
Page Designing and
Templating in Drupal 8

Report
on

Under the Guidance of

Professor P. Sunthar

Chemical Engineering Department

IIT Bomaby

Made By:-
Karan Singh Singare

IIEST Shibpur, Howrah
B.Tech 3rd year(Computer Science and Technology)

FOSSEE SUMMER FELLOWSHIP 2020

Acknowledgement

It brings me great pleasure for an opportunity to work and
submit my fellowship report on PAGE DESIGNING AND
TEMPLATING IN DRUPAL 8. For this I deeply indebted and
sincerely thankful to our mentors Mr. Tejas Vaidya and Ms.
Ruchi Kumari of IIT Bombay for their help, invaluable
guidance and elating encouragement throughout the course
of this fellowship.

I am also thankful to Mr. P. Sunthar, Department of
Chemical Engineering, IIT Bomaby for his timely advises.

I would like to acknowledge the co-operation of various other
fellowship member Ms. Dolon Mandal, Ms. Prerna
Sawhney and Mr. Tejas Anand Srivastava who helped me
in completing my fellowship.

Finally, I am deeply thankful to my parents and teachers who
helped and inspired me in completing this fellowship.

Content

1 SASS
More efficient way to code the styling of the

webpage as compared to traditional CSS

2 Zurb Foundation
The front-end framework for the designing

responsive and interactive websites with a

number of built-in classes and plugins

3 Panini
Template Engine provided by the Zurb

Foundation to generate the template of the

webpages

4 Drupal Themeing
How to design drupal 8 theme from scratch

and create the custom page template using

Twig Templating Engine

SASS1.

SASS(short for syntactically awesome style sheets) is
a preprocessor scripting language that is interpreted or
compiled into Cascading Style Sheets(CSS). Sassscript is
the scripting language itself.

SASS consists of two syntaxes. The original syntax, called
"the indented syntax". It uses indentation to separate
code blocks and newline characters to separate rules.
The newer version syntax "SCSS" (Sassy CSS), uses blocks
and semicolons to separate rules within a block. The
indented syntax and SCSS files are traditionally given
extensions .sass and .scss, respectively.

The SASS interpreter translates SassScripts into CSS.

Some of the Features provided by the SASS

Variables
Nesting
Loops
Arguments

Variables

Sass allows variables to be defined. Variables begin with a dollar
sign ($). Variable assignment is done with a colon (:).

Nesting
Sass allows variables to be defined. Variables begin with a dollar
sign ($). Variable assignment is done with a colon (:).

Arguments

Loops
Sass allows for iterating over variables
using @for, @each and @while, which can be used to apply
different styles to elements with similar classes or ids.

2. Zurb Foundation

Foundation is a responsive front-end framework. Foundation
provides a responsive grid and HTML and CSS UI components,
templates, and code snippets, including typography, forms,
buttons, navigation and other interface elements, as well as
optional functionality provided by JavaScript extensions.
Foundation is an open source project, and was formerly
maintained by ZURB. Since 2019, Foundation has been
maintained by volunteers.

Foundation was designed for and tested on numerous browsers
and devices. It is a mobile first responsive framework built with
Sass/SCSS giving designers best practices for rapid development.
The framework includes most common patterns needed to rapidly
prototype a responsive site. Through the use of Sass mixins,
Foundation components are easily styled and simple to
extend.Since version 2.0 it also supports responsive design. This
means the graphic design of web pages adjusts dynamically,
taking into account the characteristics of the device used (PC,
tablet, mobile phone). Additionally, since 4.0 it has taken a mobile-
first approach, designing and developing for mobile devices first,
and enhancing the web pages and applications for larger
screens.Foundation is open source and available on GitHub.
Developers are encouraged to participate in the project and make
their own contributions to the platform.

For demonstration let's say we want to make a slider
In a traditional way we will have to write JavaScript, CSS
and HTML code for that
But Foundation makes it much simpler for use, we just
need create the HTML markup with some pre-built
classes provided by Zurb Foundation and That's it's
done. Zurb will automatically create the slider for us.
Just 4 to 5 of code will be enough for us to create the
slider

Output

We can clearly see that we didn't used any JavaScript
and CSS.
It's just a HTML markup and our job is done.

Code

Similarly let's say we want to create some sort of
content carousel.
Again it's very simple.
Just include the markup along with the classes provided
by the Zurb foundation and the Job is done, our
content slider is ready.
It's that simple.

Code

Output

3. Panini
Traditionally if, we are creating some static website, lets
say we have five pages that all shared the same header
and footer. We created our first page and then copy
and paste the common elements to the next page. But
now if we need to make a change to the header, the
change has to be made across multiple files.
Here comes Panini.
Panini is a flat file compiler that uses the concepts of
templates, pages and partials - powered by
the Handlebars Templating language to streamline
the process of creating static prototypes

Some of the key features provided by Panini

Templates and Pages
Partials
Page Variables
Helpers

A template is a common layout that every page in your design shares. It's
possible to have multiple templates, but generally you'll only need one, and
a page can only use one template. In the prototyping template, the default
layout is found under src/layouts/default.html.

