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Introduction  

This   is   the   project   report   for   my   work   done   as   a   FOSSEE   Summer   Fellow   under   the   Spoken  

Tutorials   project.   My   work   involved   creating   pipelines   for   extracting   user   activity   logs  

(referred   to   as    Event   Logging )   as   users   browse   and   interact   with   the   website,   and   storing  

them   into   a   MongoDB   database,   thus   enabling   data   analysis   and   visualization.   The   analytics  

system   for   analyzing   these   logs   was   also   parallelly   created   by   my   teammate.  

The   Event   Logging   system   consists   of   two   main   parts:-  

● Saving   of   user   activity   logs   as   they   browse   and   visit   different   parts   of   the   website  

(henceforth   referred   to   as    Website   Logs ).  

● Saving   and   display   of   course   completion   and   tutorial   progress   statistics   for   users  

(referred   to   as    Tutorial   Progress   Logs )  

The   open-source   code   for   the   project   can   be   found   on   GitHub   -   

spoken-website   (branch:   logs-krithik)  
spoken-website   (branch:   logs-krithik-js)  
Spoken-Analytics-System   (branch:   master)  

 

Presentation   Video  
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I. Website   Logs  

Our   first   goal   was   the   saving   of   user   activity   logs   for   all   the   pages   on   the   website.   For   each  

visit   to   a   page   on   the   Spoken   Tutorials   website,   we   are   currently   logging   information   such  

as:  

1. Username   of   visitor  

2. Path   of   web   page   visited  

3. Browser   info,   Operating   System   info,   and   Device   info  

4. IP   address  

5. Date   and   Time   of   visit   (in   UTC   timezone)  

6. Whether   the   visit   was   first   time   or   returning  

7. Latitude   and   Longitude   of   user  

8. Country,   Region,   and   City   from   which   the   request   originated,   if   available  

9. Request   method   (GET,   POST,   etc.)  

10. Referring   link  

11. Page   title  

12. Arguments   and   Keyword   Arguments   sent   to   the   view   in   the   request,   if   any.  

13. POST   request   data,   if   any.  

Two   different   architectures   have   been   created   for   extracting   and   saving   Website   Logs.   Both  

architectures   are   soon   talked   about   in   detail:-  

● Django   Middleware-based   approach   (server-side)  

● Javascript-based   approach   (client-side)  

Both   these   systems   have   their   own   pros   and   cons,   which   are   detailed   at   a   later   point  

below.  

Next,   the   final   architectures   of   both   the   above   approaches   will   be   discussed,   with   the  

reasonings   for   the   chosen   architectures   talked   about   after.  
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Final   architecture,   Middleware-based   Approach  

This   approach   firstly   consists   of   extracting   all   the   log   data   in   the   Django   middleware,   except  

for   the   location   data.   After   extracting   the   data   in   the   middleware,   we   make   an  

asynchronous   call   to   an   API   function,   created   in   the     Spoken-Analytics-System    (in  

logs_api/views.py,    the    save_middleware_log()    function   view).   This   function   will   get   the   location  

data,   and   then   enqueue   the   log   in   a   Redis   queue   named    middleware_log .  

For   obtaining   the   location   information,   we   will   perform   IP-based   Geolocation   -   i.e.,   we   will  

map   the   IP   address   of   the   visit   to   location   data   using   the     GeoIP2    Geolocation   service.  

A   separate   monitoring   program   has   been   written   ( monitor_queue.py )   to   monitor   the   Redis  

queue.   When   the   number   of   items   in   the   queue   reaches   ≥   n   (where   n   is   defined   by   the  

MONGO_BULK_INSERT_COUNT   variable   in     settings.py ),   the   first   n   items   will   be   extracted  

from   the   queue.   According   to   the   value   of   SAVE_LOGS_WITH_CELERY   (True/False,   defined   in  

settings.py),   the   extracted   logs   will   either   be   saved   in   bulk   directly,   by   the    monitor_queue()  

function   itself,   or   sent   as   a   task   to   Celery   to   be   asynchronously   executed.  

