUSH operation pushes the selected General Purpose Register value into the stack,
Decrement SP value by 1 and goes to next instruction. First,Register number is
identified(Rd) and its values and pushed into stack.As registers contain only 8 bit
value,its stack pointer is decremented only by 1 bit.Thus PC increments and goes
to next instruction.

5.1.17 POP

else if(b1==0x09 && (b2==0x00 || b2== 0x01) && b4==0x0F)

{

if(debugMode==1)

printf("\nPOP instruction decoded\n");

unsigned char k=(b2 & 1)*16 + b3;//finding Rd

GPR[k].data=SRAM[SP+1].data;//getting values from stack

printf("\n after execution GPR[k]: %X",GPR[k].data);//for testing

SP=SP+1;

PC=PC+0x02;

}

29

In POP operation, the value from stack are given back to General Purpose register
(Rd)and increments SP value.Thus first Rd value is found and the given value from
stack.As General Purpose register takes only 8 bit value,stack pointer only incre-
ments by 1 value.The PC value is incremented to go to next instruction.

5.1.18 RCALL-Relative Call to Subroutine

else if(b1==0x0D)

{

if(debugMode==1)

printf("\nRCALL instruction decoded\n");

int k=b2*256+b3*16+b4;//k value

SRAM[SP-1].data=PC+2;//storing next instruction PC(lsb 4 bits)

SRAM[SP].data=(PC+2)/256;//msb 4 bits of pc

if(debugMode==1)

printf("\nSRAM value: %X %X",SRAM[SP].data,SRAM[SP-1].data);

SP - = 2;

PC += k*2 + 2;

}

It relatively jumps to particular address by saving the PC value f next intruction
into stack , so that it can reach to back to next instruction after completing the sub-
routine.So, first the k value to where the PC needs to updated is calculated.Later
the PC value of next instruction is pushed into stack and thus stackpointer gets
decremented by 2(as PC is 12 bits and Stack each memory cell stores 8 bit).Later
PC is moved to PC+2K+2(subroutine).

5.1.19 RET-Return from Subroutine

else if(b1==0x09 && b2==0x05 && b3== 0x00 && b4== 0x08)

{

if(debugMode==1)

printf("\nRET instruction decoded\n");

PC = SRAM[SP+1].data + SRAM[SP+2].data*256;//returning pc values from

stack↪→

SP += 2;

}

Returns from subroutine. The return address is loaded from the STACK. The Stack
Pointer uses a pre- increment scheme during RET.AT the end of subroutine RET

30

instruction is used to coe back to pragram.Thus,C value stored in stack is pushed
back to PC and SP is incremented by 2(as PC took 2 memory locations in stack).

5.1.20 NEG-Two’s complement

else if(b1==0x09 && (b2==0x05 || b2==0x04) && b4==0x01)

{

unsigned char k=(b2 & 1)*16 + b3;//Rd value

if(debugMode == 1)

{

printf("\nNEG instruction decoded\n");

printf("\nBefore execution: Reg[%d]: %X",k,GPR[k].data);

}

GPR[k].data = 0x00-GPR[k].data;//2's complement

//setting carry and zero flag

if(GPR[k].data == 0x0)

{

SREG[1].data = 1;

SREG[0].data = 0;

}

else

{

SREG[1].data = 0;

SREG[0].data = 1;

}

if(GPR[k].data>=80)

SREG[2].data = 1;//neg flag

else

SREG[2].data = 0;

if(GPR[k].data==80)

SREG[3].data = 1;

else

SREG[3].data = 0;

if(SREG[3].data == SREG[2].data)

SREG[4].data = 0;//sign flag

else

SREG[4].data = 1;

int s=GPR[k].data & 8;

if(s == 8)

SREG[5].data = 1;//halfcarry

else

SREG[5].data = 0;

if(debugMode == 1)

printf("\nAfter execution: Reg[%d]: %X",k,GPR[k].data);

31

PC += 0x02;

}

Replaces the contents of register Rd with its two’s complement; the value 0x80 is left
unchanged.For finding 2’s complement the logic used here is 2 subtract the number
from 00 as for negative numbers are usually also stored in 2’s complement.

Flags:negative flag is equal to MSB of the results.Overflow flag is will occur if and
only if the contents of the Register after operation (Result) is 0x80. C flag Set if
there is a borrow in the implied subtraction from zero; cleared otherwise. The C
Flag will be set in all cases except when the contents of Register after operation is
0x00. Zero flag Set if the result is 0x00.h flag Set if there was a borrow from bit 3
and sign flag at end is xor of overflow and negative flag.

5.1.21 LSR- Logical Shift Right

else if(b1==0x09 && (b2==0x05 || b2==0x04) && b4==0x06)

{

unsigned char k=(b2&1)*16+b3;//Rd value

if(debugMode == 1)

{

printf("\nLSR instruction decoded\n");

printf("\nBefore execution: Reg[%d]: %X",k,GPR[k].data);

}

//giving Rd(0) to carry flag

if(GPR[k].data & 0x01 == 0x01)

SREG[0].data = 1;

else

SREG[0].data = 0;

//right shiting

GPR[k].data = GPR[k].data/0x02;

if(GPR[k].data == 0x0)

SREG[1].data = 1;//setting zero flag

else

SREG[1].data = 0;

SREG[2].data = 0;//neg flag

SREG[3].data = SREG[0].data;//overflow flag

SREG[4].data = SREG[3].data;//sign flag

if(debugMode == 1)

printf("\nAfter execution: Reg[%d]: %X",k,GPR[k].data);

PC += 0x02;

}

32

Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C
Flag of the SREG.This operation effectively divides an unsigned value by two. The
C Flag can be used to round the result.Thus first the register to be left shifted is
calculated.Then the right shifting is done by dividing number by 2 and all the flags
are set accordingly.Flags: As MSB is always zero the negative flag is zero.Carry flag
is LSB bit and overflow is xor of negative and carry thus equal to carry flag .So,
overflow is equal negative flag.

5.1.22 BSET- Bit set in SREG

else if(b1==0x09 && b2==0x04 && b4==0x08 && b3>=0 && b3<=7)

{

if(debugMode == 1)

{

if(b3 == 0x0)

printf("\nSEC instruction decoded\n");

else if(b3 == 0x01)

printf("\nSEZ instruction decoded\n");

else if(b3 == 0x02)

printf("\nSEN instruction decoded\n");

else if(b3 == 0x03)

printf("\nSEV instruction decoded\n");

else if(b3 == 0x04)

printf("\nSES instruction decoded\n");

else if(b3 == 0x05)

printf("\nSEH instruction decoded\n");

else if(b3 == 0x06)

printf("\nSET instruction decoded\n");

else if(b3 == 0x07)

printf("\nSEI instruction decoded\n");

}

SREG[b3].data = 0x01;

PC += 0x2;

}

Sets a single Flag or bit in SREG. The flag to be changed in SREG is value of b3
in opcode .Thus particular set instructions are identified according to b3 value and
the flag is set using b3 value.

