

Summer Fellowship Report

Spoken Tutorial Event Logs and Analyti�

System

By:-

Krithik Vaidya,

B. Tech, IInd Year (Information Technology)

NITK Surathkal

Table of Contents

Introduction 3

Website Logs 4
Final architecture, Middleware-based Approach 5

Explanation of choices in the architecture 7
Usage of API for saving logs, instead of doing it locally 7
Asynchronous saving of logs in middleware implementation 7
Usage of pymongo for saving logs into MongoDB 8

 Choosing the right architecture by performing Load Testing 9
The monitor_queue.py script 11
The end result - a log stored in MongoDB 11

Final Architecture, JS-based Approach 12
Getting the location data in client-side JS 13
Exit Link Activity 15

Comparison of the two Architectures 15

Course and Tutorial Progress Logging 16
Saving video logs in real-time 17
Tutorial Search page 21
Schema for saving tutorial progress logs 23

Other Explorations 24
Visit Duration Logging 24
Redis Persistence 24
MongoDB-Elasticsearch Connection and Sync 26
Saving of Offline Tutorial-Related Logs 27

Conclusion 28

2

Introduction

This is the project report for my work done as a FOSSEE Summer Fellow under the Spoken

Tutorials project. My work involved creating pipelines for extracting user activity logs

(referred to as Event Logging) as users browse and interact with the website, and storing

them into a MongoDB database, thus enabling data analysis and visualization. The analytics

system for analyzing these logs was also parallelly created by my teammate.

The Event Logging system consists of two main parts:-

● Saving of user activity logs as they browse and visit different parts of the website

(henceforth referred to as Website Logs).

● Saving and display of course completion and tutorial progress statistics for users

(referred to as Tutorial Progress Logs)

The open-source code for the project can be found on GitHub -

spoken-website (branch: logs-krithik)
spoken-website (branch: logs-krithik-js)
Spoken-Analytics-System (branch: master)

Presentation Video

3

https://github.com/abhijitbonik/spoken-website/tree/logs-krithik
https://github.com/abhijitbonik/spoken-website/tree/logs-krithik-js
https://github.com/Spoken-tutorial/Spoken-Analytics-System/
https://drive.google.com/file/d/1MxgjGecnsIjRe7RS8GWwE61BneNbGoqU/view?usp=sharing

I. Website Logs

Our first goal was the saving of user activity logs for all the pages on the website. For each

visit to a page on the Spoken Tutorials website, we are currently logging information such

as:

1. Username of visitor

2. Path of web page visited

3. Browser info, Operating System info, and Device info

4. IP address

5. Date and Time of visit (in UTC timezone)

6. Whether the visit was first time or returning

7. Latitude and Longitude of user

8. Country, Region, and City from which the request originated, if available

9. Request method (GET, POST, etc.)

10. Referring link

11. Page title

12. Arguments and Keyword Arguments sent to the view in the request, if any.

13. POST request data, if any.

Two different architectures have been created for extracting and saving Website Logs. Both

architectures are soon talked about in detail:-

● Django Middleware-based approach (server-side)

● Javascript-based approach (client-side)

Both these systems have their own pros and cons, which are detailed at a later point

below.

Next, the final architectures of both the above approaches will be discussed, with the

reasonings for the chosen architectures talked about after.

4

Final architecture, Middleware-based Approach

This approach firstly consists of extracting all the log data in the Django middleware, except

for the location data. After extracting the data in the middleware, we make an

asynchronous call to an API function, created in the Spoken-Analytics-System (in

logs_api/views.py, the save_middleware_log() function view). This function will get the location

data, and then enqueue the log in a Redis queue named middleware_log .

For obtaining the location information, we will perform IP-based Geolocation - i.e., we will

map the IP address of the visit to location data using the GeoIP2 Geolocation service.

