
 

FOSSEE Fellowship Report 

 

 

SPOKEN TUTORIAL 
ANALYTICS SYSTEM 

 
 
 
 

Prepared By :  
Arish Rehman Khan 
Student of MCA ( I year ) at JNU 
Email: arish.rehman.khan@gmail.com 

 



 

Table of Contents 
Table of Contents 1 

Introduction 3 

Preparing the Github Repository 4 

Using Two Databases 5 

Generating fake data 7 

Some Important Terms 8 

Stats Calculation Scripts 8 
Daily Statistics 8 
Weekly Statistics 9 
Monthly Statistics 9 
Yearly Statistics 9 
Average Statistics 10 
Event Statistics 10 
Foss Statistics 11 
Visitor Activity Statistics 12 
Visitor Path Statistics 13 
Page View Activity Statistics 14 
Came From Activity Statistics 14 
Exit Link Activity Info 14 
Visitor Spot Statistics 15 
Visitor Info Statistics: 15 
Location Statistics 17 
System Statistics 17 
Sources Statistics 18 
Came From Statistics 19 
Exit Link Statistics 19 

Visualizing the statistics 20 
Dashboard Page 20 

Tiles 20 
Trend Chart 20 
Datatable 20 

Events Page 22 



 

Page Analysis 23 
Trend Chart 23 
Datatable 23 

Foss Page 24 
Activities 24 

Visitor Activity Page 25 
Visitor Path Page 26 
Page View Activity 26 
Came From Activity 27 
Exit Link Activity 28 
Visitor Map 29 
Visitor Info 30 

Reports Page 31 
Location Report 31 
Foss/Page Report 31 
System Report 32 
Traffic Report 32 

Future Work 34 

Conclusion 34 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

Introduction 
This report is about the work that I did in the FOSSEE Summer Fellowship programme - 2020. 
The task was to develop an Analytics System for the Spoken Tutorial website and course 
completion and tutorial progress statistics for users. At this point of time, the spoken tutorial 
website uses a third party web analytics system called stat counter, and we had to develop 
something like that. I along with my teammate Krithik Vaidya developed the system. The work 
was mainly divided into two major tasks - 
 

1. Storing the log containing information such as ip address, timestamp, page url, browser 
info, etc. into the mongo database. 

2. Using these logs to calculate meaningful insights such as page views, unique visits, 
returning visits, etc. and their visualization. 
 

First part along with course completion and tutorial progress tasks were done by my 
teammate. I worked mostly on the second part. 
 
This report contains only the work that I did. Report about my teammate’s work can be found 
here. 
 
The source code of the project is hosted on github. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preparing the Github Repository 
I initialised github repo with django 2.2.12 and added startbootstrap sb-admin-2 (screenshot 
attached below) to use it as a base template for creating the dashboard. 

https://spoken-tutorial.org/
https://statcounter.com/
mailto:krithikvaidya@gmail.com
https://docs.google.com/document/d/1YXwQmeMuMrX0YKncGss35xBPszmqwgO2zt37Oj0-0Vk/edit?usp=sharing
https://github.com/Spoken-tutorial/Spoken-Analytics-System
https://github.com/Spoken-tutorial/Spoken-Analytics-Syst
https://blackrockdigital.github.io/startbootstrap-sb-admin-2/


 

 

Using Two Databases 
The registration data of admin and users is saved in ‘spoken’ database which is a mysql 
database and we have to store the logs and statistics in a separate mongo database named 
‘logs’ for efficient querying. To solve this problem we used django routers. Django routers help 

https://docs.djangoproject.com/en/3.0/topics/db/multi-db/


 

to use multiple databases in a single application. /dashboard/router.py is used to route the auth 
related queries to ‘spoken’ database and the other queries are routed to ‘logs’ database. 

 
Part of /dashboard/router.py file 

 
 
 
The databases are specified as DATABASES and /dashboard/router.py file as 
DATABASE_ROUTERS in /analytics_system/settings.py file. 



 

 
Part of /analytics_system/settings.py file 

 
To migrate the each database separately the following command is used. 
 