33

5.1.23 OR- logical OR

/ OR by VY 12-05-2020

else if(b1==0x02 && b2>=0X08 && b2<=0X0B)

{

unsigned char d= (b2 & 1)*16+b3;//Rd

unsigned char r= (b2 & 2)*8+b4;//Rr

if(debugMode == 1)

{

printf("\nOR instruction decoded\n");

printf("\nbefore execution: Reg[%d]: %X",d,GPR[d].data);

}

GPR[d].data = GPR[d].data | GPR[r].data;//Rd OR Rr

if(debugMode == 1)

printf("\nAfter execution with Reg[%d]: %X = Reg[%d]:

%X",r,GPR[r].data,d,GPR[d].data);↪→

SREG[3].data=0;//overflow flag

if(GPR[d].data>=80)

SREG[2].data = 1;//neg flag

else

SREG[2].data = 0;

SREG[4].data = SREG[2].data;//sign flag

if(GPR[d].data == 0x0)//changing carry falg

SREG[1].data = 1;

else

SREG[1].data = 0;

PC += 0x2;

}

Performs the logical OR between the contents of register Rd and register Rr, and
places the result in the destination register Rd.First the Rd and Rr values (values of
registers for which OR operation takes place)are found and logical OR is found and
stored back in Rd.Flags: Here the overflow flag is always zero thus sign flag is equal
to negative flag.Negative flag is equal to MSB and zero flag tests for zero result and
sets.

34

5.1.24 BCLR-Bit Clear in SREG

else if(b1==0x09 && b2==0x04 && b4==0x08 && b3>=0X08 && b3<=0X0F)

{

if(debugMode == 1)

{

if(b3 == 0x0)

printf("\nCEC instruction decoded\n");

else if(b3 == 0x01)

printf("\nCEZ instruction decoded\n");

else if(b3 == 0x02)

printf("\nCEN instruction decoded\n");

else if(b3 == 0x03)

printf("\nCEV instruction decoded\n");

else if(b3 == 0x04)

printf("\nCES instruction decoded\n");

else if(b3 == 0x05)

printf("\nCEH instruction decoded\n");

else if(b3 == 0x06)

printf("\nCET instruction decoded\n");

else if(b3 == 0x07)

printf("\nCEI instruction decoded\n");

}

unsigned char k = b3 & 7;

SREG[k].data = 0x00;

PC += 0x2;

}

Clears a single Flag or bit in SREG.The flag to be changed in SREG is value of b3
in opcode .Thus particular set instructions are identified according to b3 value and
the flag is cleared using b3 value.

5.1.25 RETI- Return from Interrupt

else if(b1==0x9 && b2==0x5 && b3==0x1 && b4==0x8)

{

if(debugMode==1)

printf("\nRETI instruction decoded\n");

PC = (SRAM[SP-1].data << 4 | SRAM[SP].data);//storing the value

of PC from the stack↪→

}

35

Returns from interrupt. The return address is loaded from the STACK and the
Global Interrupt Flag is set.Note that the Status Register is not automatically
stored when entering an interrupt routine, and it is not restored when returning
from an interrupt routine. This must be handled by the application program. The
Stack Pointer uses a pre-increment scheme during RETI.Thus the 12 bit PC value
is stored back to PC by tis instruction.

5.1.26 MOV- Copy Register

else if(b1==0x2 && b2>=12 && b2<=15)

{ unsigned char b4=((b2>>1)&1)*16+b4;//setting r and d as per

opcode↪→

unsigned char b3=(b2&1)*16+b3;

int a=GPR[b3].data,b=GPR[b4].data;

if(debugMode==1)

{

printf("\nMOV instruction decoded\n");

printf("\nBefore execution: Reg[%d] = %X, Reg[%d] =

%X\n",b3,GPR[b3].data,b4+,GPR[b4].data);↪→

}

GPR[b3].data = GPR[b4].data;//moving the data to destination

location↪→

if(debugMode==1)

printf("\nAfter execution Reg[%d] = %X, Reg[%d] =

%X\n",b3,GPR[b3].data,b4,GPR[b4].data);↪→

PC += 0x2;//Incrementing Program Counter

}

This instruction makes a copy of one register into another. The source register Rr is
left unchanged, while the destination register Rd is loaded with a copy of Rr.At start
the 2 registers are identified from opcodes and value of 1 register is given to another.

5.1.27 ROR- Rotate Right through Carry

else if(b1==0x9 && (b2==0x4 || b2==0x5) &&

b4==0x07)↪→

↪→

{ int t;GPR[b3+16].data=0x55;

if(debugMode==1)

36

{

printf("\nROR instruction decoded\n");

printf("\nBefore execution: Reg[%d] =

%X\n",b3+16,GPR[b3+16].data);↪→

}

t=0x01 & GPR[b3+16].data;

GPR[b3+16].data = GPR[b3+16].data>>1; //Rotating

Right↪→

if(SREG[0].data==1)

GPR[b3+16].data = 0x80 | GPR[b3+16].data;

SREG[0].data=t; //updating

C flag↪→

if(GPR[b3+16].data == 0x0) //updating Z

flag↪→

SREG[1].data = 1;

else

SREG[1].data = 0;

if(GPR[b3+16].data>=0x08) //updating N

flag↪→

SREG[2].data = 1;

else

SREG[2].data = 0;

SREG[3].data = SREG[0].data^SREG[2].data; //updating V

flag↪→

SREG[4].data = SREG[3].data^SREG[2].data; //updating S

flag↪→

if(debugMode==1)

{

printf("\nAfter execution Reg[%d] =

%X\n",b3+16,GPR[b3+16].data);↪→

}

PC += 0x2;

}

Shifts all bits in Rd one place to the right. The C Flag is shifted into bit 7 of Rd.
Bit 0 is shifted into the C Flag.The Carry Flag can be used to round the result.Thus
in code,the t variable stores the LSB bit of register and then register value is right
shited .Later,the Cflag vlue is given to MSB and LSB value before rotation which
is stored in t is given to Carry flag.Later zero and negative flags are set by check-
ing MSB and if result is zero. Sign and overflow flag are set by using XOR operation.

37

5.1.28 BLD – Bit Load from the T Flag in SREG to a Bit
in Register

else if(b1==0xf && b2>=8 && b2<=9 && b4<=7)

{ unsigned char b4=((b2>>1)&1)*16+b4;//setting r and d as per

opcode↪→

unsigned char b3=(b2&1)*16+b3;

int a=GPR[b3].data,mask=0;

if(debugMode==1)

{

printf("\nBLD instruction decoded\n");

printf("\nBefore execution: Reg[%d] =

%X\n",b3,GPR[b3].data);↪→

}

mask=1<<b4;//masking the bits

GPR[b3].data =(GPR[b3].data & ~mask)|(SREG[6].data<<b4) ;//Bit

Load //from the T Flag in SREG

to a Bit in Register

↪→

↪→

if(debugMode==1)

printf("\nAfter execution Reg[%d] =

%X\n",b3,GPR[b3].data);↪→

PC += 0x2;

}

Copies the T Flag in the SREG (Status Register) to bit b in register Rd.In code,first
the Register is identified from opcode and and mask stores number with nth bit
which has to be given T flag value as set to 1.Later that bit is given value of T flag
by first making nth bit as zero by logical and with inverted mask and Logical OR
with Staus register.

5.1.29 BST – Bit Store from Bit in Register to T Flag in
SREG

else if(b1==0xf && b2>=0xA && b2<=0xB && b4<=7)

{ unsigned char b4=((b2>>1)&1)*16+b4;//setting r and d as per

opcode↪→

unsigned char b3=(b2&1)*16+b3;

int a=GPR[b3].data;

38

if(debugMode==1)

{

printf("\nBST instruction decoded\n");

printf("\nBefore execution: Reg[%d] =

%X\n",b3,GPR[b3].data);↪→

}

SREG[6].data = 1 & (GPR[b3].data>>(b4)) ;//Bit Store from Bit

//in Register to T Flag in SREG

PC += 0x2;

}

Stores bit b from Rd to the T Flag in SREG (Status Register).In code the register
is first identified and is shifted by n bits so that the bit to be given to S register
comes to LSB and is given to T flag of Status register by logicakl and with 1.