A separate monitoring program has been written (monitor_queue.py) to monitor the Redis

queue. When the number of items in the queue reaches ≥ n (where n is defined by the

MONGO_BULK_INSERT_COUNT variable in settings.py), the first n items will be extracted

from the queue. According to the value of SAVE_LOGS_WITH_CELERY (True/False, defined in

settings.py), the extracted logs will either be saved in bulk directly, by the monitor_queue()

function itself, or sent as a task to Celery to be asynchronously executed.

The saving of the logs in MongoDB is done using the pymongo library. The extraction of

Brower info, OS info, and Device info in the Django middleware is done by using the

django-user-agents library.

To record first-time visits, we set the option SESSION_EXPIRE_AT_BROWSER_CLOSE in

Django settings to False, and then use the following snippet:

5

https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik
https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik
https://pypi.org/project/geoip2/
https://pypi.org/project/geoip2/
https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/analytics_system/settings.py#L263
https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/analytics_system/settings.py#L263
http://settings.py/
https://pymongo.readthedocs.io/en/stable/
https://pymongo.readthedocs.io/en/stable/
https://pypi.org/project/django-user-agents/
https://pypi.org/project/django-user-agents/

The HTML title of the webpage is not available on the server-side, but is required for

visualization purposes. To overcome this, we have a separate event_name field in the logs.

The event name is determined by Regex matching the URL to a predefined list of patterns

of URLs defined by us. After the match is found, it will use the corresponding event name.

The EVENT_NAME_DICT used for matching can be found in the spoken-website repo (see

below for the screenshot), logs/urls_to_events.py file. The drawback is that for every new URL

added to the spoken website that does not match a previously defined pattern, the dict

needs to be updated too. Else the logs for visits to those URL patterns won't be recorded.

The above is a part of the dict

The logs stored in MongoDB can then be used for performing analysis and creating

visualizations.

The branch containing the code for this approach can be found here (the branch also

contains the implementation of the Tutorial Progress Logging system). The code written for

the API can be found in the Spoken-Analytics-System repository.

6

https://github.com/abhisgithub/spoken-website/tree/logs-krithik
https://github.com/abhisgithub/spoken-website/tree/logs-krithik
https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik/logs_api
https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik/logs_api

Explanation of choices in the architecture

Usage of API for saving logs, instead of doing it locally

Initially, the middleware asynchronously called a local function (i.e. running on the same

system as the server) to do the Geolocation and the pushing of logs to Redis. The Redis

monitoring consumer function was also running locally, in the same system as the

spoken-website. However, we decide to scrap this approach and transfer the function to a

separate API in the Spoken-Analytics-System because:

● It is easier to perform an asynchronous HTTP call, rather than calling a local function

asynchronously. Calling a local function asynchronously complicates the code by

introducing asyncio and multithreading.

● In case of high loads on the spoken-website server, the system and server would be

slowed down.

● Since there are a fewer changes to the main spoken website repository, it would be

quicker and easier to review and deploy to production.

● It makes sense to have the Event Logging and Analytics related code under a

separate subsystem.

Asynchronous saving of logs in middleware implementation

We could have directly done Geolocation and saved the log into MongoDB in the

middleware itself, without needing to involve Redis queues and separate APIs. However,

these are blocking operations that would increase the page load times for the user

especially in case of high load scenarios. It also has the drawbacks mentioned in the

previous section, related to saving logs locally instead of API based approach. Also, reliable

bulk saving of logs would have been difficult to achieve using a purely middleware-based

approach.

Giving the option of using Celery for bulk saving of logs

Celery is a full-featured task processing software for Python web applications used to

asynchronously execute work outside the HTTP request-response cycle. It provides

features such as automatic scaling of the number of workers, multiprocessing to perform

7

concurrent execution of tasks, etc. There are applications like Flower to monitor Celery

workers and the task queues. A Celery system can consist of multiple workers and brokers,

giving way to high availability and horizontal scaling.

Hence Celery is also a good option for running tasks asynchronously.

Usage of pymongo for saving logs into MongoDB

To save the logs in MongoDB from a Python function, we started by using pymongo .