$ python3 manage.py migrate --database=database_name 
 
 
Database used for auth purpose : spoken ( mysql ) 
Database used for storing logs and statistics : logs ( mongo ) 
 
 
 
 
 
 
 
 
 
 

Generating fake data 
The logs of the spoken website were not available as statcounter does not provide logs it only 
shows the calculated statistics.  I wrote a python script gen_fake_data.py so that I can generate 



 

fake logs to test the algorithms that calculate the statistics such as page views, unique visits, 
returning visits, etc. The scripts uses django-populate package to generate fake logs. 

 
Part of gen_fake_data.py file 

 
Steps to generate fake logs: 

1. Open the gen_fake_data.py file and change the value of num_rows_log and 
num_rows_exitlink to specify the number of logs to be generated for each Log and Exit 
Link Activity Model. ( why we have to generate logs for Exit Link is discussed later). 

2. Change the start_date and end_date of line 224 given in screenshot to specify the range 
of datetime for which logs are to be generated. 

3. Now open the python shell using command  
$ python3 manage.py shell 

4. In the shell run 
>>> exec(open("gen_fake_data.py").read()) 

 
Note:  

1. It will take time depending upon the number of logs to be generated. 
2. You can specify your own data in the scripts. 

 

Some Important Terms 
1. Page View : A page view is counted if a user visits any page of a website. 
2. First time visit : When a user visits any page for the first time. 

https://pypi.org/project/django-populate/


 

3. Returning visit : When a user revisits the website after a fixed amount of time ( 30 min 
in our case ). 

4. Unique visit : When a user visits any page for the first time or revisit any page after a 
fixed amount of time ( 30 min in our case ). 

5. Visit length : It is the time duration between the first and last page view in a unique visit. 
6. Path : Path that the visitor followed when he/she browse the website. 

Stats Calculation Scripts 
The calculation scripts present in the /dashboard/calculation_scripts directory are executed daily 
at 12:05 AM using celery package. These scripts calculate and store the statistics necessary for 
visualization. 
 
Disadvantage: Since these scripts only once a day. We can only calculate and display the data 
of previous day. The statcounter on the other hand displays the real time data. This functionality 
can be added in the next version of the system. 
 
These scripts are explained in detail :  

Daily Statistics 
These refer to the statistics which tell the number of page views, first time visits, returning visits, 
unique visits and unique visitors of a particular day. These statistics are calculated using  
/dashboard/calculation_scripts/dailyStats.py script. 
 
Algorithm used to calculate daily statistics: 

1) Get all the logs which were stored on the previous day in increasing order of datetime. 
2) Total page views will be equal to the number of logs. 
3) Find all the distinct IP addresses present in the logs. 
4) Total unique visitors will be equal to the number of IP addresses. 
5) Initialize the variables unique_visits, first_time_visits and returning_visits with zero. 
6) For each ip address  

a) If the IP address occurs for the first time, increment first_time_visits and 
unique_visits. 

b) Else if the same IP occurs after 30 min, increment returning_visits and 
unique_visits. 

7) Save the statistics along with the date. 

Weekly Statistics 
These refer to the statistics which tell the number of page views, first time visits, returning visits, 
unique visits and unique visitors of a particular week. These statistics are calculated using  

https://docs.celeryproject.org/en/stable/getting-started/introduction.html


 

/dashboard/calculation_scripts/weeklyStats.py script. 
 
Algorithm used to calculate weekly statistics: 

1. Get all the daily statistics of the current week. 
2. Initialize the variables page_views, unique_visits, first_time_visits, returning_visits and 

unique visitors with zero. 
3. Loop through all the statistics of current week and add daily statistics to these variables. 
4. If the statistics of current week are present, delete them. 
5. Save the statistics with the week number of the year and the current year. 

Monthly Statistics 
These refer to the statistics which tell the number of page views, first time visits, returning visits, 
unique visits and unique visitors of a particular month. These statistics are calculated using  
/dashboard/calculation_scripts/monthlyStats.py script. 
 
Algorithm used to calculate monthly statistics: 

1. Get all the daily statistics of the current month. 
2. Initialize the variables page_views, unique_visits, first_time_visits, returning_visits and 

unique visitors with zero. 
3. Loop through all the statistics of current month and add daily statistics to these variables. 
4. If the statistics of current month are present, delete them. 
5. Save the statistics with the month number of the year and the current year. 