5.1.30 SBIS – Skip if Bit in I/O Register is Set

else if(b1==0x9 &&

b2==0x0B)↪→

{ unsigned char b4=((b2>>1)&1)*16+b4;//setting r and d as per

opcode↪→

unsigned char b3=(b2&1)*16+b3;

GPR[((0x7 & b3)<<1|(0x8 & b4))].data=0x55;

int temp=0x01;

if(debugMode==1)

printf("SBIS instruction decoded\n");

temp=temp<<(0x7 & b4);

if((GPR[((0x7 & b3)<<1|(0x8 & b4))].data & temp)!=0)//Skipping

//the next instruction if a bit is set

PC += 0x4;

else

PC+=0x02;

}

This instruction tests a single bit in an I/O Register and skips the next instruction
if the bit is set.

5.1.31 ASR – Arithmetic Shift Right

else if(b1==0x9 && b2>=4 && b4==5)

{

39

unsigned char k=(b2&1)*16+b3;//set reg k according to opcode

if(debugMode==1){

printf("\nASR instruction decoded\n");

printf("\nBefore execution: Reg[%d] = %X\n",k,GPR[k].data);

}

SREG[0].data=GPR[k].data & 1;// set or reset carry flag

char l=GPR[k].data & 10000000;

GPR[k].data=((GPR[k].data) >> 1) | l;//right shifting by 1

// update flags

if (GPR[k].data==0)

SREG[1].data=1;// zero flag

else

SREG[1].data=0;

if (l==10000000)

SREG[2].data=1;//negative flag

else

SREG[2].data=0;

SREG[3].data=SREG[0].data ^ SREG[2].data; //overflow flag

SREG[4].data=SREG[3].data ^ SREG[2].data; //signed flag

if(debugMode==1)

printf("\nAfter execution: Reg[%d] = %X\n",k,GPR[k].data);

PC += 0x2;

}

Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded
into the C Flag of the SREG. This operation effectively divides a signed value by
two without changing its sign. The Carry Flag can be used to round the result. In
the code k denotes the Rd register. The zeroth bit is given to the carry flag. ‘l’
denotes the seventhbit and while right shift is performed it is ORed with l so that
the sign of the value in register remains same. Then the SREG is updated and PC
is incremented by 2 to go to the next instruction.

5.1.32 BRBC – Branch if Bit in SREG is Cleared

else if(b1==0xf && b2>=4 && b2<=7)

{

int kbits[7],jump=0,l=0;

char temp=0x0;

l=b4%0x8;

if(debugMode == 1)

{

if(l == 0x0)

printf("\nBRCC instruction decoded\n");

40

else if(l == 0x01)

printf("\nBRNE instruction decoded\n");

else if(l == 0x02)

printf("\nBRPL instruction decoded\n");

else if(l == 0x03)

printf("\nBRVC instruction decoded\n");

else if(l == 0x04)

printf("\nBRGE instruction decoded\n");

else if(l == 0x05)

printf("\nBRHC instruction decoded\n");

else if(l == 0x06)

printf("\nBRTC instruction decoded\n");

else if(l == 0x07)

printf("\nBRID instruction decoded\n");

}

if(SREG[l].data == 0)//Branch if a Bit in SREG is Cleared

{

//For getting Kbits

Hex2Bin(0,b2);

Hex2Bin(1,b3);

Hex2Bin(2,b4);

kbits[6] = bin[0].arr[0];

kbits[5] = bin[0].arr[1];

for(i=0;i<4;i++)

kbits[i+1] = bin[1].arr[i];

kbits[0] = bin[2].arr[3];

if(kbits[6] == 1)//Signed bit set (k is negative)

{

for(i=0;i<6;i++)

temp += kbits[i]*pow(2,i);

temp -= 0x01;

i=0;

while(temp!=0 && i<=6)

{

kbits[i] = temp % 2;

i++;

temp /= 2;

}

for(i=0;i<6;i++)

kbits[i] = !kbits[i];

for(i=0;i<6;i++)

jump += kbits[i]*pow(2,i);

jump *= -2;

}

41

else

{

for(i=0;i<6;i++)

jump += kbits[i]*pow(2,i);

jump *= 2;

}

if(debugMode == 1)

printf("\nJumping from PC:%X to PC:

%X",PC,PC+jump+0x02);↪→

PC += jump + 0x02;

}

else

PC += 0x2;

ClearBins(0); ClearBins(1); ClearBins(2);

}

Conditional relative branch. Tests a single bit in SREG and branches relatively to
PC if the bit is cleared. This instruction branches relatively to PC in either direction
(PC - 63 ≤ destination ≤ PC + 64). Parameter k is the offset from PC and is
represented in two’s complement form. In the code,the branch condition is checked
and if any of the branch satisfies , the K value (value by which PC should relatively
jump) is identified and given to kbits array. Then the sixth bit is identifies to check
whether the value is negative or postive. If it is negative then two’s compliment is
performed and jump value is identied, otherwise if it is postive then jump value is
simply the kbits in decimal form. Then PC value is incremented by jump + 2. If
the branch conditon fails , then PC is simply incremented by 2, to go to the next
instruction.

5.1.33 BRBS – Branch if Bit in SREG is Set

else if(b1==0xf && b2>=0 && b2<=3)

{

int kbits[7],jump=0,l=0;

char temp=0x0;

l=b4%0x8; //extracting the bit postion to be

checked↪→

if(debugMode == 1)

{

if(l == 0x0)

printf("\nBRCS instruction decoded\n");

else if(l == 0x01)

printf("\nBREQ instruction decoded\n");

42

else if(l == 0x02)

printf("\nBRMI instruction decoded\n");

else if(l == 0x03)

printf("\nBRVS instruction decoded\n");

else if(l == 0x04)

printf("\nBRLT instruction decoded\n");

else if(l == 0x05)

printf("\nBRHS instruction decoded\n");

else if(l == 0x06)

printf("\nBRTS instruction decoded\n");

else if(l == 0x07)

printf("\nBRIE instruction decoded\n");

}

if(SREG[l].data == 1)//Branch if Bit in SREG is Set

{

//For getting Kbits

Hex2Bin(0,b2);

Hex2Bin(1,b3);

Hex2Bin(2,b4);

kbits[6] = bin[0].arr[0];

kbits[5] = bin[0].arr[1];

for(i=0;i<4;i++)

kbits[i+1] = bin[1].arr[i];

kbits[0] = bin[2].arr[3];

if(kbits[6] == 1)//Signed bit set (k is negative)

{

for(i=0;i<6;i++)

temp += kbits[i]*pow(2,i);

temp -= 0x01;

i=0;

while(temp!=0 && i<=6)

{

kbits[i] = temp % 2;

i++;

temp /= 2;

}

for(i=0;i<6;i++)

kbits[i] = !kbits[i];

for(i=0;i<6;i++)

jump += kbits[i]*pow(2,i);

jump *= -2;

}

else

{

43

for(i=0;i<6;i++)

jump += kbits[i]*pow(2,i);

jump *= 2;

}

if(debugMode == 1)

printf("\nJumping from PC:%X to PC:

%X",PC,PC+jump+0x02);↪→

PC += jump + 0x02;

}

else

PC += 0x2;

}

Conditional relative branch. Tests a single bit in SREG and branches relatively to
PC if the bit is set. This instruction branches relatively to PC in either direction
(PC - 63 ≤ destination ≤ PC + 64). Parameter k is the offset from PC and is
represented in two’s complement form. In the code,the branch condition is checked
and if any of the branch satisfies , the K value (value by which PC should relatively
jump) is identified and given to kbits array. Then the sixth bit is identifies to check
whether the value is negative or postive. If it is negative then two’s compliment is
performed and jump value is identied, otherwise if it is postive then jump value is
simply the kbits in decimal form. Then PC value is incremented by jump + 2. If
the branch conditon fails , then PC is simply incremented by 2, to go to the next
instruction.