Pymongo simply takes a Python dictionary and saves it as a document in the specified

MongoDB database and collection. Since there was no validation being done, we decided

to add validation to the MongoDB database. This is the current validation schema, after

multiple iterations of refinements:

https://gist.github.com/krithikvaidya/18bcaba3d9a87d8a40e92c4cdd1bac95

The above is the MongoDB validation schema for the website event logs collection. This is

to be entered in the mongo shell, after selecting the appropriate database. The above deals

with validating the data just before the document enters the database. This is not

necessary to do, but will be helpful in ensuring consistency.

For tighter coupling between our Django application and the MongoDB database, we

decided to try replacing the use of pymongo with Djongo . Djongo is a SQL to MongoDB

query transpiler. It translates a SQL query string into a MongoDB query document. As a

result, all the Django ORM features, work as-is. It would also let us interact with the Djongo

model through the Django admin page.

Hence, using Djongo would add another layer of validation and consistency to the log data

in the MongoDB database. Using Djongo allows you to interact with MongoDB exactly as

you’d interact with SQL databases using models, with some additional MongoDB specific

features.

However, the load testing (talked about below) showed that pymongo performed many

orders of magnitude faster than djongo.

8

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://pymongo.readthedocs.io/en/stable/
https://pymongo.readthedocs.io/en/stable/
https://gist.github.com/krithikvaidya/18bcaba3d9a87d8a40e92c4cdd1bac95
https://docs.mongodb.com/manual/core/schema-validation/
https://docs.mongodb.com/manual/core/schema-validation/
https://pypi.org/project/djongo/
https://pypi.org/project/djongo/

Choosing the right architecture by performing Load Testing

(This load testing was done before the API based implementation of Middleware-based

logs).

Till now, a single async function task/celery task dealt with the storing of a single log in the

database. To possibly speed up the saving of logs, we considered bulk saving of logs in a

single task (for e.g. 1000 logs in 1 task) instead of a single log per task.

To determine the best setup amongst the different setup described previously, I proceeded

to do extensive load testing - using different combinations of

● Celery/our local async function

● Djongo/pymongo

● Single log per task/multiple logs per task.

Testing method : Queue with 10000 tasks for each of the (2 * 2 * 2) = 8 setups.

Testing environment - my local machine.

According to the load testing observations,

● The setups using pymongo performed many orders of magnitude better than those

using Djongo. This is probably because of the extra Djongo model layer between

Django and MongoDB. For every log that needed to be saved, an object of the

model had to be created, and the validations, etc. brought in a large overhead. The

feature benefits provided by Djongo over pymongo was heavily outweighed by its

lower performance and the additional complexity of usage.

● The setups implementing Bulk saving of logs performed much better than single

saving. This is because the time required for inserting a log is determined by the

following factors, where the numbers indicate approximate proportions:

○ Connecting: (3)

○ Sending query to server: (2)

○ Parsing query: (2)

9

○ Inserting logs: (size of log)

○ Closing: (1)

Obviously, bulk saving of logs will be much faster since only a single connection is

opened for multiple logs.

● In this environment, our own consumer function’s performance was better than

Celery’s. But, Celery is a much more full-featured task processing software, as talked

about previously.

So, considering all the factors, we decided to choose the setup with

● an option to either use Celery or saving the logs in monitor_queue.py itself,

● pymongo for saving of logs into MongoDB, and

● bulk saving of logs per task.

There is a SAVE_LOGS_WITH_CELERY setting in the settings.py file. Setting it to true will use

Celery as the task processing queue to save the logs, and setting it to false with use the

separate queue monitoring Python function (defined in monitor_queue.py) as the task

processing queue. The MONGO_BULK_INSERT_COUNT value controls how many logs are

inserted, per bulk insert operation.

The monitor_queue.py script

The monitor_queue.py script (found in the Spoken-Analytics-System repo) monitors the

Redis queue, whose name is decided by the value of the USE_MIDDLEWARE_LOGS setting.