Yearly Statistics 
These refer to the statistics which tell the number of page views, first time visits, returning visits, 
unique visits and unique visitors of a particular year. These statistics are calculated using  
/dashboard/calculation_scripts/yearlyStats.py script. 
 
Algorithm used to calculate yearly statistics: 

1. Get all the Monthly statistics of the current year. 
2. Initialize the variables page_views, unique_visits, first_time_visits, returning_visits and 

unique visitors with zero. 
3. Loop through all the statistics of current year and add daily statistics to these variables. 
4. If the statistics of current year are present, delete them. 
5. Save the statistics with the month number of the year and the current year. 

Average Statistics 
These refer to the statistics which tell the average daily, weekly, monthly and yearly page views, 
first time visits, returning visits, unique visits and unique visitors. These statistics are calculated 
using /dashboard/calculation_scripts/averageStats.py script. 



 

 
Algorithm used to calculate average statistics: 

1. Get all the Daily/Weekly/Monthly/Yearly statistics. 
2. Loop through all the daily statistics and calculate total page views, unique visits, first time 

visits and returning visits. 
3. Divide these values with the total number of days, weeks, months and years for each 

type. 
4. Save the statistics with current datetime (used when the latest record is to be displayed). 

Event Statistics 
These refer to the info about page views and unique visits that a page gets at a particular day. 
The info includes 

1. Date 
2. Time 
3. Page URL ( path ) 
4. Page title 
5. Page views 
6. Unique Visits 

These statistics are calculated using /dashboard/calculation_scripts/eventStats.py script. 
Note : When logs are stored each page view is associated with an event name, if we use JS 
implementation of log storing then we can save the title of the page, but it is not possible with 
middleware implementation. So if we don’t have a page title the page title can be found using 
the list containing the event name and page title present in /dashboard/events_info.py file. 
 
Algorithm used to calculate event statistics: 

1. Get all the logs which were stored on the previous day in increasing order of datetime. 
2. Find all the distinct path_info (paths) present in the logs. 
3. For each path in paths 

a. Get all the logs ‘daily_logs’ of the previous day having path_info as ‘path’. 
b. Find all the distinct IP addresses (ip_address) present in the ‘daily_logs’. 
c. Set the variables 

unique_visits = 0 
first_time = 0 

d. For ip in ip_address 
i. For log in daily logs 

1. if ip == log.ip_address: 
a. if first_time == 0: 

 first_time = 1 
 unique_visits += 1 
 else: 
 if ip occurs after 30 min,unique_visits += 1 

b. prev_datetime = log.datetime 



 

e. Save the required fields, if the page title is not available, fetch it from 
events_info.py using event_name. 

 

Foss Statistics 
These refer to the info about page views and unique visits that a foss gets at a particular day. 
The info includes 

1. Date 
2. Time 
3. Foss name 
4. Page views 
5. Unique Visits 

These statistics are calculated using /dashboard/calculation_scripts/fossStats.py script. 
 
Algorithm used to calculate foss statistics: 

4. Get all the logs which were stored on the previous day in increasing order of datetime. 
5. Find all the distinct foss names (foss) present in the logs. 
6. For each foss_name in foss 

a. Get all the logs ‘daily_logs’ of the previous day having foss_name in the 
path_info. 

b. Find all the distinct IP addresses (ip_address) present in the ‘daily_logs’. 
c. Set the variables 

unique_visits = 0 
first_time = 0 

d. For ip in ip_address 
i. For log in daily logs 

1. if ip == log.ip_address: 
a. if first_time == 0: 

 first_time = 1 
 unique_visits += 1 
 else: 
 if ip occurs after 30 min, set unique_visits += 1 

b. prev_datetime = log.datetime 
e. Save the required fields. 

Visitor Activity Statistics 
These refer to the info about a particular visit of a visitor like 

1. Total page views viewed by the visitor 
2. Today’s total visits by the visitor. 
3. Latest page view datetime 
4. Location 



 

5. Visit length 
6. IP address 
7. Info about system (browser, os and device) 
8. Referrer URL 
9. Entry Page 
10. Exit Page 
11. Visit Page 

These info are calculated using /dashboard/calculation_scripts/visitorActivityStats.py script. 
 