5.1.34 SWAP – Swap Nibbles

else if(b1==0x9 && (b2==0x4 || b2==0x5) && b4==0x2)

{ unsigned char b3=(b2&1)*16+b3; //setting d as per

opcode↪→

int temp;

if(debugMode == 1)

{

printf("\nSWAP instruction decoded\n");

printf("\nBefore execution: Reg[%d]:

%X",b3,GPR[b3].data);↪→

}

temp=GPR[b3].data;

GPR[b3].data=((temp & 0x0F)<<4) | ((temp &0xF0)>>4);// Swapping

the nibbles↪→

if(debugMode == 1)

printf("\nAfter execution: Reg[%d]: %X",b3,GPR[b3].data);

44

PC += 0x02;

}

Swaps high and low nibbles in a register. In the code Rd is identified and nibbles
are swapped. Later the PC is incremented by 2 to go to the next instruction.

5.1.35 INC – Increment

else if(b1==0x09 && (b2==0x05 || b2==0x04) && b4==0x03)

{//setting d as per opcode

unsigned char b3=(b2&1)*16+b3;

if(debugMode == 1)

{

printf("\nINC instruction decoded\n");

printf("\nBefore execution: Reg[%d]:

%X",b3,GPR[b3].data);↪→

}

if(GPR[b3].data==0x7F)//updating V flag

SREG[3].data = 1;

else

SREG[3].data = 0;

GPR[b3].data += 0x01;//incrementing data

if(GPR[b3].data == 0x0)//updating Z flag

SREG[1].data = 1;

else

SREG[1].data = 0;

if(GPR[b3].data>=0x08)//updating N flag

SREG[2].data = 1;

else

SREG[2].data = 0;

SREG[4].data = SREG[3].data^SREG[2].data;//updating S flag

if(debugMode == 1)

printf("\nAfter execution: Reg[%d]: %X",b3,GPR[b3].data);

PC += 0x02;

}

45

Adds one -1- to the contents of register Rd and places the result in the destination
register Rd. The C Flag in SREG is not affected by the operation, thus allowing the
INC instruction to be used on a loop counter in multiple-precision computations.
In the code, the Rd register is identifed and is incremented by one. The flags are
updated accordingly. PC is incremented by 2 to go to the next instruction.

5.1.36 LD-Load Indirect from Data Space to Register using
Index X

else if(b1==0x9 && (b2==0x1 ||

b2==0x0))↪→

{ unsigned char b4=((b2>>1)&1)*16+b4;//setting r and d as per

opcode↪→

unsigned char b3=(b2&1)*16+b3;

if(debugMode==1)

{

printf("\nLD instruction decoded\n");

printf("\nBefore execution: Reg[%d] =

%X\n",b3,GPR[b3].data);↪→

}

int x;//x is the value loaded in LDI instruction

if(b4==0xC)

GPR[b3].data=x;//For normal LD

else if(b4==0xD)

{

x+=1;

GPR[b3].data=GPR[x].data;//For LD+ condition

}

else if(b4==0xE)

{

x-=1;

GPR[b3].data=GPR[x].data;//For LD- condition

}

if(debugMode==1)

printf("\nAfter execution Reg[%d] =

%X\n",b3,GPR[b3].data);↪→

PC += 0x2;

}

Loads one byte indirect from the data location pointed to by the X (16 bits) Pointer
Register in the Register File to another register. The X-pointer Register is the
Register loaded into a location by the LDI instruction. The X-pointer Register can
either be left unchanged by the operation, or it can be post-incremented or pre-
decremented by specifying the value of b1 in the instruction as 0x0C, 0X0D and

46

0x0E respectively.

Example:

clr r27 ; Clear X high byte

ldi r26,$60 ; Set X low byte to £60

ld r1,X ; Load r1 with data space loc. £60

ldi r26,$63 ; Set X low byte to £63

ld r2,X ; Load r2 with data space loc. £63

5.1.37 LDS (16-bit) – Load Direct from Data Space

else if(b1==0xA && (b2>=0x0 &&

b2<=0x7))↪→

↪→

{ unsigned char b4=(b2&7)*16+b4;//setting r as per opcode

int x;

if(debugMode==1)

printf("\nLDS instruction decoded\n");

GPR[b3].data = GPR[b4].data;//Loading the data to a particular

location↪→

x=b4;

PC += 0x2;

}

Loads one byte from the data space to a register. A 7-bit address must be supplied.
The receiver address is set as per the opcode while the destination address remains
same as b3.

5.1.38 ST – Store Indirect From Register to Data Space
using Index X

else if(b1==0x9 && (b2==0x3 ||

b2==0x2))↪→

{ unsigned char b4=((b2>>1)&1)*16+b4;//setting r and d as per

opcode↪→

unsigned char b3=(b2&1)*16+b3;

int x;//x is the value loaded in LDI instruction

if(debugMode==1)

{

printf("\nST instruction decoded\n");

47

printf("\nBefore execution: Reg[%d] =

%X\n",x,GPR[x].data);↪→

}

if(b4==0xC)

GPR[x].data=GPR[b3].data;//For normal ST

else if(b4==0xD)

{

x+=1;

GPR[x].data=GPR[b3].data;//For normal ST+

}

else if(b4==0xE)

{

x-=1;

GPR[x].data=GPR[b3].data;;//For normal ST-

}

if(debugMode==1)

{

printf("\nAfter execution Reg[%d] = %X\n",x,GPR[x].data);

}

PC += 0x2;

}

Stores one byte indirect from a register to data location pointed to by the X (16 bits)
Pointer Register in the Register File to another register. The X-pointer Register is
the Register loaded into a location by the LDI instruction. The X-pointer Register
can either be left unchanged by the operation, or it can be post-incremented or
pre-decremented by specifying the value of b1 in the instruction as 0x0C, 0X0D and
0x0E respectively.

Example:

clr r27 ; Clear X high byte

ldi r26,$60 ; Set X low byte to £60

st X,r1 ; Store r1 in data space loc. £60

ldi r26,$63 ; Set X low byte to £63

st X,r2 ; Store r2 in data space loc. £63

5.1.39 STS (16-bit) – Store Direct to Data Space

else if(b1==0xA && (b2>=0x8 &&

b2<=0x16))↪→

↪→

{ unsigned char b4=((b2&7)*16+b4;//setting r and d as per opcode

48

int x;

if(debugMode==1)

{

printf("\nSTS instruction decoded\n");

printf("\nBefore execution: Reg[%d] = %X\n",

b4,GPR[b4].data);↪→

}

GPR[b4].data=GPR[b3].data;//Storing the data to a particular

location↪→

x=b4;

if(debugMode==1)

printf("\nAfter execution Reg[%d] =

%X\n",b4,GPR[b4].data);↪→

PC += 0x2;

}

Stores one byte from the data space to a register. A 7-bit address must be supplied.
The receiver address is set as per the opcode while the destination address remains
same as b3.