The number of logs it extracts from the Redis queue per bulk insertion is determined by

the MONGO_BULK_INSERT_COUNT settings variable. Many precautions have been taken to

avoid crashes. It uses Python's in-built logging system to periodically print out informative

log messages. A sample run of the script is as below:

10

https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/analytics_system/settings.py#L261
https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/analytics_system/settings.py#L261

(Each of the iterations producing a line of output in the above has a 5-second delay. This

delay can be changed by tweaking the value of the MONITOR_QUEUE_ITERATION_DELAY

setting).

The code in the script has been sufficiently commented so as to be understandable.

The end result - a log stored in MongoDB

11

(In the middleware implementation, it is not possible to get the page title. However, it has

been kept in the logs as an empty field for consistency)

Final Architecture, JS-based Approach

This approach consists of extracting all the log data in the client-side, using Javascript. Once

the page DOM Content Loading completes, we run a function to extract all the information.

To get accurate location data, we use the HTML5 Geolocation API . If the user accepts, the

accurate latitude and longitude data is extracted. Else if the user declines, we query the

freegeoip.app API, to map the user IP address to a location.

To get the browser and OS info, we use the browser-report JS library. To detect the device

type, we use the device-detector JS library.

Once all the data is extracted, a procedure similar to that in the middleware-based

architecture is used. We make an AJAX call to another API function created in the

Spoken-Analytics-System (in logs_api/views.py, the save_js_log() view function). This view

enqueues the log in a Redis queue named js_log . The name of the Redis queue monitored

by monitor_queue.py (middleware_log or js_log) is decided by the value of

USE_MIDDLEWARE_LOGS in settings.py file of Spoken-Analytics-System. The rest of the

procedure is the same as in the middleware-based approach, involving bulk inserting logs

into the DB in the monitor_queue function itself, or sending it as a task to be processed by

Celery.

In the JS implementation, the exit link activity can also be recorded (explained below)

The JS implementation is simpler to deploy to production, as there is comparatively little

extra code on the server-side. In the JS implementation, the logs app is only used for

defining a context processor (for accessing IP address and Logs API URL) and a template

tag. The middleware, views, etc are not used.

12

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
https://freegeoip.app/json/
https://freegeoip.app/json/
https://github.com/keithws/browser-report
https://github.com/keithws/browser-report
https://github.com/PoeHaH/devicedetector
https://github.com/PoeHaH/devicedetector
https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/analytics_system/settings.py
https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/analytics_system/settings.py

The branch containing the code for this approach can be found here (the branch also

contains the implementation of the Tutorial Progress Logging system), as well as in the

Spoken-Analytics-System repository.

Getting the location data in client-side JS

We can leverage the HTML5 Geolocation API to get the accurate location data of the client.

However, this is subject to the user agreeing to provide their location information. The

browser will put up a prompt like this when the page loads:

If the user chooses to accept, the accurate coordinates can be obtained. However, to map

the coordinates to Country/Region/City data (called reverse geocoding), we will need to

make an API call. There are two free APIs available for this purpose:

1. OpenStreetMap (Nominatim)

2. Big Data Cloud API

Although both APIs work well, they do not return data in a consistent manner (may not

return region/city data, or may return it but label the fields with some other name). Hence

they cannot be used in our code. Another option is to do the reverse geocoding on the

13

https://github.com/abhisgithub/spoken-website/tree/logs-krithik
https://github.com/abhisgithub/spoken-website/tree/logs-krithik
https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik/logs_api
https://nominatim.org/release-docs/develop/api/Reverse/
https://www.bigdatacloud.com/geocoding-apis/free-reverse-geocode-to-city-api

server-side using the reverse_geocoder library. However, it is somewhat slow and may

bottleneck the system in case of a large load of requests.

In case the user does not accept the browser's request for location, then the freegeoip.app

API will be used for the purpose of performing geolocation (which uses the IP address). This

is, however, less accurate.

