
Summer Fellowship Report

On

eSim on Cloud

Submitted by

Darsh Patel
Geddam Saigirishwar Rohit

Darshan Sudake
Faizal Ahmed

Under the guidance of

Prof. Kannan Moudgalya

Chemical Engineering Department

IIT Bombay

May 2020

Acknowledgement

We, the summer interns of the FOSSEE - eSim Cloud Project are over-
whelmed in all humbleness and gratefulness to acknowledge our deep gratitude to
all those who have helped us put our ideas to perfection and have assigned tasks well
above the level of simplicity and into something concrete and unique. We whole-
heartedly thanks Prof. Kannan M. Moudgalya for having faith in us, selecting
us to be a part of his valuable project and for constantly motivating us to do better.
We thanks Mr. Nagesh Karmali and Ms. Firuza Aibara for providing us
the opportunity to work on this project. We are also very thankful to our mentors
for their valuable suggestions. They were and are always there to show us the right
track when needed help. With help of their brilliant guidance and encouragement,
we all were able to complete our tasks properly and were up to the mark in all
the tasks assigned. During the process, we got a chance to see the stronger side
of our technical and nontechnical aspects and also strengthen our concepts. Last
but not the least, we sincerely thank all our other colleagues working in different
projects under Prof. Kannan M. Moudgalya for helping us evolve better with
their critical advice.

1

Declaration

We declare that this written submission represents our ideas in our own words
and whenever others’ ideas or words have been included, We adequately cited and
referenced the original sources. We declare that We have properly and accurately
acknowledged all sources used in the production of this thesis.

We also declare that We have adhered to all principles of academic honesty and
integrity and have not misrepresented or fabricated or falsified any idea/data/fac-
t/source in our submission. We understand that any violation of the above will be
a cause for disciplinary action by the Institute and can also evoke penal action from
the sources which have not been properly cited or from whom proper permission
has not been taken when needed.

Darsh Patel
Geddam Saigirishwar Rohit

Darshan Sudake
Faizal Ahmed

2

Contents

1 Introduction 6
1.1 Problem Statement . 6
1.2 Project Objective . 6
1.3 Project Outcome . 6
1.4 Project Requirements . 7

2 Project Overview 8
2.1 Features . 8

2.1.1 Grid size and Orientation . 8
2.1.2 Schematic Description . 8
2.1.3 Component Categories . 9
2.1.4 Searching Component . 9
2.1.5 Components Position . 9
2.1.6 Basic Editor Operations . 10
2.1.7 ERC Check . 10
2.1.8 Generate Netlist . 10
2.1.9 Simulate . 10
2.1.10 Saving and Re-Opening . 10
2.1.11 Export . 11
2.1.12 Sharing . 11
2.1.13 Dashboard . 11
2.1.14 Gallery . 11
2.1.15 Spice Simulator . 11

3 eSim Development Flow 12
3.1 Generating component images from KiCAD symbol library files . . . 12
3.2 Generating XML files . 13
3.3 Generating Netlist . 13
3.4 Simulation Output . 14
3.5 JSON format returned by parser . 15

4 Frontend 16
4.1 UI Components . 16

4.1.1 Home UI . 16
4.1.2 Schematic Edior UI . 17
4.1.3 Spice Simulator UI . 18
4.1.4 eSim Gallery UI . 19

3

4.1.5 Dashboard UI . 20
4.2 Basic Workflow of eSim on Cloud . 22

5 Architecture 23
5.1 Overview . 23
5.2 Nginx . 24
5.3 Django . 24
5.4 Celery and Redis . 24

6 DevOps 25
6.1 Continuous Integration . 25

6.1.1 Github Actions - Workflows 25
6.1.2 Container Images . 26

6.2 Deployment . 26
6.2.1 Ansible Scripts . 26
6.2.2 Development Installation Script 26

6.3 Performance Testing . 27
6.3.1 Automatic OpenAPI Compliant API Documentation 28

7 eSim On Cloud User Guide 29

8 API Endpoints 46

4

List of Figures

3.1 Kicad symbol library to svg generation example 12
3.2 Kicad symbol library to svg generation 13
3.3 Generation of Netlist and Storing XML 13

4.1 Home page of eSim on cloud . 16
4.2 Schematic Editor of eSim on cloud 17
4.3 Simulator page of eSim on cloud . 18
4.4 Gallery page of eSim on cloud . 19
4.5 Dashboard page of eSim on cloud . 20
4.6 Dashboard My Schematics page of eSim on cloud 21
4.7 Basic Workflow of eSim on cloud . 22

5.1 Architecture Diagram . 23

6.1 Github Workflows . 25
6.2 Jmeter Tests . 27
6.3 API Documentation Screenshot . 28

5

Chapter 1

Introduction

1.1 Problem Statement

Design and develop a web-based platform to draw different types of Electronic Cir-
cuit and Simulate them by providing simulation parameters which will be hosted on
the cloud.

1.2 Project Objective

This project aims to provide an easy to use EDA application for students to com-
plement their undergraduate electronic courses and a collaborative tool for authors.
Since there is lack of open source web-based circuit simulator application this will
fulfill the requirements with easy access and other useful functionalities.

1.3 Project Outcome

The contributor will be able to draw schematic diagram of circuits using drag and
drop facility for provided components from the left pane onto the schematic grid.
The components on the grid can be connected using virtual wires. The basic ERC
check (i.e. Electrical Rule Check) facilitate users to find out if there are any errors.
Then he can simulate that circuit by passing parameters under different simulation
modes (DC Solver, DC Sweep, Transient analysis, and AC analysis).

6

1.4 Project Requirements

Following Major Technologies have been used during development.