49

5.1.40 Timer0 implementation

1. Normal Mode

unsigned char temp = 0x0;static unsigned char bit=0x00;

if(IOREG[0x33].data >= 0x01)

{

if(debugMode == 1)

printf("\n**!!TIMER 0 operation detected!!**\n");

Hex2Bin(3,IOREG[0x2A].data);

Hex2Bin(2,IOREG[0x33].data);

//for normal mode by vy

if((bin[3].arr[0] == 0 && bin[3].arr[1]==0 && bin[2].arr[4]==0) ||

(bin[3].arr[6] == 0 && bin[3].arr[7]==0))↪→

{

printf("\n**normal mode!!**\n");

temp = IOREG[0x38].data & 0x02; //TIFR overflow

if(temp == 0x02)

{

printf("\n**!!TOV0 overflow!!**\n");

IOREG[0x32].data = 0; //counter made 0 coz of

overflow↪→

IOREG[0x38].data = IOREG[0x38].data ^ 0x02;

}

//incrementing

if(IOREG[0x32].data < 255)

{

IOREG[0x32].data += 0x01;

IOREG[0x18].data = IOREG[0x18].data ^ 0x01;//for testing

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

else if(IOREG[0x32].data == 255)

{

IOREG[0x38].data = IOREG[0x38].data | 0x02;

printf("\nTOV0 set, TIFR:

%X\n",IOREG[0x38].data);//setting TIFR

overflow

↪→

↪→

}

printf("\nTCCNT0 : %X ",IOREG[0x32].data);

SetPins(1);

}

The simplest mode of operation is the Normal mode (WGM0[2:0] = 0). In this
mode the counting direction is always up (incrementing), and no counter clear is
performed. The counter simply overruns when it passes its maximum 8-bit value
(TOP = 0xFF) and then restarts from the bottom (0x00). In the first TCCR0B

50

is check as if CSO[2:0] are 0 there is no clock source and timer doesnt work.Later
the mode of operation is checked by TCCROA least significant 2 bits WGM00 and
WGM01.If WGM0[2:0] = 0 normal mode is identified.Also if other modes are acti-
vated but if COM0A[1:0]=0 then also normal mode is executed.After checking mode
it checks for timer overflow and clears TCNT0 to zero if flag is set.Later,if TCNT0
is less then 255 its value is incremented or else the overflow flag is set 1.This process
keeps repeating for everyclock cycle.

2. Clear Timer on Compare Match (CTC) Mode

int CTCMode=0,COM0A_Con=0;

if(bin[3].arr[1] == 1 && bin[3].arr[0]==0)

{

CTCMode = 1;

printf("\n**!!CTC mode!!**\n");//testing

temp = IOREG[0x38].data & 0x10;

if(temp == 0x10)

{

IOREG[0x38].data = IOREG[0x38].data & 0xEF;

printf("\nTIFR after resetting OCF0A: %X\n",IOREG[0x38].data);

}

if(bin[3].arr[7] == 0 && bin[3].arr[6] == 0)

COM0A_Con = 0;

else if(bin[3].arr[7] == 0 && bin[3].arr[6] == 1)

COM0A_Con = 1;

else if(bin[3].arr[7] == 1 && bin[3].arr[6] == 0)

COM0A_Con = 2;

else if(bin[3].arr[7] == 1 && bin[3].arr[6] == 1)

COM0A_Con = 3;

// Incrementing counter TCNT0

if(CTCMode==1)

{

if(IOREG[0x32].data == IOREG[0x29].data)

{ IOREG[0x32].data = 0x0;

IOREG[0x38].data = IOREG[0x38].data | 0x10;

printf("\n**!!TCNT0 = OCR0A!!**\n");

printf("\nOC0A set, TIFR: %X\n",IOREG[0x38].data);

bit=~bit;

}

else

IOREG[0x32].data += 0x01;

// Setting Timer0 overflow flag == 0

if(IOREG[0x32].data == 256)

51

{

IOREG[0x38].data = IOREG[0x38].data | 0x02;

printf("\nTOV0 set, TIFR: %X\n",IOREG[0x38].data);

}

if(COM0A_Con == 1)

{

if(bit==0xFF)

IOREG[0x18].data = IOREG[0x18].data | 0x01;

else

IOREG[0x18].data = IOREG[0x18].data & 0xFE;

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

else if(COM0A_Con == 2)

{ if(bit==0xFF)

IOREG[0x18].data = IOREG[0x18].data & 0xFE;

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

else if(COM0A_Con == 3)

{ if(bit==0xFF)

IOREG[0x18].data = IOREG[0x18].data | 0x01;

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

}

}

else

CTCMode = 0;

}

In Clear Timer on Compare or CTC mode (WGM0[2:0] = 2), the OCR0A Register
is used to manipulate the counter resolution. In CTC mode the counter is cleared to
zero when the counter value (TCNT0) matches the OCR0A.[11] The OCR0A defines
the top value for the counter, hence also its resolution. This mode allows greater
control of the Compare Match output frequency. It also simplifies the operation of
counting external events.

An interrupt can be generated each time the counter value reaches the OCR0A
value by using the OCF0A Flag. If the interrupt is enabled, the interrupt handler
routine can be used for updating the maximum value. However, changing OCR0A
to a value close to 0x00 when the counter is running with none or a low prescaler
value must be done with care since the CTC mode does not have the double buffer-
ing feature. If the new value written to OCR0A is lower than the current value of
TCNT0, the counter will miss the Compare Match. The counter will then have to
count to its maximum value (0xFF) and wrap around starting at 0x00 before the
Compare Match can occur.

52

In the code, the mode of the timer is checked using the WGM bits. The com-
pare match moes of the timer are decided by checking the COM bits. The OC0A
is changed using the OR and AND operation of 0x18 register when the TCNT0A
matches OCR0A. The TCNT0A register is incremented until it matches OCR0A.

The CTC frequency for the output can be calculated by the following equation:

fOCnx =
fclk I/O

2.N.(1 + OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024). Here we have
taken the clock frequency as 1MHz and N as 1. In the below output waveform, we
can verify the frequency of the timer.

Figure 5.1: OUTPUT

Here, the value of OCR0A=40. So, the output will toggle whenever TCTNT0
reaches 40. The frequency of the clock is calculated using the above equation, as
1Mhz/(2 x 41) which comes out to be around 12.5kHz.

3. Phase correct PWM Mode

void timer(int flag)

{

// TIMER0 by SM

unsigned char temp = 0x0;

char k=IOREG[0x2A].data &0x01;

if(k == 0x01)

{ char top;

if(debugMode == 1)

printf("\n**!!TIMER 0 operation detected!!**\n");

int PhaseCorrectPWM = 0, OC0A_Con = 0;

Hex2Bin(3,IOREG[0x2A].data);//TCCR0A

53

if(bin[3].arr[1] == 0 && bin[3].arr[0]==1){//WGM00 & WGM01

checked↪→

PhaseCorrectPWM = 1;

printf("PhaseCorrectPWM mode");

}

else

PhaseCorrectPWM = 0;

if(bin[3].arr[7] == 1 && bin[3].arr[6] == 0)//non inverting

OC0A_Con = 1;

else if (bin[3].arr[7] == 1 && bin[3].arr[6] == 1)// inverting

OC0A_Con = 0;

else

printf("Not a Timer mode");

if (IOREG[0x33].data & 0x08 ==0x08)//TCCR0B, to check WGM02 Set

top= IOREG[0x29].data;//OCR0A

else

top=0xFF;

IOREG[0x18].data = IOREG[0x18].data | 0x01;//PORTB

//reset TOV0

if (IOREG[0X32].data == 0xFF)//TCNT0

IOREG[0x38].data = IOREG[0x38].data &

0xFD;//TIFR↪→

// Decrmenting counter TCNT0

k=IOREG[0x38].data & 0x02;

if(IOREG[0x32].data > 0 && k==0x00)//TOV is reset

IOREG[0x32].data -= 0x01;

else if(IOREG[0x32].data == 0)