Algorithm used to calculate visitor activity statistics: 

7. Get all the logs which were stored on the previous day in increasing order of datetime. 
8. Find all the distinct IP addresses present in the logs. 
9. For each IP address ‘ip’ 

a. Get all the logs ‘ip_logs’ of the previous day having IP address as ‘ip’. 
b. Set the variables as - 

prev_datetime = ip_logs.first().datetime 
 first_datetime = ip_logs.first().datetime 
 last_datetime = ip_logs.first().datetime 
 referrer = '(No referring link)' 
 total_visits = 1 
 page_views = 1 
 entry_page = ip_logs.first().path_info 
 flag = 0 

c. For each ‘log’ of ‘ip_logs’ 
i. If ‘ip’ occurs after 30 min, save the required fields and set the variables as 

first_datetime = log.datetime 
            last_datetime = log.datetime 
            total_visits += 1 
            page_views = 1 
            flag = 1 

ii. Else set 
page_views += 1 
referrer = log.referrer 
last_datetime = log.datetime 
  if flag == 1: 
        flag = 0 
        entry_page = log.path_info 

iii. Set prev_datetime = log.datetime 
d. If flag == 1, set flag = 0 and continue else save the required fields. 



 

Visitor Path Statistics 
These also refer to the info about a particular visit of visitor but it focus more on the path which 
the user take when he/she visits the website, the info calculated is 

1. Location 
2. IP address 
3. Visit number 
4. Info about system (browser, os and device) 
5. Path 

a. Datetime 
b. Referrer URL 
c. Page visited 

These statistics are calculated using /dashboard/calculation_scripts/visitorPathStats.py script. 
 
Algorithm used to calculate visitor path statistics: 

1. Get all the logs which were stored on the previous day in increasing order of datetime. 
2. Find all the distinct IP addresses present in the logs. 
3. For each IP address ‘ip’ 

a. Get all the logs ‘ip_logs’ of the previous day having IP address as ‘ip’. 
b. Set the variables as - 

prev_datetime = ip_logs.first().datetime 
 path = [] 
 visit_num = 0 

c. For each ‘log’ of ‘ip_logs’ 
i. If ‘ip’ occurs after 30 min, 

Set path += [{'datetime': log.datetime, 'referrer': log.referrer, 'page_url': 
log.path_info}] and visit_num += 1 
Save the required fields. 
Set path = [] 

ii. Else set path += [{'datetime': log.datetime, 'referrer': log.referrer, 
'page_url': log.path_info}] 

iii. Set prev_datetime = log.datetime 
 

Page View Activity Statistics 
These refer to the info about a page view, viewed by a visitor and contains  

1. Date 
2. Time 
3. Info about system (browser, os and device) 
4. Location 
5. IP address 



 

6. Referrer 
7. URL of page viewed 

These statistics are calculated using /dashboard/calculation_scripts/pageViewActivityStats.py 
script. 
 
Algorithm used to calculate page view activity statistics: 

1. Get all the logs which were stored on the previous day in increasing order of datetime. 
2. Find all the distinct IP addresses present in the logs. 
3. For each IP address ‘ip’ 

a. Get all the logs ‘ip_logs’ of the previous day having IP address as ‘ip’. 
b. Save the required fields. 

Came From Activity Statistics 
These refer to the info about sources from where the visitor comes to the website, it contains 
info like 

1. Date 
2. Time 
3. Referrer URL 
4. URL of page viewed 

These statistics are calculated using /dashboard/calculation_scripts/cameFromActivityStats.py 
script. 
 
Algorithm used to calculate came from activity statistics: 

1. Get all the logs which were stored on the previous day in increasing order of datetime. 
2. For each log in logs if referrer is present and is not of the spoken website, save the 

required fields.  
 

Exit Link Activity Info 
These refer to the info about the links to which visitors are going from spoken website, it 
contains info like 

1. Date 
2. Time 
3. Exit Link Clicked 
4. Exit Page 

 
This is stored in the database using JS implementation of logs storing and no info is needed to 
be calculated for Exit Link Activity. 
 