Side note: Modern browsers do not let user’s location data be accessed using the HTML5

Geolocation API over HTTP. It is allowed only over HTTPS. In a local development

environment, since the server runs on HTTP, we will need to add the IP address of our local

development server to the chrome flag

chrome://flags/#unsafely-treat-insecure-origin-as-secure

Exit Link Activity

Exit links are links on the website which point to URLs having a different hostname than

spoken-tutorial.org. To record exit link activity, we add an onclick event listener to all the

links on a page. When a link is clicked, the Javascript checks if it has a different hostname. If

it does, an AJAX call is made with the data containing exit link, page on which the link was

clicked and datetime of the click, to an API on the server-side. The API saves the log into a

MongoDB collection named exit_link_logs.

14

https://pypi.org/project/reverse_geocoder/
https://pypi.org/project/reverse_geocoder/
https://freegeoip.app/json/
https://freegeoip.app/json/

Comparison of the two Architectures

All of the above dealt with saving the website user event logs. The second part of the

project deals with Course and Tutorial Progress logging.

15

Course and Tutorial Progress Logging

Here, we aim to log tutorial-related data while users watch the Spoken Tutorials. Using

these logs, we can accomplish a lot - the user can see their course progress, see which

tutorials they have completed and which they have yet to complete, continue watching at

the timestamp they stopped watching the tutorial at, etc. For the analytics side, we can see

which course is more popular, which tutorial is rewatched the most number of times, the

average number of visits a user makes to a tutorial, etc.

Saving video logs in real-time

On the tutorial watch pages (for e.g., this one), the videos are played using the Video.js

library. Video.js provides functionality to execute some logic every time the video's

timestamp is updated. Using this feature, every time the minute of the video changes from

the previously saved log’s minute, we can make an asynchronous AJAX call to an API

defined by us, to save the tutorial progress. This API will collect the data sent by the AJAX

call, such as:

● The username of the tutorial watcher

● The current video time

● The current datetime

● The FOSS, the language and the tutorial,

● The number of times the user has visited that tutorial in that language

● The total length of the video.

The called API function then does some calculations to check if the video has been

completed (if 80% of the minutes of the video has been crossed), etc. and updates the

MongoDB document for that user.

Once this entire API call finishes successful execution, another AJAX call is made to an API

to check if the tutorial should be marked as complete (if it is not already marked as

16

https://spoken-tutorial.org/watch/BASH/Introduction+to+BASH+Shell+Scripting/English/
https://spoken-tutorial.org/watch/BASH/Introduction+to+BASH+Shell+Scripting/English/

complete). According to the response, the relevant parts of the DOM are updated to display

the completion status.

Buttons have been provided for users to mark the tutorial as completed or incomplete.

Clicking the button makes another AJAX call.

For non-authenticated users, the website does not display any progress/completion data,

and does not make any of these AJAX calls.

The setup accounts for saving logs in the scenarios of skipping ahead, fast-forwarding,

going back, etc.

We can choose to update the tutorial progress at time intervals smaller than a minute,

however, this will increase the load on the server.

Please check the screenshots below (the formatting of the pages may look off in some

places since the static files (images, thumbnails, etc) are not present on my local setup):

Showing tutorial completion status, buttons to mark as complete/incomplete

17

The tutorial completion status is also visible in the playlist, on the watch tutorial page

Clicking the Mark Tutorial as Complete button will make an AJAX call to an API. This API

updates the “completed” field of the correct MongoDB document as ‘true’. After this

succeeds, the completion status at the top of the page and in the playlist is automatically

updated

18

If we close the video between 3:00 and 3:59, the next time we visit it, it continues at 3:00

minute mark

For non-logged-in users - none of the progress data is saved or visible

Once 80% of the minutes of the video are completed, the tutorial is automatically marked

as completed (if it wasn’t already marked) in the database, and the webpage is

automatically updated to reflect the new completion status.

19

Tutorial Search page

On the tutorial search pages, such as this one , when the user is authenticated and has

chosen a FOSS and a language, the course completion percentage and the option to

continue watching where they stopped watching is given, as shown below.