The   saving   of   the   logs   in   MongoDB   is   done   using   the     pymongo    library.   The   extraction   of  

Brower   info,   OS   info,   and   Device   info   in   the   Django   middleware   is   done   by   using   the  

django-user-agents    library.  

To   record   first-time   visits,   we   set   the   option   SESSION_EXPIRE_AT_BROWSER_CLOSE   in  

Django   settings   to   False,   and   then   use   the   following   snippet:  
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The   HTML   title   of   the   webpage   is   not   available   on   the   server-side,   but   is   required   for  

visualization   purposes.   To   overcome   this,   we   have   a   separate    event_name    field   in   the   logs.  

The   event   name   is   determined   by   Regex   matching   the   URL   to   a   predefined   list   of   patterns  

of   URLs   defined   by   us.   After   the   match   is   found,   it   will   use   the   corresponding   event   name.  

The   EVENT_NAME_DICT   used   for   matching   can   be   found   in   the   spoken-website   repo   (see  

below   for   the   screenshot),    logs/urls_to_events.py    file.   The   drawback   is   that   for   every   new   URL  

added   to   the   spoken   website   that   does   not   match   a   previously   defined   pattern,   the   dict  

needs   to   be   updated   too.   Else   the   logs   for   visits   to   those   URL   patterns   won't   be   recorded.  

The   above   is   a   part   of   the   dict  

The   logs   stored   in   MongoDB   can   then   be   used   for   performing   analysis   and   creating  

visualizations.  

The   branch   containing   the   code   for   this   approach   can   be   found     here    (the   branch   also  

contains   the   implementation   of   the   Tutorial   Progress   Logging   system).   The   code   written   for  

the   API   can   be   found   in   the     Spoken-Analytics-System    repository.  
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Explanation   of   choices   in   the   architecture  

Usage   of   API   for   saving   logs,   instead   of   doing   it   locally  

Initially,   the   middleware   asynchronously   called   a   local   function   (i.e.   running   on   the   same  

system   as   the   server)   to   do   the   Geolocation   and   the   pushing   of   logs   to   Redis.   The   Redis  

monitoring   consumer   function   was   also   running   locally,   in   the   same   system   as   the  

spoken-website.   However,   we   decide   to   scrap   this   approach   and   transfer   the   function   to   a  

separate   API   in   the   Spoken-Analytics-System   because:  

● It   is   easier   to   perform   an   asynchronous   HTTP   call,   rather   than   calling   a   local   function  

asynchronously.   Calling   a   local   function   asynchronously   complicates   the   code   by  

introducing   asyncio   and   multithreading.  

● In   case   of   high   loads   on   the   spoken-website   server,   the   system   and   server   would   be  

slowed   down.  

● Since   there   are   a   fewer   changes   to   the   main   spoken   website   repository,   it   would   be  

quicker   and   easier   to   review   and   deploy   to   production.  

● It   makes   sense   to   have   the   Event   Logging   and   Analytics   related   code   under   a  

separate   subsystem.  

Asynchronous   saving   of   logs   in   middleware   implementation  

We   could   have   directly   done   Geolocation   and   saved   the   log   into   MongoDB   in   the  

middleware   itself,   without   needing   to   involve   Redis   queues   and   separate   APIs.   However,  

these   are   blocking   operations   that   would   increase   the   page   load   times   for   the   user  

especially   in   case   of   high   load   scenarios.   It   also   has   the   drawbacks   mentioned   in   the  

previous   section,   related   to   saving   logs   locally   instead   of   API   based   approach.   Also,   reliable  

bulk   saving   of   logs   would   have   been   difficult   to   achieve   using   a   purely   middleware-based  

approach.  

Giving   the   option   of   using   Celery   for   bulk   saving   of   logs  

Celery   is   a   full-featured   task   processing   software   for   Python   web   applications   used   to  

asynchronously   execute   work   outside   the   HTTP   request-response   cycle.   It   provides  

features   such   as   automatic   scaling   of   the   number   of   workers,   multiprocessing   to   perform  
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concurrent   execution   of   tasks,   etc.   There   are   applications   like     Flower    to   monitor   Celery  

workers   and   the   task   queues.   A   Celery   system   can   consist   of   multiple   workers   and   brokers,  

giving   way   to   high   availability   and   horizontal   scaling.  