• Django (v2.2.12)

• React (v16.13.1)

• mxGraph (v4.1.1)

• ngSpice (v31)

• Docker Containers

• MongoDB

• PostgreSQL

• Celery

• Redis

• Nginx

7

Chapter 2

Project Overview

This system allows the users to draw analog and digital circuits and simulate them.
The users have a facility to drag and drop components from the left pane onto the
schematic grid on the right pane. The components on the grid are connected using
wires. The circuit can then be simulated using the different simulation parameters
(DC Solver, DC Sweep, Transient analysis, and AC analysis). The basic ERC check
enables the users to find out errors if any. The size of the schematic grid can be
changed from A1 to A5 paper sizes along with portrait and landscape modes. The
users can also print the circuit or save it in pdf format for documentation purposes.

2.1 Features

The schematic editor is divided into 3 panes. The left pane consists of the Com-
ponent List and a facility to search components. The middle pane consists of the
grid on which the components will be dropped and the circuit will be designed. The
right pane consists of the grid properties, description of the circuit, and components
position. More details are given below.

2.1.1 Grid size and Orientation

The size of the grid can be changed from A1 to A5 and offers Portrait and Landscape
mode.

2.1.2 Schematic Description

A text area in which one can write the description about the circuit.

8

2.1.3 Component Categories

The kicad components are categorized as follows, where each component has Name,
Description, Keywords and Datasheet.

• Analog

• Device

• Triac Thyristor

• Transistor IGBT

• Diode

• Transistor FET

• pspice

• Oscillator

• eSim Sources

• eSim Hybrid

• Motor

• LED

• Transistor BJT

• power

• 4xxx

2.1.4 Searching Component

Rather than going through categories and locating the component symbol, one can
also search a component by typing in the textbox given, using the filters like Name,
Keyword, Description, Component Library and Prefix.

2.1.5 Components Position

Using the components position box, one can access and view the circuit which do
not fit onto the specified grid size. Its like accessing another page. This situation
arises when one has a large circuit and changes the grid from a larger size to a
smaller one.

9

2.1.6 Basic Editor Operations

• Undo

• Redo

• Rotate

• Delete

• Zoom in

• Zoom out

• Clear All

• Default size

• Print Preview

2.1.7 ERC Check

Basic ERC check used to find out if there are any errors in a circuit. For example,
if the wires are connected or not.

2.1.8 Generate Netlist

Based on the circuit a ngSpice compatible netlist is generated. User can download
the generated netlist for command line simulation with ngSpice. The internal process
of generating a netlist is described in the section 3.3.

2.1.9 Simulate

There are four simulation modes as follows

• DC Solver : A DC simulation attempts to find a stable DC solution of your
circuit.

• DC Sweep : A DC Sweep will plot the DC solution of your circuit across dif-
ferent values of a parameter of a circuit element. You can sweep any numerical
parameter of any circuit element in your circuit.

• Transient Analysis : A Transient analysis does a Time-Domain Simulation
of your circuit over a certain period of time.

• AC Analysis : AC Analysis does a small signal analysis of your circuit. The
input can be any voltage source or current source.

2.1.10 Saving and Re-Opening

The circuits are saved only for an authenticated user and are viewed on the user
dashboard. The same can be reopened as well for further modification or simulation.

10

2.1.11 Export

• Image Export : The circuit can be exported as jpeg, png, and svg. This is
useful for documenting and printing.

• JSON : The circuit can be exported as JSON so as to open it again using the
Upload feature.

2.1.12 Sharing

Using the Share button one can get sharing URL for the circuit generated by the
system; with others using the link. The link can be opened and viewed by anyone.
However, to make changes one would need to login and the changes saved will be
associated with the new user.

2.1.13 Dashboard

A place where the authenticated user can view the different circuits designed by
him/her. Then user can open the saved circuit into the editor by clicking on Launch
in editor.

2.1.14 Gallery

A set of example projects (circuit design) which can be referred by the users. This
is very much useful for the novice users who need to get a feel of the system and the
circuit design.

2.1.15 Spice Simulator

This is a particularly handy feature of this web application, which allows anyone
to enter the netlist in the code editor provided and simulate without drawing the
circuit. Simulation result window will popup displaying the result.

11

Chapter 3

eSim Development Flow

3.1 Generating component images from KiCAD

symbol library files

The component Symbols used in this web application are generated by parsing
the .lib and .dcm files from kicad symbol library files using an inhouse parser.
These components are generated only once and are cached. In the frontend these
component symbols are displayed under the component list on the left sidebar of
the editor.

Figure 3.1: Kicad symbol library to svg generation example

12

Figure 3.2: Kicad symbol library to svg generation

3.2 Generating XML files

The components from the left pane are dropped onto the schematic grid. By default,
the size of the grid is A4, which can be changed from A5 to A1. The components
connected by wires are converted to XML format using mxgraph inbuilt function,
whenever the circuit is saved by the user. This XML is used to save and re-open
the saved circuits.This XML is also used to auto annotate the circuit as well as in
performing ERC checks.

Figure 3.3: Generation of Netlist and Storing XML

3.3 Generating Netlist

The netlist is broken down into seperate sections.

• Title : title of the schematic diagram

RC Circuit

13

• Model : All spice models given by users will be listed here. These are extra
parameters which are not delivered with ngspice. They are device manufac-
turer specific and may be obtained from their web sites or from other sites

.model BC546B npn (IS=7.59E-15 VAF=73.4)

• Netlist : Text description of circuit. It has all components listed with con-
necting nodes, parameters and spice model (if specified by the user). This is
generated with the help of mxgraph object. An example is shown below

r1 in out 1k

c1 out gnd 10u

v1 in gnd pwl(0m 0 0.5m 5 50m 5 50.5m 0 100m 0)

Q1 intc intb 0 BC546B

• Control Line : It has all simulation parameters. It is generated depending
on the type of simulation and the parameters specified by user

.tran 10e-03 100e-03 0e-03 // Transient analysis

.ac dec 10 10 1Meg // AC Analysis

• Control Block : All Interactive commands to actually produce output for
given schematic.