Course completion status, continue where you left off

20

https://spoken-tutorial.org/tutorial-search/?search_foss=BASH&search_language=English
https://spoken-tutorial.org/tutorial-search/?search_foss=BASH&search_language=English

The completion status for each tutorial is also shown, as can be seen.

Progress is recorded separately for different languages of the same FOSS

21

None of these things are visible to non-authenticated users

Schema for saving tutorial progress logs

Currently, the tutorial progress logs are being saved in the same database as the website

logs (logs database), but in a different collection (tutorial_progress_logs collection).

The below describes an example of one document in the collection:

https://gist.github.com/krithikvaidya/25662dca3e80e0d7e59a253de71ba1a3

The logged data can also be used for statistical calculations and visualizations.

22

https://gist.github.com/krithikvaidya/25662dca3e80e0d7e59a253de71ba1a3

Other Explorations

Visit Duration Logging
To log the visit duration along with all the other visit data in a single log, we need to change

the structure of the Javascript code. Instead of extracting the data and saving the logs on

DOMContentLoaded, we will only extract the data on DOMContentLoaded, and save the

logs before the page unloads, so that the duration of the visit can also be calculated. To do

this, we can use window.unbeforeunload or jQuery’s beforeunload functionality. For

mobile users, when the page focus is lost (tab changed, browser closed, etc.), marks the

end of the visit.

However, when tested with different browsers, these features were found to behave

inconsistently and unreliably. Another option is the navigator.sendBeacon method

which allows us to asynchronously send a small amount of data over HTTP to a web

server. However, older browsers do not support this feature, and this extensive study

about the feature concluded that navigator.sendBeacon is broken, and should not be used

in production.

The code for this attempted approach can be found here .

Redis Persistence

In order to make sure that Redis queue data isn't lost during restarts/crashes of the

system. There are two ways of doing this:

The Redis Database Backup

The Redis Database Backup, or RDB, files are snapshots that are taken at predetermined

frequencies, to be used as a backup in a point-in-time recovery in the event of a data

storage failure.

23

https://developer.mozilla.org/en-US/docs/Web/API/WindowEventHandlers/onbeforeunload
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/sendBeacon
https://volument.com/blog/sendbeacon-is-broken
https://github.com/abhisgithub/spoken-website/tree/logs-krithik-js-visitd
https://github.com/abhisgithub/spoken-website/tree/logs-krithik-js-visitd

The Append-Only File

The append-only file, or AOF, is a mode of data persistence where Redis persist the dataset

by taking a snapshot and then appending the snapshot with changes as those changes take

place.

These methods can be used together, separately, or not at all in some circumstances.

For our use case, the AOF persistence method is more appropriate.

In basic terms, append-only log files keep a record of data changes that occur by writing

each change to the end of the file. In doing this, anyone could recover the entire

dataset by replaying the append-only log from the beginning to the end.

Table 4.1 - Sync options to use with appendfsync

Option How often syncing will occur

always Every write command to Redis results in
a write to disk. This slows Redis down
substantially if used.

everysec Once per second, explicitly syncs write
commands to disk.

no Lets the operating system control syncing
to disk.

In our case, using appendfsync always would be the most ideal. However, if we were to set

appendfsync always, every write to Redis would result in a write to disk, and we can ensure

minimal data loss if Redis were to crash. Unfortunately, because we’re writing to disk with

24

every write to Redis, we’re limited by disk performance, which is roughly 200 writes/second

for a spinning disk, and maybe a few tens of thousands for an SSD (a solid-state drive).

As a reasonable compromise between keeping data safe and keeping our write

performance high, we can also set appendfsync everysec.

A sample Redis configuration file with appendfsync can be found in the repo here .