Hence   Celery   is   also   a   good   option   for   running   tasks   asynchronously.  

Usage   of   pymongo   for   saving   logs   into   MongoDB  

To   save   the   logs   in   MongoDB   from   a   Python   function,   we   started   by   using     pymongo .  

Pymongo   simply   takes   a   Python   dictionary   and   saves   it   as   a   document   in   the   specified  

MongoDB   database   and   collection.   Since   there   was   no   validation   being   done,   we   decided  

to   add   validation   to   the   MongoDB   database.   This   is   the   current   validation   schema,   after  

multiple   iterations   of   refinements:  

https://gist.github.com/krithikvaidya/18bcaba3d9a87d8a40e92c4cdd1bac95  

The   above   is   the   MongoDB     validation   schema    for   the   website   event   logs   collection.   This   is  

to   be   entered   in   the   mongo   shell,   after   selecting   the   appropriate   database.   The   above   deals  

with   validating   the   data   just   before   the   document   enters   the   database.   This   is   not  

necessary   to   do,   but   will   be   helpful   in   ensuring   consistency.  

For   tighter   coupling   between   our   Django   application   and   the   MongoDB   database,   we  

decided   to   try   replacing   the   use   of   pymongo   with     Djongo .   Djongo   is   a   SQL   to   MongoDB  

query   transpiler.   It   translates   a   SQL   query   string   into   a   MongoDB   query   document.   As   a  

result,   all   the   Django   ORM   features,   work   as-is.   It   would   also   let   us   interact   with   the   Djongo  

model   through   the   Django   admin   page.  

Hence,   using   Djongo   would   add   another   layer   of   validation   and   consistency   to   the   log   data  

in   the   MongoDB   database.   Using   Djongo   allows   you   to   interact   with   MongoDB   exactly   as  

you’d   interact   with   SQL   databases   using   models,   with   some   additional   MongoDB   specific  

features.  

However,   the   load   testing   (talked   about   below)   showed   that   pymongo   performed   many  

orders   of   magnitude   faster   than   djongo.  

 

 
8  

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://pymongo.readthedocs.io/en/stable/
https://pymongo.readthedocs.io/en/stable/
https://gist.github.com/krithikvaidya/18bcaba3d9a87d8a40e92c4cdd1bac95
https://docs.mongodb.com/manual/core/schema-validation/
https://docs.mongodb.com/manual/core/schema-validation/
https://pypi.org/project/djongo/
https://pypi.org/project/djongo/


 
 

Choosing   the   right   architecture   by   performing   Load   Testing  

 

(This   load   testing   was   done   before   the   API   based   implementation   of   Middleware-based  

logs).  

Till   now,   a   single   async   function   task/celery   task   dealt   with   the   storing   of   a   single   log   in   the  

database.   To   possibly   speed   up   the   saving   of   logs,   we   considered   bulk   saving   of   logs   in   a  

single   task   (for   e.g.   1000   logs   in   1   task)   instead   of   a   single   log   per   task.  

To   determine   the   best   setup   amongst   the   different   setup   described   previously,   I   proceeded  

to   do   extensive   load   testing   -   using   different   combinations   of  

● Celery/our   local   async   function  

● Djongo/pymongo  

● Single   log   per   task/multiple   logs   per   task.  

Testing   method :   Queue   with   10000   tasks   for   each   of   the   (2   *   2   *   2)   =   8   setups.  

Testing   environment    -   my   local   machine.  

According   to   the   load   testing   observations,  

● The   setups   using   pymongo   performed   many   orders   of   magnitude   better   than   those  

using   Djongo.   This   is   probably   because   of   the   extra   Djongo   model   layer   between  

Django   and   MongoDB.   For   every   log   that   needed   to   be   saved,   an   object   of   the  

model   had   to   be   created,   and   the   validations,   etc.   brought   in   a   large   overhead.   The  

feature   benefits   provided   by   Djongo   over   pymongo   was   heavily   outweighed   by   its  

lower   performance   and   the   additional   complexity   of   usage.  