.control

run

print all > data.txt

.endc

.end

Using the mxgraph object, a netlist is generated (compatible with ngspice sim-
ulator) when the user clicks on the Simulate or Generate Netlist button. The
simulation parameters are supplied by the user based on the simulation type chosen
by the user.

3.4 Simulation Output

When the simulate button is clicked the ERC checks are performed and the netlist
generated is sent to the backend services where it is kept in a queue. The queue
manager used is celery. At backend this netlist is supplied as input to ngspice which
outputs a text file with all the coordinates required to plot the graph. This text
file is then parsed using an inhouse parser to convert the data in the text file into
an organised data structures in JSON format. At the frontend the graph is plotted
using the data returned in this JSON.

14

3.5 JSON format returned by parser

{

total_number_of_tables: <int>,

isGraph: <bool>,

data:[

{

labels : [], x : [], y : [[] , []] ,

}

]

}

• total-number-of-tables : this property tells how many tables will be present.

• isGraph : this property tell if the data is a graph or just a table of data

• data - this is an array which contains one or more objects depending on the
input provided to the parser.

• labels : this is an array which contains all the labels that have to be present
on the graph. Eg. [“time”,”vin”,”vout”].

• x : this is an array containing all the x co-ordinates for a set of graphs. Eg.
Time on x-axis.this is a linear array as the x coordinates will be same for
different set of y coordinates.

• y : this is a 2d array. Containing y co-ordinates for different graphs.

15

Chapter 4

Frontend

4.1 UI Components

4.1.1 Home UI

Figure 4.1: Home page of eSim on cloud

Home page of eSim on cloud contains links to various public component of app
such as

• Editor

• Gallery

• Simulator

• Login

16

4.1.2 Schematic Edior UI

Figure 4.2: Schematic Editor of eSim on cloud

Schematic Editor is where the user can draw his circuits using provided compo-
nents list on left side pane and simulate the circuit by providing simulation parame-
ters. Editor provide facility to connect the component’s terminal using virtual wires.
Non-Authenticated user can also draw and simulate the circuit, but for saving and
sharing of circuit user has to login. It is mainly divided into four sections

• Toolbar (top)

• Component Sidebar (left)

• Grid (center)

• Properties Sidebar (right)

Various tools in Toolbar are listed below in user guide section

17

4.1.3 Spice Simulator UI

Figure 4.3: Simulator page of eSim on cloud

This is a particularly handy feature where the user can directly Enter/ Type the
ngSpice compatible netlist to simulate without the need of drawing circuit. The user
has to Enter/ Type the netlist in the code editor provided and click on simulate.
User can change theme of code editor using switch on top. The simulation graph or
text result appear in a popup window(i.e. Simulation Result Screen).

18

4.1.4 eSim Gallery UI

Figure 4.4: Gallery page of eSim on cloud

This page provides some of the example circuit for the user to try out. User can
click on LAUNCH IN EDITOR button in card of specific circuit to open that
circuit in the schematic editor where the user can modify or simulate it. This is
very much useful for the novice users who need to get a feel of the system and the
circuit design.

19

4.1.5 Dashboard UI

Figure 4.5: Dashboard page of eSim on cloud

This is dashboard home page for authenticated users where under Recent Schemat-
ics tab user will get to see recently created circuit.

On each schematic circuit card information about Created Date and Last updated
status is displayed. User can open the circuit in editor to modify or simulate. Delete
button on each card can be used to delete the unwanted circuit. Share logo displays
the sharing status of the schematics.

20

Figure 4.6: Dashboard My Schematics page of eSim on cloud

In My Schemaics section of dashboard all the schematics specific to user are
listed.

21

4.2 Basic Workflow of eSim on Cloud

Figure 4.7: Basic Workflow of eSim on cloud

22

Chapter 5

Architecture

5.1 Overview

Figure 5.1: Architecture Diagram

The project relies on docker-compose [1] to orchestrate docker containers. As
described in Figure 5.1, The users query is handled by Niginx[2, 3], and it is routed
to the Application Interface (API) Endpoints created by Django Web Framework[4]
(discussed in detail in 8) or the Front-End files , the Django Container then connects
to Celery[5], Redis[6] and the databases MongoDB[7] and MYSQL[8]. These services
have all been individually containerized so as to allow scaling with a single command
in future. These services and their role in the project have been described in detail

23

in the subsequent subsections.

5.2 Nginx

Nginx [3, 2] has been utilized for Caching, Load-Balancing, Reverse-Proxying. Es-
sentially, when a user tries to access the project, it is Nginx which is handling the
requests. It does the following things:

• Cache Images, Cascading Style Sheet(CSS) files and API requests for faster
responses

• Route requests on the same domain but on different Uniform Resource Locator
(URL) to the required web server

• Load Balance requests between multiple docker containers using Round-Robin
Algorithm [9]

5.3 Django

Django Framework along with Django-Rest-Framework [10] have been utilized to
create API endpoints required for the Frontend. Some APIs have also been uti-
lized by the Arduino Project. The endpoints have been discussed in detail in 8.
Gunicorn[11] has been used as a WSGI Server to serve the Django APIs, it can
be configured to use multiple threads and workers. The Django Container installs
the required python dependencies, and also system dependencies necessary for the
python dependencies. The built docker images are also served in the project’s home
page.