{

IOREG[0x38].data = IOREG[0x38].data | 0x02;//TOV0 set

printf("\nTOV0 set, TIFR: %X\n",IOREG[0x38].data);

IOREG[0x38].data = IOREG[0x38].data & 0xEF;

//OCF0 reset↪→

printf("\nTIFR after resetting OCF0A:

%X\n",IOREG[0x38].data);↪→

}

//If TOV0 is set, increment TCNT0

temp = IOREG[0x38].data & 0x02;

if(temp == 0x02 && IOREG[0X32].data < 0xFF)

{

54

IOREG[0x32].data += 0x01;

}

// IF TCNT0 == OCR0A

if(IOREG[0x32].data == IOREG[0x29].data)

{

IOREG[0x38].data = IOREG[0x38].data | 0x10;//OCF0

set↪→

printf("\n**!!TCNT0 = OCR0A!!**\n");

printf("\nTIFR: %X\n",IOREG[0x38].data);

}

k= IOREG[0X38].data & 0x02;

temp = IOREG[0x38].data & 0x10;//match condition

if(temp == 0x10 && k== 0x02)// TOV is set...incre

{

if (OC0A_Con == 1){

IOREG[0x18].data = IOREG[0x18].data & 0xFE;//reset OCF0

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

else{

IOREG[0x18].data = IOREG[0x18].data | 0x01 ;// set OCF0

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

}

else if(temp != 0x10 && k != 0x02){// Tov is reset...dec

if (OC0A_Con == 0){

IOREG[0x18].data = IOREG[0x18].data | 0x01;//set

OCF0↪→

}

else

IOREG[0x18].data = IOREG[0x18].data &

0xFE;//reset OCF0↪→

}

printf("\nTCCNT0 : %X ,OCR0A:

%X\n",IOREG[0x32].data,IOREG[0x29].data);↪→

SetPins(1);

}

}

In the code, timer operation is detected. Then top, PhaseCorrectPWM, OC0ACon
is initialised. Through Hex2Bin function TCCROA register is put into BinArray for
later use. WGM00 and WGM01 is checked to find that it is Phase Correct PWM
mode or not. Then the output mode (inverting or Non inverting)is found.WGM02

55

is then checked to define top. PORTB is set to 1 and TOV (Timer overflow flag)
is reset before the timer operation. Timer operation starts with decrementing. If
TCNT0 is greater than zero and TOV is reset , it will decrement till it becomes
zero and the TOV is set. When it is zero, OCF0 will be reset to find match while
incrementing. Incrementing will start if TOV is set and TCNT0 is less than top.
If TCNT0 is equal to OCR0A, match happens. If TOV is set and TCNT0 is in-
crementing, for non inverting, output will be zero and inverting , it will be one. If
TOV is reset and TCNT0 is decrementing, for non inverting, output will be one and
inverting , it will be zero. Then the registers are printed and the pins are set to get
the output.

The PWM frequency for the output when using phase correct PWM can be cal-
culated by the following equation:

fOCnxPCPWM =
fclk I/O

N.510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024). In ATtiny, the
clock frequency used is 1MHz and N is taken as 1. In the below output waveform,
we can verify the frequency of the timer.

Figure 5.2: OUTPUT

Here , the OCR0A is 0xF7 . So , the output will be low for very less duration.
The Time Period of the clock is calculated by taking inverse of the above equation
as 510/1MHz which comes out to be around 0.51 ms.

56

5.1.41 Timer1 Implementation

Block Diagram:

Figure 5.3: Timer 1 Block Diagram

C code:

void timer1(int flag)

{

// TIMER 1 OPERATION BY SK 02/06/2020

char temp = 0x0; static unsigned int count=0;

if(IOREG[0x2E].data >= 0x01)//0x2E=OCR1A

{ int COM1A_Con=0,mode=0, CS_Con = 0;

if(debugMode == 1)

printf("\n**!!TIMER 1 operation detected!!**\n");

Hex2Bin(3,IOREG[0x30].data);

CS_Con=IOREG[0X30].data & 0x0F;//Masking the CS bits to get the clocking

modes↪→

57

mode=(int)pow(2,(int)CS_Con-1);//Refer Timer/Counter1 Prescale Select in

datasheet↪→

if(CS_Con!=0)

{ printf("\nCLOCKING MODE: %X\n",CS_Con);

IOREG[0x27].data=IOREG[0x27].data|0x01;//Enabling the Plock bit in

PLLCSR↪→

temp = IOREG[0x27].data & 0x07;//Checking whether Asynchronous mode

is enabled or not↪→

if(temp==0x07)

printf("Timer1 is in Asynchronous Mode");

else

printf("Timer1 is in Synchronous Mode");

//If TOV1 is set, reset counter TCNT1

temp = IOREG[0x38].data & 0x04;//Checking the timer overflow

if(temp == 0x04)

{

printf("\n**!!TOV1 overflow!!**\n");

IOREG[0x2F].data = 0;

IOREG[0x38].data = IOREG[0x38].data ^ 0x04;

printf("\nTIFR after toggling TOV1: %X\n",IOREG[0x38].data);

IOREG[0x38].data = IOREG[0x38].data & 0xBF;

printf("\nTIFR after resetting OCF1A: %X\n",IOREG[0x38].data);

}

if(bin[3].arr[5] == 0 && bin[3].arr[4] == 0)//Checking the compare

match options↪→

COM1A_Con = 0;

else if(bin[3].arr[5] == 0 && bin[3].arr[4] == 1)

COM1A_Con = 1;

else if(bin[3].arr[5] == 1 && bin[3].arr[4] == 0)

COM1A_Con = 2;

else if(bin[3].arr[5] == 1 && bin[3].arr[4] == 1)

COM1A_Con = 3;

temp = IOREG[0x38].data & 0xC0;// For non-inverting operation

if(temp == 0xC0)

IOREG[0x38].data = IOREG[0x38].data | 0x40;//Setting OC1A bit

// Incrementing counter TCNT1

if(count==mode)//counter to divide the frequency according to the

mode↪→

{ count=0;

temp = IOREG[0x39].data & 0x04;

if(IOREG[0x2F].data < 255)

IOREG[0x2F].data += 0x01;

58

else if(IOREG[0x2F].data == 255 && temp==0x04)//IF TCNT1 == 255

and TOIE1 is set↪→

{

IOREG[0x38].data = IOREG[0x38].data | 0x04;

printf("\nTOV1 set, TIFR: %X\n",IOREG[0x38].data);

}

}

else

count++;//incrementing the counter

// Setting Timer1 overflow flag == 0

temp=IOREG[0x39].data & 0x40;//Checking OCIE1A in TIMSK register

if(IOREG[0x2F].data == IOREG[0x2E].data && temp==0x40)//IF TCNT1 ==

OCR1A and OCIE1A is set↪→

{

IOREG[0x38].data = IOREG[0x38].data | 0x40;

printf("\n**!!TCNT1 = OCR1A!!**\n");

printf("\nTIFR: %X\n",IOREG[0x38].data);

}

temp = IOREG[0x38].data & 0x40;

if(COM1A_Con == 1)//Checking the Compare match Modes

{

if(temp==0x40)

IOREG[0x18].data = IOREG[0x18].data | 0x01;

else if(temp!=0x40)

IOREG[0x18].data = IOREG[0x18].data & 0xFE;

printf("\nPORTB: %X\n",IOREG[0x18].data);

}

else if(COM1A_Con == 2)

{

if(temp == 0x40)

IOREG[0x18].data = IOREG[0x18].data & 0xFE;

}

else if(COM1A_Con == 3)

{

if(temp == 0x40)

IOREG[0x18].data = IOREG[0x18].data | 0x01;

}

printf("\nTCCNT1 : %X ,OCR1A:

%X\n",IOREG[0x2F].data,IOREG[0x2E].data);↪→

SetPins(1);

}

59

else

printf("\nCLOCKING MODE: %X , TIMER STOPPED\n",CS_Con); //Stopping

timer in mode 1↪→

}

}

The Timer1 is a general purpose 8-bit Timer/Counter module that has a separate
prescaling selection from the separate prescaler.[11]

The Timer1 general operation is described in the asynchronous mode and the op-
eration in the synchronous mode is mentioned only if there are differences between
these two modes. The Timer1 register values go through the internal synchronization
registers, which cause the input synchronization delay, before affecting the counter
operation.