Further Reading

MongoDB-Elasticsearch Connection and Sync

For improved visualizations and performance of statistics calculations, moving the logs

from MongoDB to Elasticsearch was briefly explored. To sync a MongoDB collection to an

Elasticsearch collection, we explored the following options:

Initial choices:

● Mongo Connector

● Mongoosastic

● Mongo Stream

● Monstache

● Logstash Input MongoDB

● MongoDB input driver plugin for logstash

After considering various factors like appropriateness for our use case, frequency of

updates, presence of support, ease of use, support for newer versions of Elasticsearch etc.,

we narrowed it down to two choices:

1. MongoDB input driver plugin for logstash

This uses the Logstash part of the Elastic stack to sync the two databases. Since Logstash

does not have an official MongoDB input plugin, we have to use a 3rd party plugin. The

25

https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/Misc/redis.conf
https://github.com/Spoken-tutorial/Spoken-Analytics-System/blob/krithik/Misc/redis.conf
https://redislabs.com/ebook/part-2-core-concepts/chapter-4-keeping-data-safe-and-ensuring-performance/4-1-persistence-options/4-1-2-append-only-file-persistence/
https://github.com/yougov/mongo-connector/wiki
https://github.com/mongoosastic/mongoosastic
https://github.com/electionsexperts/mongo-stream
https://github.com/rwynn/monstache-site
https://github.com/phutchins/logstash-input-mongodb
https://dbschema.com/jdbc-driver/MongoDb.html
https://dbschema.com/jdbc-driver/MongoDb.html

logstash configuration file for this purpose can be found in the Spoken-Analytics-System

repository here .

To understand the use of the driver, please refer to the following links:

● Link 1

● Link 2

● Link 3

● Link 4

● Link 5

 2. Monstache

Monstache is a go daemon that syncs MongoDB to Elasticsearch in real-time. Probably the

easiest to setup.

Saving of Offline Tutorial-Related Logs

A good portion of Spoken Tutorials users hail from rural-type areas, where internet

connectivity is limited. In these cases, the cdcontent download feature is used to download

the Spoken Tutorials and view them locally, in a web browser. To record these logs, we can

use the HTML5 Web Storage API to save the required logs locally. When the user comes

online, the browser can automatically send this data to a Spoken Tutorials API.

26

https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik/Misc/mongo-es-logstash.confhere
https://github.com/Spoken-tutorial/Spoken-Analytics-System/tree/krithik/Misc/mongo-es-logstash.confhere
https://stackoverflow.com/questions/58342818/sync-mongodb-to-elasticsearch
https://stackoverflow.com/questions/47956088/mongodb-driver-class-for-logstash-input-plugin-jdbc
https://discuss.elastic.co/t/mongodb-logstash-integration-solved/122299
https://bitbucket.org/dbschema/mongodb-jdbc-driver/src/master/
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html#plugins-inputs-jdbc-jdbc_driver_class
https://github.com/rwynn/monstache-site

Conclusion

This project dealt with creating robust pipelines for the saving of user activity logs, such as

website browsing logs and course/tutorial progress logs. This data can be then used for

generating insights, analytics, and visualizations of the user activities on the website. The

presence of tutorial progress logs and their associated features contribute toward

improving the user experience. Further explorations had been done with respect to Redis

data backup, visit duration logging, and pipelining data between MongoDB and

Elasticsearch.

For future improvements, we can extend the events tracking to other subdomains under

spoken-tutorials.org (such as forums.spoken-tutorial.org, process.spoken-tutorial.org, etc.)

and improve the cdcontent download logging. We can also log the user activity paths,

similar to how it is shown by StatCounter. The idea of syncing MongoDB and Elasticsearch

can be further explored to improve the performance of statistical calculations and

visualizations.

In the end, I would like to thank FOSSEE and the Spoken Tutorials project for providing me

the opportunity to work on this project. I would like to thank my mentor, Sir Abhijit Bonik,

for providing guidance and allowing the freedom to explore different approaches. I would

also like to thank Ma’am Nancy Varkey and Ma’am Kirti Ambrey for periodically reviewing

my work.

27

http://process.spoken-tutorial.org/