 

Visitor Spot Statistics 
These refer to the info about location (co-ordinates) from where the visitor belong and contains 
info like 

1. Date 
2. Time 
3. IP Address 
4. Location Co-ordinates 

These statistics are calculated using /dashboard/calculation_scripts/visitorSpotStats.py script 
and is used to display the location of visitors on graph. 
 
Algorithm used to calculate visitor spot statistics: 

1. Get all the logs which were stored on the previous day in increasing order of datetime. 
2. Find all the distinct IP addresses present in the logs. 
3. For each IP address ‘ip’ 

a. Get the first log of the previous day having IP address as ‘ip’. 
b. Save the required fields. 

 
 

Visitor Info Statistics: 
Visitor info Statistics refer to all the info about the visitor, it contains 

1. Referrer URL 
2. Location 
3. IP address 
4. Info about system (browser, os and device) 
5. Returning visits 
6. Visits length 
7. Path 

a. Datetime 
b. Referrer URL 
c. Page visited 

These statistics are calculated using /dashboard/calculation_scripts/visitorInfoStats.py script 
and are used to display info about the visitors whenever the admin searches for it using the IP 
address at Lookup IP address option. 



 

 
 
Algorithm used to calculate visitor info statistics: 

1. Get all the logs which were stored on the previous day in increasing order of datetime. 
2. Find all the distinct IP addresses present in the logs. 
3. For each IP address ‘ip’ 

a. Get all the logs ‘ip_logs’ of the previous day having IP address as ‘ip’. 
b. Set the variables as - 

 prev_datetime = ip_logs.first().datetime 
 first_datetime = ip_logs.first().datetime 
 last_datetime = ip_logs.first().datetime 
 path = [] 
 referrer = '(No referring link)' 
 returning_visits = 0 

c. For each ‘log’ of ‘ip_logs’ 
i. If ‘ip’ occurs after 30 min, 

1. Save the required fields. 
2. Set the variables 

            first_datetime = log.datetime 
            last_datetime = log.datetime 
            returning_visits += 1 
            flag = 1 
            path = [{'datetime': log.datetime, 'referrer': log.referrer, 
'page_url': log.path_info}] 



 

ii. Else set the variables 
path += [{'datetime': log.datetime, 'referrer': log.referrer, 'page_url': 
log.path_info}] 
referrer = log.referrer 
last_datetime = log.datetime 

iii. Set prev_datetime = log.datetime 
d. If flag == 1, set flag = 0 and continue else save the required fields. 

 

Location Statistics 
These statistics refer to the info about the location (city and region) from which users are visiting 
the website. The info contains: 

1. City stats 
a. Date 
b. Time 
c. City name 
d. Page views 

2. Region stats 
a. Date 
b. Time 
c. Region name 
d. Page views 

These statistics are calculated using /dashboard/calculation_scripts/locationStats.py script. 
 
Algorithm used to calculate location statistics: 

1. Get all the logs which were stored on the previous day. 
2. Calculate the distinct cities and the page views from them. 
3. Save the city statistics. 
4. Calculate the distinct region and the page views from them. 
5. Save the region statistics. 

 

System Statistics 
These statistics refer to the info about the system (browser, os and device) from which users are 
visiting the website. The info contains: 

1. Browser Statistics 
a. Datetime 
b. Browser type ( pc, mobile, etc ) 
c. Browser name ( Chrome, Firefox, etc ) 
d. Page views 

2. OS Statistics 



 

a. Datetime 
b. OS 
c. Page views 

3. Platform/Device Statistics 
a. Datetime 
b. Platform 
c. Page views 

These statistics are calculated using /dashboard/calculation_scripts/systemStats.py script. 
 
Algorithm used to calculate system statistics: 

1. Get all the logs which were stored on the previous day. 
2. Calculate the distinct browsers, OS and Platforms and the page views from them. 
3. Save the required field. 

 

Sources Statistics 
These statistics refer to the info about the sources such as referrals, search or direct traffic. This 
info contain: 

1. Date 
2. Direct page views 
3. Search page views 
4. Referrer page views 

These statistics are calculated using /dashboard/calculation_scripts/sourcesStats.py script. 
This info is used to display info on a pie chart at reports. The pie chart displays the percentage 
of traffics ( search, referrals and direct). 