5.4 Celery and Redis

Celery uses the same docker container as Django, but runs the celery daemon with
multiple workers to handle processing heavy tasks in the background asynchronously.
It is also worth noting that multiple celery containers can ’Discover’ each other on the
network and share tasks amongst themselves. Celery also requires a Task Queue, for
which Redis has been utilized. Redis is essentially a In memory Key-Value Store,
this is utilized to store the task details and it’s data which is later fetched and
processed by a Celery worker.

24

Chapter 6

DevOps

6.1 Continuous Integration

Figure 6.1: Github Workflows

6.1.1 Github Actions - Workflows

Multiple github workflows have been setup to run Linting and Testing operations
on various parts of the project, they have been described below:

• eslint bot ensures that the JavaScript files in the project have been linted
according to the eslint standards, it even annotates the lines with linting errors

• React Tests - Simple tests to ensure the project compiles successfully and there
are not any syntax errors present. Coverage needs to be significantly improved

25

• PEP8Speaks Bot - It is utilised to ensure that Python code in the repository
meets the PEP8 standards

• Django Build - Ensures that the Django container sucessfully builds

• Containers Publish - Builds all the containers defined in the docker-compose
configuration and publishes them on github packages as discussed in 6.1.2

6.1.2 Container Images

Pre-Compiled docker images are being published in Github’s docker registry once
code is merged to the develop or master branch. There are two tags, ’dev’ and
’latest’, images with the ’dev’ tag are built from the develop branch while images
with the ’latest’ branch are published with code from master branch of the project.
Using a published image saves time and resources to build a docker container locally
on one’s system.

6.2 Deployment

6.2.1 Ansible Scripts

Ansible[12] is a IT Orchestration tool developed by RedHat to manage servers and
deployments across multiple machines. To make it easier to deploy the project on
a production server or even a developers local machine ansible scripts have been
provided with the project. There are essentially two scripts, the first configures
the machine with the correct versions of docker and docker-compose and the latter
clones the project repository, builds and runs the necessary docker containers.

6.2.2 Development Installation Script

To make it easier for developers contributing to the project to setup the development
environment quickly, first-run.dev.sh has been written to allow single command
installation of the development environment. This script deletes any residual fold-
ers which can conflict with the installation of the project , then builds the docker
images for all the services and then runs database migrations and even seeds the
KiCAD libraries to the database using a Django Management Command which was
also written to ease seeding KiCAD libraries to the project.

26

6.3 Performance Testing

Figure 6.2: Jmeter Tests

JMeter[13] is Java application designed to load test functional behavior and
measure performance of web applications. Jmeter tests have also been written to
evaluate the performance of the most APIs.

Test Setup

JMeter configuration to run 200 simultaneous threads (can be perceived as individual
users) ramping up over a period of 2 seconds was used for all the tests. The tests
were performed on Apple MacBook Pro with 8GB of RAM , SSD Storage and Intel’s
i5-8279U Processor. The tests were performed using the Production Config of the
Project.

27

Test Results

Figure 6.2 shows test results, Label column describes the API action being tested
and Response time describe response times for the same. It is worth noting that all
endpoints tested provide sub 400ms response times.

6.3.1 Automatic OpenAPI Compliant API Documentation

Figure 6.3: API Documentation Screenshot

Swagger[14] has been integrated to automatically generate OpenAPI Compatible
schema and also a dashboard documenting the endpoints. This also provides easy
to try out various API endpoints from the browser itself.

28

Chapter 7

eSim On Cloud User Guide

The following are basic instructions for the user about how to use the application
for drawing the schematic diagram of circuit by using provided components and
Simulate the drawn circuit under specific simulation modes. Instructions for spice
simulator are listed below. Parameters for sample circuits in eSim gallery page are
listed too.

29

THE ESIM ON CLOUD USER GUIDE
HOME PAGE :
This is Home page of eSim on cloud

SCHEMATIC EDITOR :
Here you can draw schematic diagram with help of components

30

TOOLBAR :

 ​1 2 3 | 4 5 6 | 7 8 9 | 10 11 12 | 13 14 15 | 16 17 18

 1 New To open a New Editor

 2 Open To open the existing saved project

 3 Save To save existing drawn schematic

 4 Export To export the circuit as JSON

 5 Image Export To export circuit as jpeg, png, and svg images

 6 Print Preview Opens up print preview to print the circuit

 7 Simulate Opens simulate modes on the left side bar

 8 Generate Netlist Generates a netlist for the circuit on the grid

 9 ERC check Runs basic erc checks on the circuit on the grid

10 Undo Undo the latest changes

11 Redo Redo the undone changes

12 Rotate Rotate component by 90 degree

13 Zoom In Zooms in the whole circuit

14 Zoom out Zooms out the whole circuit

15 Default Size Reset’s to the default grid size

16 Delete Delete the component selected

17 Clear All Clear the grid with schematic drawn

18 Help Shows the help screen

31

COMPONENT SIDEBAR : ​[Left Side Panel]

You can either select components from the component sidebar or
You can search for the component in the search bar. There are various search filter
options to sort components. To see all the search filters click on the ​[Search By]
dropdown below the search box.

32

PROPERTIES SIDEBAR: ​[Right Side Panel]

To change the size of the grid, select the grid size from the ​[Grid size] ​dropdown
menu
To change the orientation of the grid, Select the orientation from
[Grid Layout]​ dropdown menu
On the properties sidebar.
To move over the grid (bird’s eye view) Use the Blue box.
To provide description to your circuit while saving, type the description in the ​[
Schematic Description]​ text box.