The Timer1 features a high resolution and a high accuracy usage with the lower
prescaling opportunities. It can also support two accurate, high speed, 8-bit Pulse
Width Modulators using clock speeds up to 64 MHz (or 32 MHz in Low Speed
Mode). In this mode, Timer1 and the output compare registers serve as dual stan-
dalone PWMs with non-overlapping non-inverted and inverted outputs. Refer to
page 86 for a detailed description on this function. Similarly, the high prescaling
opportunities make this unit useful for lower speed functions or exact timing func-
tions with infrequent actions.

In order to implement the above functionality. The mode of the timer is stored
in a variable ”mode” using the value of CS bits. A counter variable ”count” counts
from 0 to the value of mode. If the value matches the value of mode, the TCNT1
is incremented and the ”count” variabe is set to zero. Hence the output is prescaled.

When the TCNT1 matches OCR1A, the OC0A is toggled by setting/resetting the
0th bit of the 0x18 register as per the compare match mode of the timer1. In this
way the functionality is implemented in the above code.

For calculations and examples based on Timer 1 refer page 64.

60

5.2 Implemented Examples

5.2.1 Example to test ATtiny25:Driving LEDs circuit:

In this example the ATtiny 25 is used to drive the LEDs. The LEDs are given differ-
ent voltage levels using resistors and transistors. Therefore the LEDs show different
fading and glowing effects. The schematic is shown below.

Schematic of Driving LEDs circuit:

Figure 5.4: Schematic of Driving LEDs circuit

Output:

Figure 5.5: Output

61

5.2.2 Example to test ATtiny45:PPM Generator:

In PPM the amplitude and width of the pulses is kept constant but the position
of each pulse is varied accordance with the amplitudes of the sampled value of the
modulating signal.The Pulse Position Modulation (PPM) is a modulation technique
designed to achieve the goals like simple transmitter and receiver circuitry, noise
performance, constant bandwidth and the power efficiency and constant transmit-
ter power. The Pulse Position Modulation (PPM) can be actually easily generated
from a PWM waveform which has been modulated according to the input signal
waveform. The technique is to generate a very small pulse of constant width at the
end of the duty time of each and every PWM pulses by using a differentiator and
mno stable multivibrator as follows:

Schematic of the PPM Generator:

Figure 5.6: Schematic of PPM Generator

62

Output:

Figure 5.7: Output 1

Figure 5.8: Output 2

63

5.2.3 Example to test ATtiny85:Square Wave Generator

Delay using micro-controller timer is the most accurate and surely the best method
over the timer ICs like 555 Timer.

A timer can be generalized as a multi-bit counter which increments/decrements
itself on receiving a clock signal and produces an interrupt signal up on roll over.
When the counter is running on the processor’s clock , it is called a “Timer”, which
counts a predefined number of processor clock pulses and generates a programmable
delay.[13]

Here we have implemented Square Wave Generator with variable frequency and
duty cycle using the timer1 of ATtiny microcontroller. The Timer1 is programmed
according to the needs of the user. The user can vary the input frequency by giving
inputs to pins PB2 and PB3. The user can also vary the duty cycle by giving inputs
to pins PB4 and PB5. The output of the required square wave is taken at pin 0 of
ATtiny microcontroller.

The frequency and duty cycle of the timer 1 is given by:

fPWM =
fTCK1

OCR1C + 1
D =

OCR1A + 1

OCR1C + 1

The value of the fTCK1 is equal to the frequency of the internal clock divided by the
mode of the timer.

The OCRC1 is taken as 255 in the implementation of timer 1. Hence the value
of fPWM becomes 3.912 kHz frequency for mode 1 and internal clock frequency
1MHz. The Duty Cycle becomes 50 percent for OCR1A=127

The mode of the timer is set by varying the value of the TCCR1 according to the
user input and the frequency of the timer is set by varying the value of the OCR1A
according to the user input as shown in the C code below.

C Code:

#include <avr/io.h> //including header files

#include <avr/sleep.h>

#include <math.h>

int main(void)

{

DDRB|=_BV(PB0);//setting PB0 as output pin

TIMSK=0xFF; //setting the timer 1 mask

64

unsigned char a=PINB&0x0C;//masking the frequency inputs

unsigned char b=PINB&0x30;//masking the duty cycle inputs for rise and fall

time↪→

if(b==0x00) //checking the duty cycle inputs

TCCR1=0x11; //setting the control register of Timer 1

else if(b==0x10)

TCCR1=0x12;

else if(b==0x20)

TCCR1=0x13;

else if(b==0x30)

TCCR1=0x14;

if(a==0x00) //checking the frequency inputs

OCR1A=1;//setting the output compare register of Timer 1

else if(a==0x04)

OCR1A=63;

else if(a==0x08)

OCR1A=128;

else if(a==0x0C)

OCR1A=254;

while(1)

{

};

}

Schematic of the Square Wave Generator:

Figure 5.9: Schematic of Square Wave Generator

65

Output:

Figure 5.10: Output for Frequency input=01 and Duty Cycle input=01

Figure 5.11: Output for Frequency input=00 and Duty Cycle input=10

66

Calculations for Frequency input=01 and Duty Cycle input=01

Assuming Clock frequency as 1MHz.

TimerMode = 2

OCR1A = 63

fTCK1 =
1MHz

2
= 500kHz

fPWM =
500kHz

255 + 1
= 1.953kHz

D =
63 + 1

255 + 1
= 0.25

In Inverting mode,

D = 1 − 0.25 = 0.75

Calculations for Frequency input=00 and Duty Cycle input=10

Assuming Clock frequency as 1MHz.

TimerMode = 1

OCR1A = 127

fTCK1 =
1MHz

1
= 1MHz

fPWM =
1MHz

255 + 1
= 3.906kHz

D =
127 + 1

255 + 1
= 0.5

In inverting Mode,

D = 1 − 0.5 = 0.5

Calculations for Frequency input=10 and Duty Cycle input=11

Assuming Clock frequency as 1MHz.

TimerMode = 3

OCR1A = 255

fTCK1 =
1MHz

3
= 333.33MHz

fPWM =
333.33MHz

255 + 1
= 1.302kHz

D =
254 + 1

255 + 1
= 0.996

In inverting Mode,
D = 1 − 0.996 = 0.004

67

5.2.4 Example to test ATtiny85:Triangular Wave Generator

The triangular wave generator can be designed by adding an integrator to the square
wave generator. Hence we have added a low pass RC filter to the above square
wave generator to get the triangular wave. The rise time and the fall time of the
triangular wave generator can be varied by varying the duty cycle of the square
wave as shown in the above example. The frequency of the triangular wave can be
varied by varying the frequency of the square wave. Hence we have implemented
Triangular Wave Generator with variable rise and fall times and variable frequency.