 
 
Algorithm used to calculate sources statistics: 

1. Get the total number of yesterday's page views (a) . 
2. Get the total number of referring URLs from spoken website (b). 
3. Get the total number of page views with no referring links (c), this is direct traffic. 



 

4. Get the total number of page views having a referring link of search engines (d), this is 
search traffic. 

5. Total referral page views will be a - b - c - d. 
6. Save these logs. 

Came From Statistics 
These statistics refer to the info about the websites from where the visitors are coming to the 
website. This info include 

1. Datetime 
2. Referrer URL 
3. Page views 

These statistics are calculated using /dashboard/calculation_scripts/cameFromStats.py script. 
 
Algorithm used to calculate came from statistics: 

1. Get all the logs which were stored on the previous day. 
2. Find distinct referring URLs (referrers). 
3. For referrer in referrers 

a. Find number of page views coming from referrer. 
b. Save the required fields. 

 

Exit Link Statistics 
These statistics refer to the info about the websites to which visitors are going from spoken 
website. This info include 

1. Datetime 
2. Exit link 
3. Number of time exit link clicked. 

These statistics are calculated using /dashboard/calculation_scripts/exitLinkStats.py script. 
 
Algorithm used to calculate exit link statistics: 

4. Get all the logs which were stored on the previous day. 
5. Find distinct exit link URLs (exit_links). 
6. For exit_link in exit_links 

a. Find the number of times the exit link exists in the logs. 
b. Save the required fields. 

 
 



 

Visualizing the statistics 
As discussed earlier, to make the dashboard we used startbootstrap sb-admin-2 template. 
I removed the unnecessary things from the template and used Chart.js library to display the 
charts on dashboard, page analytics and reports page.  
 
Detail about each page is discussed in detail below :  
 

Dashboard Page 
URL: /dashboard 
 
This page displays the summary of statistics. It also contains a chart which shows the trends of 
page views, unique visits and returning visits versus time. It also has a datatable which shows 
the data which is displayed on chart in tabular form.  

Tiles 
Tiles are used to display the summary statistics like average daily, weekly, monthly and yearly 
page views, unique visits, first time visits and returning visits. The granularity (daily, weekly, 
monthly and yearly ) can be changed from the dropdown placed above the chart. 

Trend Chart 
The data shown on the bar chart can be updated using Navigation buttons or date selects. Ajax 
requests are used to get data from the server. This chart can be changed to a line chart using 
chart type select. 

Datatable 
To display the data table I have used JQuery datatable plugin. The data of the data table can be 
exported using the EXPORT button. 

https://blackrockdigital.github.io/startbootstrap-sb-admin-2/
https://www.chartjs.org/
https://datatables.net/


 

 
Dashboard page screenshot 

 
 



 

Events Page 
URL: /dashboard/events 
 
The events page shows a datatable containing the page urls and number of unique visits of the 
pages between date range specified in date selects. These date selects can be varied to get 
different data. The datatable also contains Page Analysis buttons for each page which takes us 
to Page Analysis. 

 
Events page screenshot 



 

Page Analysis 
URL: /dashboard/event_analysis/?path=page_url 

Trend Chart 
Page Analysis has a chart along with navigation buttons and date select. The chart shows trend 
in the unique visits that the page got per day. 

Datatable 
It also contains a datatable which shows the data displayed on the chart in tabular form. The 
data of the datatable can be exported using the EXPORT button. 

 
Page Analysis screenshot 



 

Foss Page 
URL: /dashboard/foss 
 
The foss page shows a datatable containing the foss name and number of unique visits that 
each foss got between date range specified in date selects. These date selects can be varied to 
get different data. 

 
Foss page screenshot 

 

Activities 
Similar to statcounter which shows the Recent Activities ( data of about last 5 minutes ), this 
analytics system has Activites but using the date and time selects present in each activity page, 
we can see all the data present in the database. This is an advantage over statcounter. 
 



 

The time select slider only allow to display 10 minutes data at a time. This restriction is places 
so that large amount of data is not fetched from database. 