33

DRAWING THE CIRCUIT :

Hover on the component to see the name and for details ​Single Click​ on that
component. To place a component on the grid, ​Drag and drop​ that component
onto the grid.

34

To Enter/ Edit parameters of a component ​Double Click​ on the component.
You can see all the parameters of that component on the properties sidebar on the
Right side panel of the screen.
After entering the values, click on ​[SET PARAMETER]​ button to set the values.

35

For Connecting wire between two pins simply hover over the 1st pin then you will
see that a green box appears click on it and drag to reach the 2nd pin, Release the
mouse to connect the pins. Now the two pins are
connected successfully.

36

After you are done with drawing the circuit you can view the netlist of the circuit
by clicking the ​[Generate Netlist]​ button on the toolbar.
A popup window will appear displaying the netlist.
You can also download the netlist by clicking on the download button.

37

SIMULATION MODES :

38

After you are done with drawing the circuit, To simulate the circuit click on the
[Simulate]​ button on the toolbar.
You will notice the left sidebar replaces components list to display Simulation
Modes.

39

Click on the simulation mode you need, To display the simulation parameter for
the simulation. Simply fill in the simulation parameters and click on the
[Simulate]​ button to run the simulation.

Note​ - if you only want to calculate values at a particular node you need to click
on “Add expression” and enter the node name there before clicking on the
simulate button.
Add Expression follows ngspice syntax therefore to indicate current
Add the postfix “#branch” at the end of node name.

After you click on the ​[Simulate]​ button a new screen will pop up where you can
see the simulation result.
Note​ ​: The simulation output can be either a table or a graph depending on the
simulation mode.

SIMULATION RESULT SCREEN :

40

On the simulation result screen you can change the scale of the x-axis and the
y-axis by selecting an option from the ​[Select x-axis scale]​ and
[Select y-axis scale] ​dropdown menu. To change the precision of the values
select an option from the​ [Select Precision] ​dropdown menu.
You can also select or deselect the checkbox on top of the graph to display graphs
related to a particular node.

41

SPICE SIMULATOR :

In the spice simulator page you can type your netlist in the code editor box.
You can change the theme of the editor to light by clicking the switch on top.
After you are done typing netlist you can click on the​ [Simulate] ​button to view
the result. Simulation result window will popup displaying the result.
NOTE - The user needs to add “ > data.txt ” at the end of the control line.
E.g
.control
run
print all​ ​> data.txt
.endc
.end

42

The eSim Gallery : ​[Sample schematic examples]

Step 1 : From the Home page of “eSim on cloud” navigate to ​Gallery ​page
 from the navbar at the top.
Step 2 : Open a circuit in the editor by clicking on ​[LAUNCH IN EDITOR]
 The circuit is launched in the editor with preconfigured component
 Properties [however users can change it].
Step 3 : Click on the simulate button on the toolbar on top, select the
 simulation mode and fill in the simulation parameters, then click
 on the simulate button.

43

Simulation properties for respective examples in the gallery are listed below
[however you can also use different values than those written below].

SAMPLE VALUES FOR REFERENCE :

S.NO NAME SIMULATIO
N

TYPE

SIMULATION
PARAMETRS

ADD
EXPRESSION

1 Voltage
Divider

DC SOLVER NONE NONE

2 RC Circuit TRANSIENT
ANALYSIS

 Start Time - 0
 Stop Time - 100m
 Step Time - 10m

NONE

3 Dual RC
Ladder

TRANSIENT
ANALYSIS

 Start Time - 0
 Stop Time - 50m
 Step Time - 50u

NONE

4 Bipolar
Amplifier

TRANSIENT
ANALYSIS

 Start Time - 0s
 Stop Time - 10m
 Step Time - 10u

NONE

AC
ANALYSIS

 Type - DECADE
 Points - 10
 Start Freq - 10
 Stop Freq - 10Meg

NONE

5 Shunt Clipper DC SWEEP Component - V1
 Start Voltage - 0
 Stop Voltage - 1
 Step Voltage - 1m

-v1#branch

6 RC Circuit
 (Parallel)

TRANSIENT
ANALYSIS

 Start Time - 0
 Stop Time - 30m
 Step Time - 10u

NONE

44

LOGIN FORM :

SIGN UP FORM :

45

Chapter 8

API Endpoints

In following API documentation we have listed API used in this project.

46

eSim Cloud API

Overview
Public API Endpoints for eSim Cloud

Version information
Version : v1

License information
License : GPLv3 License
Terms of service : null

URI scheme
Host : localhost
BasePath : /api
Schemes : HTTP

Consumes
• application/json

Produces
• application/json

Security

Basic
Type : Token Authorization

Paths

GET /auth/google-callback

Description

Creates user if OAuth token valid

1

47

Responses

HTTP Code Schema

200 No Content

Tags

• auth

POST /auth/o/{provider}/

Parameters

Type Name Schema

Path
provider
required

string

Body
data
required

ProviderAuth

Responses

HTTP Code Schema

201 ProviderAuth

Tags

• auth

GET /auth/o/{provider}/

Parameters

Type Name Schema

Path
provider
required

string

Responses

2

48

HTTP Code Schema

200 ProviderAuth

Tags

• auth

POST /auth/token/login/

Description

Use this endpoint to obtain user authentication token.

Parameters

Type Name Schema

Body
data
required

TokenCreate

Responses

HTTP Code Schema

201 TokenCreate

Tags

• auth

POST /auth/token/logout/

Description

Use this endpoint to logout user (remove user authentication token).