● The   setups   implementing   Bulk   saving   of   logs   performed   much   better   than   single  

saving.   This   is   because   the   time   required   for   inserting   a   log   is   determined   by   the  

following   factors,   where   the   numbers   indicate   approximate   proportions:  

○ Connecting:   (3)  

○ Sending   query   to   server:   (2)  

○ Parsing   query:   (2)  

 
9  



 
 

○ Inserting   logs:   (size   of   log)  

○ Closing:   (1)  

Obviously,   bulk   saving   of   logs   will   be   much   faster   since   only   a   single   connection   is  

opened   for   multiple   logs.  

● In   this   environment,   our   own   consumer   function’s   performance   was   better   than  

Celery’s.   But,   Celery   is   a   much   more   full-featured   task   processing   software,   as   talked  

about   previously.  

So,   considering   all   the   factors,   we   decided   to   choose   the   setup   with  

● an   option   to   either   use   Celery   or   saving   the   logs   in   monitor_queue.py   itself,  

● pymongo   for   saving   of   logs   into   MongoDB,   and  

● bulk   saving   of   logs   per   task.  

There   is   a   SAVE_LOGS_WITH_CELERY   setting   in   the     settings.py    file.   Setting   it   to   true   will   use  

Celery   as   the   task   processing   queue   to   save   the   logs,   and   setting   it   to   false   with   use   the  

separate   queue   monitoring   Python   function   (defined   in   monitor_queue.py)   as   the   task  

processing   queue.   The   MONGO_BULK_INSERT_COUNT   value   controls   how   many   logs   are  

inserted,   per   bulk   insert   operation.  

The   monitor_queue.py   script  

The    monitor_queue.py    script   (found   in   the   Spoken-Analytics-System   repo)   monitors   the  

Redis   queue,   whose   name   is   decided   by   the   value   of   the   USE_MIDDLEWARE_LOGS   setting.  

The   number   of   logs   it   extracts   from   the   Redis   queue   per   bulk   insertion   is   determined   by  

the   MONGO_BULK_INSERT_COUNT   settings   variable.   Many   precautions   have   been   taken   to  

avoid   crashes.   It   uses   Python's   in-built   logging   system   to   periodically   print   out   informative  

log   messages.   A   sample   run   of   the   script   is   as   below:  
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(Each   of   the   iterations   producing   a   line   of   output   in   the   above   has   a   5-second   delay.   This  

delay   can   be   changed   by   tweaking   the   value   of   the   MONITOR_QUEUE_ITERATION_DELAY  

setting).  

The   code   in   the   script   has   been   sufficiently   commented   so   as   to   be   understandable.  

The   end   result   -   a   log   stored   in   MongoDB  
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(In   the   middleware   implementation,   it   is   not   possible   to   get   the   page   title.   However,   it   has  

been   kept   in   the   logs   as   an   empty   field   for   consistency)  

Final   Architecture,   JS-based   Approach  

This   approach   consists   of   extracting   all   the   log   data   in   the   client-side,   using   Javascript.   Once  

the   page   DOM   Content   Loading   completes,   we   run   a   function   to   extract   all   the   information.  

To   get   accurate   location   data,   we   use   the   HTML5    Geolocation   API .   If   the   user   accepts,   the  

accurate   latitude   and   longitude   data   is   extracted.   Else   if   the   user   declines,   we   query   the  

freegeoip.app    API,   to   map   the   user   IP   address   to   a   location.  

To   get   the   browser   and   OS   info,   we   use   the     browser-report    JS   library.   To   detect   the   device  

type,   we   use   the     device-detector    JS   library.  