Here's what a basic template might look like:

Templates & Pages

In the middle of the HTML is a bit of Handlebars code: {{> body}}. This is
where the pages you write are injected when Panini runs, giving you a series
of complete HTML files at the end.

The pages make up the guts of your layouts. These files will just have the
middle section of the design, since the layout already covers the top and
bottom. The prototyping template includes one blank page to get you
started, under src/pages/index.html.

A basic page might look like this:

Partials are a feature of Handlebars which allow you to inject HTML
anywhere in a page or layout. They're really useful when you need to repeat
certain chunks of code throughout your pages, or to keep individual files
from getting too cluttered with HTML.

Here's an example of a layout file that divides its key sections into partials:

The {{> }} syntax tells Handlebars to look for an HTML file with that name,
and inject it at that place. In this example, we have files
called header.html, navigation.html, and footer.html. In the
prototyping template, these files all exist within src/partials.

Partials

Pages have a few built-in variables, which can be used within the page
template itself, or within a layout or partial being used in tandem with the
page.

Page Variables

Prints the name of the current page, without its original file extension. In the
below example, if the page is index.html, {{page}} will become index.

Use {{root}} before a file path to make sure it works no matter what folder
the current page is in.

For example, a path to an external CSS file will need to be different if the
current page is at the root level of your site, or in a sub-folder.

Here's how you'd use it with a <link> tag:

page

root

If the page is index.html, the path will look like this:

Displays the HTML inside the helper only on specific pages. In the below
example, the HTML inside the helper will only show up on
the index.html page.

Helpers
Helpers are special functions that manipulate content on the page.

Displays the HTML inside the helper if the two values are equal.

ifequal

ifpage

Repeats the content inside of it n number of times. Use this to easily print
lots of duplicate HTML in a prototype.

repeat

4. Drupal Theming
A theme is a collection of files that define the
presentation layer. You can also create one or
more "sub-themes" or variations on a theme.

Topics for this section:-

Defining a theme with an .info.yml file
Drupal theme folder structure
Adding Regions to a Theme
Adding stylesheets (CSS) and JavaScript (JS)
to a Drupal theme
Twig in Drupal
Creating sub-themes

Defining a theme with an .info.yml file

To create a Drupal8 theme you need to create a
theme_name.info.yml file that provide the meta-data about
your theme to Drupal 8
We have to create .info.yml file in the root of the theme folder.
The folder should have the same name as the .info.yml file for
example if the name of theme is fluffiness then the info file will
be named as fluffiness.info.yml

Theme folder structure

You must place the themes in "themes" folder of your Drupal
installation
It is good practice to place the contributed themes in a sub
folder named "contrib" and your own themes in a folder called
"custom".

A sample folder structure

Adding region meta-data to your THEMENAME.info.yml file.
Editing your page.html.twig file and printing the new regions.

Adding Regions to Your Info File
Start by declaring any new regions in your THEMENAME.info.yml
file. Regions are declared as children of the regions.
Adding Regions to Your Templates

In order for regions to display any content placed into them, you'll
need to make sure your new regions are also added to
your page.html.twig file.

Adding Regions

Save the CSS and JS files folder css and js respectively.
Define a library which registers these CSS and JS files with your
theme.
Attach the library to pages where we want to apply the css and
js

Define all of your asset libraries in a *.libraries.yml file in your
theme folder. If your theme is named fluffiness, the file name
should be fluffiness.libraries.yml. Each "library" in the file is an
entry detailing CSS and JS files (assets), like this:

Adding CSS and JS

Defining a library

In this example, the JavaScript: cuddly-slider.js and CSS cuddly-
slider.css are located in the respective js and css directories of
your theme.

Twig is a template engine for PHP and it is part of the Symfony2
framework

Drupal allows you to override all of the templates that are used
to produce HTML markup so that you can fully control the
markup that is shown as output within a custom theme. There
are templates for each page element ranging from the high
level HTML to small fields.

Twig in Drupal

Working With Twig Templates

Twig Template naming conventions

Drupal loads templates based on certain naming conventions.
This allows you to override templates by adding them to your
theme and giving them specific names.

Sub-themes are just like any other theme, with one
difference: they inherit the parent theme's resources.
To create a sub-theme, define it like any other theme and
declare its base theme with the "base theme" key.

Creating sub-themes

Example for the sub-theme

Bibliography

https://www.drupal.org/docs/theming-drupal
https://en.wikipedia.org/wiki/Foundation_(framework)
https://en.wikipedia.org/wiki/Sass_(stylesheet_language)
https://get.foundation/sites/docs/
https://get.foundation/sites/docs/panini.html
https://sass-lang.com/documentation

https://www.drupal.org/docs/theming-drupal
https://en.wikipedia.org/wiki/Foundation_(framework)
https://en.wikipedia.org/wiki/Sass_(stylesheet_language)
https://get.foundation/sites/docs/
https://get.foundation/sites/docs/panini.html
https://sass-lang.com/documentation

Thank You!