C Code:

#include <avr/io.h> //including header files

#include <avr/sleep.h>

#include <math.h>

int main(void)

{

DDRB|=_BV(PB0);//setting PB0 as output pin

TIMSK=0xFF; //setting the timer 1 mask

unsigned char a=PINB&0x0C;//masking the frequency inputs

unsigned char b=PINB&0x30;//masking the duty cycle inputs for rise and fall

time↪→

if(b==0x00)//checking the duty cycle inputs

TCCR1=0x11; //setting the control register of Timer 1

else if(b==0x10)

TCCR1=0x12;

else if(b==0x20)

TCCR1=0x13;

else if(b==0x30)

TCCR1=0x14;

if(a==0x00) //checking the frequency inputs

OCR1A=1;//setting the output compare register of Timer 1

else if(a==0x04)

OCR1A=63;

else if(a==0x08)

OCR1A=128;

else if(a==0x0C)

OCR1A=254;

while(1)

{

};

}

68

Schematic of the Triangular Wave Generator:

Figure 5.12: Schematic of Triangular Wave Generator

Output:

Figure 5.13: Output for PBIN=0x08

Figure 5.14: Output for PBIN=0x0C

69

Chapter 6

Conclusion and Future Scope

We were able to achieve the target of enhancing the instruction set emulator, for
microcontroller simulations in eSim, using the already existing framework, designed
by leveraging the NGHDL feature of eSim. Also, the Timer 0 and Timer 1 mod-
ules were implemented. The ATtiny25, ATtiny45, ATtiny85 microcontrollers were
realised by using NGHDL for declaring its peripheral and C language for ISA em-
ulation. In the ATtiny series, the interrupts and USI has to be completed further
for simulating a fully functional microcontroller. Microcontrollers of other families
such as Renesas or PIC could also be modelled using the same architecture.

70

Bibliography

[1] FOSSEE Official Website. 2020.
URL: https://fossee.in/about

[2] Java T Point Official Website. 2020.
URL:https://https://www.javatpoint.com/what-is-avr-microcontroller

[3] Wikipedia Official Website. 2020.
URL: https://en.wikipedia.org/wiki/KiCad/

[4] Microchip Official Website. 2020.
URL: https://www.microchip.com/downloads/en/DeviceDoc/Atmel/

[5] eSim Official website. 2020.
URL: https://esim.fossee.in/

[6] FOSSEE official webpage. 2020.
URL: https://fossee.in/fellowship/2019

[7] Geeks For Geeks official webpage. 2020.
URL: https://www.geeksforgeeks.org/bcd-to-7-segment-decoder

[8] Github FOSSEE NGHDL Repository. 2020. URL:https://github.com/
FOSSEE/nghdl

[9] Ubuntu Official Wbpage. 2020.
URL: https://ubuntu.com/tutorials/command-line-for-beginners

[10] AVR GCC documentation. 2020.
URL: https://gcc.gnu.org/wiki/avr-gcc

71

https://fossee.in/about
https://https://www.javatpoint.com/what-is-avr-microcontroller
https://en.wikipedia.org/wiki/KiCad/
https://www.microchip.com/downloads/en/DeviceDoc/Atmel/
https://esim.fossee.in/
https://fossee.in/fellowship/2019
https://www.geeksforgeeks.org/bcd-to-7-segment-decoder
https://github.com/FOSSEE/nghdl
https://github.com/FOSSEE/nghdl
https://ubuntu.com/tutorials/command-line-for-beginners
https://gcc.gnu.org/wiki/avr-gcc

[11] AVR Instruction Set Manual. 2020.
URL:http://ww1.microchip.com/downloads/en/devicedoc/
atmel-0856-avr-instruction-set-manual.pdf

[12] Circuitstoday Official Website. 2020.
URL: http://www.circuitstoday.com/delay-using-8051-timer

[13] Embedded Thoughts. Official Website. 2020.
URL:https://embeddedthoughts.com/2016/05/25/
getting-started-with-the-attiny85

[14] Embedded Thoughts. Official Website. 2020.
URL:https://embeddedthoughts.com/2016/05/25/
getting-started-with-the-attiny85

[15] Arduino Project Hub. 2020.
URL:https://create.arduino.cc/projecthub/Oniichan_is_ded/
learn-how-to-program-attiny85-and-attiny13a-167359

72

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://www.circuitstoday.com/delay-using-8051-timer
https://embeddedthoughts.com/2016/05/25/getting-started-with-the-attiny85
https://embeddedthoughts.com/2016/05/25/getting-started-with-the-attiny85
https://embeddedthoughts.com/2016/05/25/getting-started-with-the-attiny85
https://embeddedthoughts.com/2016/05/25/getting-started-with-the-attiny85
https://create.arduino.cc/projecthub/Oniichan_is_ded/learn-how-to-program-attiny85-and-attiny13a-167359
https://create.arduino.cc/projecthub/Oniichan_is_ded/learn-how-to-program-attiny85-and-attiny13a-167359

	Introduction
	Problem Statement
	Framework Developed
	Approach

	Software Requirements
	NGHDL
	Linux Commands
	AVR GCC
	eSim

	ATtiny x5 Family of Microcontrollers
	Pin Configuration
	Block Diagram
	ATtiny Memories
	In-System Re-programmable Flash Program Memory
	SRAM Data Memory
	EEPROM Data Memory
	I/O Memory

	Implementation of Instruction Set
	C Code
	CP – Compare
	CPC – Compare with Carry
	CPI – Compare with Immediate
	ICALL – Indirect Call to Subroutines
	IJMP – Indirect Jump
	SER – Set all Bits in Register
	SBI – Set Bit in I/O Register
	CBI – Clear Bit in I/O Register
	AND – Logical AND
	EOR – Exclusive OR
	SBC- Subtract with carry
	SBR-Set Bits in Register
	SBRC- Skip if Bit in Register is Cleared
	SBRS- Skip if Bit in Register is Set
	SBIC- Skip is Bit in I/O register is cleared
	PUSH
	POP
	RCALL-Relative Call to Subroutine
	RET-Return from Subroutine
	NEG-Two’s complement
	LSR- Logical Shift Right
	BSET- Bit set in SREG
	OR- logical OR
	BCLR-Bit Clear in SREG
	RETI- Return from Interrupt
	MOV- Copy Register
	ROR- Rotate Right through Carry
	BLD – Bit Load from the T Flag in SREG to a Bit in Register
	BST – Bit Store from Bit in Register to T Flag in SREG
	SBIS – Skip if Bit in I/O Register is Set
	ASR – Arithmetic Shift Right
	BRBC – Branch if Bit in SREG is Cleared
	BRBS – Branch if Bit in SREG is Set
	SWAP – Swap Nibbles
	INC – Increment
	LD-Load Indirect from Data Space to Register using Index X
	LDS (16-bit) – Load Direct from Data Space
	ST – Store Indirect From Register to Data Space using Index X
	STS (16-bit) – Store Direct to Data Space
	Timer0 implementation
	Timer1 Implementation

	Implemented Examples
	Example to test ATtiny25:Driving LEDs circuit:
	Example to test ATtiny45:PPM Generator:
	Example to test ATtiny85:Square Wave Generator
	Example to test ATtiny85:Triangular Wave Generator

	Conclusion and Future Scope
	Bibliography