Visitor Activity Page 
URL: /dashboard/visitor_activity 
 
This page shows the following data about the visitor of the website 

1. Page views 
2. Total visits 
3. Latest page view data and time 
4. Location 
5. Visit length 
6. IP address 
7. System Info ( Browser, OS and device info ) 
8. Referrer URL 
9. Entry Page 
10. Exit Page 

 
Visitor Activity page screenshot 

 

Visitor Path Page 
URL: /dashboard/visitor_path 



 

 
This page displayed the paths that the visitors take when the browse through the website. It 
shows the following data about a visitor: 

1. Location 
2. IP address 
3. Visit number 
4. System Info 
5. Path 

 
Visitor Path page screenshot 

 

Page View Activity 
URL: /dashboard/page_view_activity 
 
This page displays info about pages. The info which is shown is: 

1. Date 
2. Time 
3. System Info 
4. Location 
5. IP address 
6. URL of Page viewed 



 

7. Referrer URL 

 
Page View Activity screenshot 

 

Came From Activity 
URL: /dashboard/came_from_activity 
 
This page shows the website URLs from which the visitors are coming to the spoken website. It 
shows info like 

1. Date 
2. Time 
3. Referrer 
4. Entry Page 



 

 
Came From Activity page screenshot 

 

Exit Link Activity 
URL: /dashboard/exit_link_activity 
 
This page shows the links to where the visitors are going from the spoken website. The info 
displayed on this page include: 

1. Date 
2. Time  
3. Exit Link 
4. Exit Page 



 

 
Exit Link Activity page screenshot 

 

Visitor Map 
URL: /dashboard/visitor_map 
 
This shows the location of visitors on the map. To show the map django-leaflet and 
django-geojson packages are used. 

https://pypi.org/project/django-leaflet/
https://pypi.org/project/django-geojson/


 

 
Visitor Map page screenshot 

 

Visitor Info 
URL: /dashboard/magnify/?ip=230.124.0.181 
 
This page shows info about the visitor of the website. The info include: 

1. Referring URL 
2. System Info 
3. IP address 
4. Location 
5. Returning visit 
6. Visit Length 
7. Navigation Path 

 
The statcounter also shows the location of the user on Map, which is not included in this 
system. 



 

 
Visitor Info page screenshot 

 

Reports Page 
URL: /dashboard/reports 
 
This page shows the reports such as 

 

Location Report 
It shows the top ten regions and cities from where the most number page views are requested. 
The city/region name is shown in a tabular format along with the percentage of page views. The 
data about all the locations can be seen using the View Report button. 
 

Foss/Page Report 
It shows the top ten foss and pages which are getting most number page views. The foss 
name/page title is shown in a tabular format along with the percentage of page views. The data 
about all the foss and pages can be seen using the View Report button. 
Note: This report is different from Event Page (/dashboard/events) and Foss Page 
(/dashboard/foss), because report show percentage of page views rather that unique visits. 
 



 

System Report 
It shows the top ten browsers / OS / Platform(device), from where the most page views are 
requested. The browser / OS / Platform names are shown in tabular format along with the 
percentage of page views. All the data can be seen using the View Report button. 
 

Traffic Report 
It shows a doughnut chart displaying the percentage of traffic from referring websites, Search 
Engine traffic and Direct traffic. It also shows the top ten came from links and exit links along 
with click count. The detailed report can be seen using the View Report button. 
 



 

 
Reports Page screenshot 

 
 
 
 
 
 
 
 
 



 

Future Work 
Most of the functionalities that the statcounter provides are implemented in this system. Some of 
the functionalities that are remaining are 

1. Keyword Activity 
2. Download Activity 
3. Location Stats by countries 
4. Engagement Report 

The HTML templates, views and url paths are included in the respective files of dashboard app 
and can be used to implement Keyword Activity and Download Activity. 
The statistics calculating scripts can be further improved so that they take less time in 
calculating the stats. 
The system is also lacking tests, which can be included in future versions. 
 
 

Conclusion 
This analytics system can be used as the analytics system of the spoken website. There are 
some limitations like displaying real time statistics and it is missing some functionalities. This 
system can be improved in the future versions. 
 
 
At last, I would like to thank FOSSEE and the Spoken Tutorials project for providing me the 
opportunity to work on this project. I would like to thank my mentor, Sir Abhijit Bonik, for 
providing guidance and help whenever needed. I would also like to thank Ma’am Nancy Varkey 
and Ma’am Kirti Ambrey for periodically reviewing my work. 