Responses

HTTP Code Schema

201 No Content

Tags

• auth

3

49

POST /auth/users/

Parameters

Type Name Schema

Body
data
required

UserCreate

Responses

HTTP Code Schema

201 UserCreate

Tags

• auth

GET /auth/users/

Responses

HTTP Code Schema

200 < User > array

Tags

• auth

POST /auth/users/activation/

Parameters

Type Name Schema

Body
data
required

Activation

Responses

HTTP Code Schema

201 Activation

4

50

Tags

• auth

GET /auth/users/me/

Responses

HTTP Code Schema

200 < User > array

Tags

• auth

PUT /auth/users/me/

Parameters

Type Name Schema

Body
data
required

User

Responses

HTTP Code Schema

200 User

Tags

• auth

DELETE /auth/users/me/

Responses

HTTP Code Schema

204 No Content

5

51

Tags

• auth

PATCH /auth/users/me/

Parameters

Type Name Schema

Body
data
required

User

Responses

HTTP Code Schema

200 User

Tags

• auth

POST /auth/users/resend_activation/

Parameters

Type Name Schema

Body
data
required

SendEmailReset

Responses

HTTP Code Schema

201 SendEmailReset

Tags

• auth

POST /auth/users/reset_password/

6

52

Parameters

Type Name Schema

Body
data
required

SendEmailReset

Responses

HTTP Code Schema

201 SendEmailReset

Tags

• auth

POST /auth/users/reset_password_confirm/

Parameters

Type Name Schema

Body
data
required

PasswordResetConfirm

Responses

HTTP Code Schema

201 PasswordResetConfirm

Tags

• auth

POST /auth/users/reset_username/

Parameters

Type Name Schema

Body
data
required

SendEmailReset

7

53

Responses

HTTP Code Schema

201 SendEmailReset

Tags

• auth

POST /auth/users/reset_username_confirm/

Parameters

Type Name Schema

Body
data
required

UsernameResetConfirm

Responses

HTTP Code Schema

201 UsernameResetConfirm

Tags

• auth

POST /auth/users/set_password/

Parameters

Type Name Schema

Body
data
required

SetPassword

Responses

HTTP Code Schema

201 SetPassword

8

54

Tags

• auth

POST /auth/users/set_username/

Parameters

Type Name Schema

Body
data
required

SetUsername

Responses

HTTP Code Schema

201 SetUsername

Tags

• auth

GET /auth/users/{id}/

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this user. integer

Responses

HTTP Code Schema

200 User

Tags

• auth

PUT /auth/users/{id}/

9

55

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this user. integer

Body
data
required

User

Responses

HTTP Code Schema

200 User

Tags

• auth

DELETE /auth/users/{id}/

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this user. integer

Responses

HTTP Code Schema

204 No Content

Tags

• auth

PATCH /auth/users/{id}/

Parameters

10

56

Type Name Description Schema

Path
id
required

A unique integer value identifying this user. integer

Body
data
required

User

Responses

HTTP Code Schema

200 User

Tags

• auth

GET /circuits/

Description

Listing Published Circuits

Responses

HTTP Code Schema

200 < Circuit > array

Tags

• circuits

GET /circuits/{circuit_id}/

Description

Listing Published Circuits

Parameters

Type Name Description Schema

Path
circuit_id
required

A UUID string identifying this circuit. string (uuid)

11

57

Responses

HTTP Code Schema

200 Circuit

Tags

• circuits

GET /components/

Description

Listing All Library Details

Parameters

Type Name Schema

Query
component_library
optional

string

Query
component_librarylibrary_na
mecontains
optional

string

Query
descriptioncontains
optional__

string

Query
keywordcontains
optional__

string

Query
namecontains
optional__

string

Query
symbol_prefix
optional

string

Responses

HTTP Code Schema

200 < LibraryComponent > array

12

58

Tags

• components

GET /components/{id}/

Description

Listing All Library Details

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this library
component.

integer

Responses

HTTP Code Schema

200 LibraryComponent

Tags

• components

GET /libraries/

Description

Listing All Library Details

Parameters

Type Name Schema

Query
library_name
optional

string

Responses

HTTP Code Schema

200 < Library > array

13

59

Tags

• libraries

GET /libraries/{id}/

Description

Listing All Library Details

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this library. integer

Responses

HTTP Code Schema

200 Library

Tags

• libraries

POST /publish/circuit/

Description

CRUD for viewing unpublished / published circuits (Permission Groups)

Parameters

Type Name Schema

Body
data
required

Circuit

Responses

HTTP Code Schema

201 Circuit

14

60

Tags

• publish

GET /publish/circuit/

Description

CRUD for viewing unpublished / published circuits (Permission Groups)

Responses

HTTP Code Schema

200 < Circuit > array

Tags

• publish

GET /publish/circuit/{circuit_id}/

Description

CRUD for viewing unpublished / published circuits (Permission Groups)

Parameters

Type Name Description Schema

Path
circuit_id
required

A UUID string identifying this circuit. string (uuid)

Responses

HTTP Code Schema

200 Circuit

Tags

• publish

PUT /publish/circuit/{circuit_id}/

15

61

Description

CRUD for viewing unpublished / published circuits (Permission Groups)

Parameters

Type Name Description Schema

Path
circuit_id
required

A UUID string identifying this circuit. string (uuid)

Body
data
required

Circuit

Responses

HTTP Code Schema

200 Circuit

Tags

• publish

DELETE /publish/circuit/{circuit_id}/

Description

CRUD for viewing unpublished / published circuits (Permission Groups)

Parameters

Type Name Description Schema

Path
circuit_id
required

A UUID string identifying this circuit. string (uuid)