Once   all   the   data   is   extracted,   a   procedure   similar   to   that   in   the   middleware-based  

architecture   is   used.   We   make   an   AJAX   call   to   another   API   function   created   in   the  

Spoken-Analytics-System   (in    logs_api/views.py,   the     save_js_log()    view   function).   This   view  

enqueues   the   log   in   a   Redis   queue   named    js_log .   The   name   of   the   Redis   queue   monitored  

by    monitor_queue.py    (middleware_log   or   js_log)   is   decided   by   the   value   of  

USE_MIDDLEWARE_LOGS   in     settings.py    file   of   Spoken-Analytics-System.   The   rest   of   the  

procedure   is   the   same   as   in   the   middleware-based   approach,   involving   bulk   inserting   logs  

into   the   DB   in   the   monitor_queue   function   itself,   or   sending   it   as   a   task   to   be   processed   by  

Celery.  

In   the   JS   implementation,   the   exit   link   activity   can   also   be   recorded   (explained   below)  

The   JS   implementation   is   simpler   to   deploy   to   production,   as   there   is   comparatively   little  

extra   code   on   the   server-side.   In   the   JS   implementation,   the    logs    app   is   only   used   for  

defining   a   context   processor   (for   accessing   IP   address   and   Logs   API   URL)   and   a   template  

tag.   The   middleware,   views,   etc   are   not   used.  
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The   branch   containing   the   code   for   this   approach   can   be   found     here    (the   branch   also  

contains   the   implementation   of   the   Tutorial   Progress   Logging   system),   as   well   as   in   the  

Spoken-Analytics-System    repository.  

Getting   the   location   data   in   client-side   JS  

We   can   leverage   the   HTML5   Geolocation   API   to   get   the   accurate   location   data   of   the   client.  

However,   this   is   subject   to   the   user   agreeing   to   provide   their   location   information.   The  

browser   will   put   up   a   prompt   like   this   when   the   page   loads:  

 

If   the   user   chooses   to   accept,   the   accurate   coordinates   can   be   obtained.   However,   to   map  

the   coordinates   to   Country/Region/City   data   (called   reverse   geocoding),   we   will   need   to  

make   an   API   call.   There   are   two   free   APIs   available   for   this   purpose:  

1. OpenStreetMap   (Nominatim)  

2. Big   Data   Cloud   API  

Although   both   APIs   work   well,   they   do   not   return   data   in   a   consistent   manner   (may   not  

return   region/city   data,   or   may   return   it   but   label   the   fields   with   some   other   name).   Hence  

they   cannot   be   used   in   our   code.   Another   option   is   to   do   the   reverse   geocoding   on   the  
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server-side   using     the    reverse_geocoder    library.   However,   it   is   somewhat   slow   and   may  

bottleneck   the   system   in   case   of   a   large   load   of   requests.  

In   case   the   user   does   not   accept   the   browser's   request   for   location,   then   the     freegeoip.app  

API   will   be   used   for   the   purpose   of   performing   geolocation   (which   uses   the   IP   address).   This  

is,   however,   less   accurate.  

Side   note:   Modern   browsers   do   not   let   user’s   location   data   be   accessed   using   the   HTML5  

Geolocation   API   over   HTTP.   It   is   allowed   only   over   HTTPS.   In   a   local   development  

environment,   since   the   server   runs   on   HTTP,   we   will   need   to   add   the   IP   address   of   our   local  

development   server   to   the   chrome   flag  

chrome://flags/#unsafely-treat-insecure-origin-as-secure  

 

Exit   Link   Activity  

Exit   links   are   links   on   the   website   which   point   to   URLs   having   a   different   hostname   than  

spoken-tutorial.org.   To   record   exit   link   activity,   we   add   an   onclick   event   listener   to   all   the  

links   on   a   page.   When   a   link   is   clicked,   the   Javascript   checks   if   it   has   a   different   hostname.   If  

it   does,   an   AJAX   call   is   made   with   the   data   containing   exit   link,   page   on   which   the   link   was  

clicked   and   datetime   of   the   click,   to   an   API   on   the   server-side.   The   API   saves   the   log   into   a  

MongoDB   collection   named    exit_link_logs.  
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Comparison   of   the   two   Architectures  

 

All   of   the   above   dealt   with   saving   the   website   user   event   logs.   The   second   part   of   the  

project   deals   with   Course   and   Tutorial   Progress   logging.  
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Course   and   Tutorial   Progress   Logging  