Responses

HTTP Code Schema

204 No Content

Tags

• publish

16

62

PATCH /publish/circuit/{circuit_id}/

Description

CRUD for viewing unpublished / published circuits (Permission Groups)

Parameters

Type Name Description Schema

Path
circuit_id
required

A UUID string identifying this circuit. string (uuid)

Body
data
required

Circuit

Responses

HTTP Code Schema

200 Circuit

Tags

• publish

POST /publish/publishing/

Description

Publishing CRUD Operations

Parameters

Type Name Schema

Body
data
required

Publish

Responses

HTTP Code Schema

201 Publish

17

63

Tags

• publish

GET /publish/publishing/

Description

Publishing CRUD Operations

Responses

HTTP Code Schema

200 < Publish > array

Tags

• publish

GET /publish/publishing/{id}/

Description

Publishing CRUD Operations

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this publish. integer

Responses

HTTP Code Schema

200 Publish

Tags

• publish

PUT /publish/publishing/{id}/

18

64

Description

Publishing CRUD Operations

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this publish. integer

Body
data
required

Publish

Responses

HTTP Code Schema

200 Publish

Tags

• publish

DELETE /publish/publishing/{id}/

Description

Publishing CRUD Operations

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this publish. integer

Responses

HTTP Code Schema

204 No Content

Tags

• publish

19

65

PATCH /publish/publishing/{id}/

Description

Publishing CRUD Operations

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this publish. integer

Body
data
required

Publish

Responses

HTTP Code Schema

200 Publish

Tags

• publish

POST /save

Description

API to save the state of project to db which can be loaded or shared later

Parameters

Type Name Schema

FormData
data_dump
required

string

FormData
owner
optional

integer

FormData
save_id
optional

string (uuid)

20

66

Type Name Schema

FormData
shared
optional

boolean

Responses

HTTP Code Schema

201 StateSave

Consumes

• application/x-www-form-urlencoded

Tags

• save

GET /save/list

Description

Returns Saved data for given username, Only user who saved the state can access it THIS WILL
ESCAPE DOUBLE QUOTES

Responses

HTTP Code Schema

200 StateSave

Tags

• save

POST /save/{save_id}

Description

Returns Saved data for given save id , Only user who saved the state can access / update it THIS
WILL ESCAPE DOUBLE QUOTES

Parameters

21

67

Type Name Schema

Path
save_id
required

string

Responses

HTTP Code Schema

200 StateSave

Tags

• save

GET /save/{save_id}

Description

Returns Saved data for given save id , Only user who saved the state can access / update it THIS
WILL ESCAPE DOUBLE QUOTES

Parameters

Type Name Schema

Path
save_id
required

string

Responses

HTTP Code Schema

200 StateSave

Tags

• save

POST /save/{save_id}/sharing/{sharing}

Description

Enables sharing for the given saved state

22

68

Parameters

Type Name Schema

Path
save_id
required

string

Path
sharing
required

string

Responses

HTTP Code Schema

200 StateSave

Tags

• save

GET /simulation/status/{task_id}

Description

Returns Simulation results for 'task_id' provided after uploading the netlist /api/task/<uuid>

Parameters

Type Name Schema

Path
task_id
required

string

Responses

HTTP Code Schema

200 No Content

Tags

• simulation

API for NetlistUpload

23

69

POST /simulation/upload

Description

Requires a multipart/form-data POST Request with netlist file in the 'file' parameter

Responses

HTTP Code Schema

201 No Content

Consumes

• multipart/form-data

• application/x-www-form-urlencoded

Tags

• simulation

POST /tags/

Description

CRUD for Tags

Parameters

Type Name Schema

Body
data
required

CircuitTag

Responses

HTTP Code Schema

201 CircuitTag

Tags

• tags

24

70

GET /tags/

Description

CRUD for Tags

Responses

HTTP Code Schema

200 < CircuitTag > array

Tags

• tags

GET /tags/{id}/

Description

CRUD for Tags

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this circuit
tag.

integer

Responses

HTTP Code Schema

200 CircuitTag

Tags

• tags

PUT /tags/{id}/

Description

CRUD for Tags

25

71

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this circuit
tag.

integer

Body
data
required

CircuitTag

Responses

HTTP Code Schema

200 CircuitTag

Tags

• tags

DELETE /tags/{id}/

Description

CRUD for Tags

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this circuit
tag.

integer

Responses

HTTP Code Schema

204 No Content

Tags

• tags

PATCH /tags/{id}/

26

72

Description

CRUD for Tags

Parameters

Type Name Description Schema

Path
id
required

A unique integer value identifying this circuit
tag.

integer

Body
data
required

CircuitTag

Responses

HTTP Code Schema

200 CircuitTag

Tags

• tags

Definitions

Activation

Name Description Schema

token
required

Minimum length : 1 string

uid
required

Minimum length : 1 string

Circuit

Name Description Schema

author
optional

integer

27

73

Name Description Schema

base64_image
optional
read-only

string (uri)

circuit_id
optional
read-only

string (uuid)

data_dump
required

Minimum length : 1 string

description
required

Minimum length : 1 string

last_updated
optional
read-only

string (date-time)

publish_reque
st_time
optional
read-only

string (date-time)

sub_title
optional

Maximal length : 200 string

title
required

Length : 1 - 200 string

CircuitTag

Name Description Schema

description
required

Length : 1 - 200 string

id
optional
read-only

integer

tag
required

Length : 1 - 100 string

28

74

ComponentAlternate

Name Description Schema

dmg
required

Minimum value : 0
Maximum value : 32767

integer

full_name
required

Length : 1 - 200 string

id
optional
read-only

integer

part
required

Length : 1 string

svg_path
required

Length : 1 - 400 string

Library

Name Description Schema

id
optional
read-only

integer

library_name
required

Length : 1 - 200 string

saved_on
optional
read-only

string (date-time)