Here,   we   aim   to   log   tutorial-related   data   while   users   watch   the   Spoken   Tutorials.   Using  

these   logs,   we   can   accomplish   a   lot   -   the   user   can   see   their   course   progress,   see   which  

tutorials   they   have   completed   and   which   they   have   yet   to   complete,   continue   watching   at  

the   timestamp   they   stopped   watching   the   tutorial   at,   etc.   For   the   analytics   side,   we   can   see  

which   course   is   more   popular,   which   tutorial   is   rewatched   the   most   number   of   times,   the  

average   number   of   visits   a   user   makes   to   a   tutorial,   etc.  

Saving   video   logs   in   real-time  

On   the   tutorial   watch   pages   (for   e.g.,     this   one ),   the   videos   are   played   using   the   Video.js  

library.   Video.js   provides   functionality   to   execute   some   logic   every   time   the   video's  

timestamp   is   updated.   Using   this   feature,   every   time   the   minute   of   the   video   changes   from  

the   previously   saved   log’s   minute,   we   can   make   an   asynchronous   AJAX   call   to   an   API  

defined   by   us,   to   save   the   tutorial   progress.   This   API   will   collect   the   data   sent   by   the   AJAX  

call,   such   as:  

● The   username   of   the   tutorial   watcher  

● The   current   video   time  

● The   current   datetime  

● The   FOSS,   the   language   and   the   tutorial,  

● The   number   of   times   the   user   has   visited   that   tutorial   in   that   language  

● The   total   length   of   the   video.  

The   called   API   function   then   does   some   calculations   to   check   if   the   video   has   been  

completed   (if   80%   of   the   minutes   of   the   video   has   been   crossed),   etc.   and   updates   the  

MongoDB   document   for   that   user.  

Once   this   entire   API   call   finishes   successful   execution,   another   AJAX   call   is   made   to   an   API  

to   check   if   the   tutorial   should   be   marked   as   complete   (if   it   is   not   already   marked   as  
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complete).   According   to   the   response,   the   relevant   parts   of   the   DOM   are   updated   to   display  

the   completion   status.  

Buttons   have   been   provided   for   users   to   mark   the   tutorial   as   completed   or   incomplete.  

Clicking   the   button   makes   another   AJAX   call.  

For   non-authenticated   users,   the   website   does   not   display   any   progress/completion   data,  

and   does   not   make   any   of   these   AJAX   calls.  

The   setup   accounts   for   saving   logs   in   the   scenarios   of   skipping   ahead,   fast-forwarding,  

going   back,   etc.  

We   can   choose   to   update   the   tutorial   progress   at   time   intervals   smaller   than   a   minute,  

however,   this   will   increase   the   load   on   the   server.  

Please   check   the   screenshots   below   (the   formatting   of   the   pages   may   look   off   in   some  

places   since   the   static   files   (images,   thumbnails,   etc)   are   not   present   on   my   local   setup):  

Showing   tutorial   completion   status,   buttons   to   mark   as   complete/incomplete  
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The   tutorial   completion   status   is   also   visible   in   the   playlist,   on   the   watch   tutorial   page  

Clicking   the   Mark   Tutorial   as   Complete   button   will   make   an   AJAX   call   to   an   API.   This   API  

updates   the   “completed”   field   of   the   correct   MongoDB   document   as   ‘true’.   After   this  

succeeds,   the   completion   status   at   the   top   of   the   page   and   in   the   playlist   is   automatically  

updated  
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If   we   close   the   video   between   3:00   and   3:59,   the   next   time   we   visit   it,   it   continues   at   3:00  

minute   mark  

For   non-logged-in   users   -   none   of   the   progress   data   is   saved   or   visible  

Once   80%   of   the   minutes   of   the   video   are   completed,   the   tutorial   is   automatically   marked  

as   completed   (if   it   wasn’t   already   marked)   in   the   database,   and   the   webpage   is  

automatically   updated   to   reflect   the   new   completion   status.  
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Tutorial   Search   page  

On   the   tutorial   search   pages,   such   as     this   one ,   when   the   user   is   authenticated   and   has  

chosen   a   FOSS   and   a   language,   the   course   completion   percentage   and   the   option   to  

continue   watching   where   they   stopped   watching   is   given,   as   shown   below.  