LibraryComponent

Name Description Schema

alternate_com
ponent
optional
read-only

<
ComponentAlternate
> array

29

75

Name Description Schema

component_li
brary
required

string (uri)

data_link
required

Length : 1 - 200 string (uri)

description
required

Length : 1 - 400 string

full_name
required

Length : 1 - 200 string

id
optional
read-only

integer

keyword
required

Length : 1 - 200 string

name
required

Length : 1 - 200 string

svg_path
required

Length : 1 - 400 string

symbol_prefix
required

Length : 1 - 10 string

thumbnail_pa
th
required

Length : 1 - 400 string

PasswordResetConfirm

Name Description Schema

new_passwor
d
required

Minimum length : 1 string

token
required

Minimum length : 1 string

30

76

Name Description Schema

uid
required

Minimum length : 1 string

ProviderAuth

Name Description Schema

access
optional
read-only

Minimum length : 1 string

refresh
optional
read-only

Minimum length : 1 string

user
optional
read-only

Minimum length : 1 string

Publish

Name Schema

circuit
optional

Circuit

published
optional

boolean

reviewed_by
optional

string (uri)

tags
optional
read-only

< CircuitTag > array

SendEmailReset

Name Description Schema

email
required

Minimum length : 1 string (email)

31

77

SetPassword

Name Description Schema

current_pass
word
required

Minimum length : 1 string

new_passwor
d
required

Minimum length : 1 string

SetUsername

Name Description Schema

new_usernam
e
required

Required. 150 characters or fewer. Letters, digits and @/.//-
/_ only. + **Length** : `1 - 150` + **Pattern** : `"^[\\w.@-
]+$"`

string

StateSave

Name Description Schema

data_dump
required

Minimum length : 1 string

owner
optional

integer

save_id
optional

string (uuid)

save_time
optional
read-only

string (date-time)

shared
optional

boolean

TokenCreate

32

78

Name Description Schema

password
optional

Minimum length : 1 string

username
optional

Minimum length : 1 string

User

Name Description Schema

email
optional

Maximal length : 254 string (email)

id
optional
read-only

integer

username
optional
read-only

Required. 150 characters or fewer. Letters, digits and @/./+/-
/_ only.
Minimum length : 1

string

UserCreate

Name Description Schema

email
optional

Maximal length : 254 string (email)

id
optional
read-only

integer

password
required

Minimum length : 1 string

username
required

Required. 150 characters or fewer. Letters, digits and @/.//-
/_ only. + **Length** : `1 - 150` + **Pattern** : `"^[\\w.@-
]+$"`

string

UsernameResetConfirm

33

79

Name Description Schema

new_usernam
e
required

Required. 150 characters or fewer. Letters, digits and @/.//-
/_ only. + **Length** : `1 - 150` + **Pattern** : `"^[\\w.@-
]+$"`

string

34

80

Bibliography

[1] https://docs.docker.com/compose/ (Last accessed 30 May 2020).

[2] W. Reese, “Nginx: the high-performance web server and reverse proxy,” Linux
Journal, vol. 2008, no. 173, p. 2, 2008.

[3] https://www.nginx.com/ (Last accessed 30 May 2020).

[4] https://www.djangoproject.com/ (Last accessed 30 May 2020).

[5] https://www.celeryproject.org/ (Last accessed 30 May 2020).

[6] https://redis.io/ (Last accessed 30 May 2020).

[7] https://www.mongodb.com/ (Last accessed 30 May 2020).

[8] https://www.mysql.com/ (Last accessed 30 May 2020).

[9] R. Soni, “Load balancing with nginx,” in Nginx, pp. 153–171, Springer, 2016.

[10] https://www.django-rest-framework.org/ (Last accessed 30 May 2020).

[11] https://gunicorn.org/ (Last accessed 30 May 2020).

[12] https://www.ansible.com/ (Last accessed 30 May 2020).

[13] https://jmeter.apache.org/ (Last accessed 30 May 2020).

[14] hhttps://swagger.io/ (Last accessed 31 May 2020).

81

https://docs.docker.com/compose/
https://www.nginx.com/
https://www.djangoproject.com/
https://www.celeryproject.org/
https://redis.io/
https://www.mongodb.com/
https://www.mysql.com/
https://www.django-rest-framework.org/
https://gunicorn.org/
https://www.ansible.com/
https://jmeter.apache.org/
hhttps://swagger.io/

	Introduction
	Problem Statement
	Project Objective
	Project Outcome
	Project Requirements

	Project Overview
	Features
	Grid size and Orientation
	Schematic Description
	Component Categories
	Searching Component
	Components Position
	Basic Editor Operations
	ERC Check
	Generate Netlist
	Simulate
	Saving and Re-Opening
	Export
	Sharing
	Dashboard
	Gallery
	Spice Simulator

	eSim Development Flow
	Generating component images from KiCAD symbol library files
	Generating XML files
	Generating Netlist
	Simulation Output
	JSON format returned by parser

	Frontend
	UI Components
	Home UI
	Schematic Edior UI
	Spice Simulator UI
	eSim Gallery UI
	Dashboard UI

	Basic Workflow of eSim on Cloud

	Architecture
	Overview
	Nginx
	Django
	Celery and Redis

	DevOps
	Continuous Integration
	Github Actions - Workflows
	Container Images

	Deployment
	Ansible Scripts
	Development Installation Script

	Performance Testing
	Automatic OpenAPI Compliant API Documentation

	eSim On Cloud User Guide
	API Endpoints