Course   completion   status,   continue   where   you   left   off  
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The   completion   status   for   each   tutorial   is   also   shown,   as   can   be   seen.  

Progress   is   recorded   separately   for   different   languages   of   the   same   FOSS  
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None   of   these   things   are   visible   to   non-authenticated   users  

 

Schema   for   saving   tutorial   progress   logs  
 

Currently,   the   tutorial   progress   logs   are   being   saved   in   the   same   database   as   the   website  

logs   ( logs    database),   but   in   a   different   collection   ( tutorial_progress_logs    collection).  

The   below   describes   an   example   of   one   document   in   the   collection:  

https://gist.github.com/krithikvaidya/25662dca3e80e0d7e59a253de71ba1a3  

The   logged   data   can   also   be   used   for   statistical   calculations   and   visualizations.   
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Other   Explorations  

Visit   Duration   Logging  
To   log   the   visit   duration   along   with   all   the   other   visit   data   in   a   single   log,   we   need   to   change  

the   structure   of   the   Javascript   code.   Instead   of   extracting   the   data   and   saving   the   logs   on  

DOMContentLoaded,   we   will   only   extract   the   data   on   DOMContentLoaded,   and   save   the  

logs   before   the   page   unloads,   so   that   the   duration   of   the   visit   can   also   be   calculated.   To   do  

this,   we   can   use    window.unbeforeunload    or   jQuery’s   beforeunload   functionality.   For  

mobile   users,   when   the   page   focus   is   lost   (tab   changed,   browser   closed,   etc.),   marks   the  

end   of   the   visit.  

However,   when   tested   with   different   browsers,   these   features   were   found   to   behave  

inconsistently   and   unreliably.   Another   option   is   the    navigator.sendBeacon    method  

which   allows   us   to   asynchronously    send   a   small   amount   of   data   over   HTTP   to   a   web  

server.    However,   older   browsers   do   not   support   this   feature,   and    this    extensive   study  

about   the   feature   concluded   that    navigator.sendBeacon    is   broken,   and   should   not   be   used  

in   production.   

The   code   for   this   attempted   approach   can   be   found     here .  

Redis   Persistence  

In   order   to   make   sure   that   Redis   queue   data   isn't   lost   during   restarts/crashes   of   the  

system.   There   are   two   ways   of   doing   this:  

The   Redis   Database   Backup  

The   Redis   Database   Backup,   or   RDB,   files   are   snapshots   that   are   taken   at   predetermined  

frequencies,   to   be   used   as   a   backup   in   a   point-in-time   recovery   in   the   event   of   a   data  

storage   failure.  
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The   Append-Only   File  

The   append-only   file,   or   AOF,   is   a   mode   of   data   persistence   where   Redis   persist   the   dataset  

by   taking   a   snapshot   and   then   appending   the   snapshot   with   changes   as   those   changes   take  

place.  

These   methods   can   be   used   together,   separately,   or   not   at   all   in   some   circumstances.  

For   our   use   case,   the   AOF   persistence   method   is   more   appropriate.  

In   basic   terms,   append-only   log   files   keep   a   record   of   data   changes   that   occur   by   writing  

each   change   to   the   end   of   the   file.   In   doing   this,   anyone   could   recover   the   entire  

dataset   by   replaying   the   append-only   log   from   the   beginning   to   the   end.  

 

Table   4.1   -   Sync   options   to   use   with   appendfsync  

Option   How   often   syncing   will   occur  

always   Every   write   command   to   Redis   results   in  
a   write   to   disk.   This   slows   Redis   down  
substantially   if   used.  

everysec   Once   per   second,   explicitly   syncs   write  
commands   to   disk.  

no   Lets   the   operating   system   control   syncing  
to   disk.  

 

In   our   case,   using   appendfsync   always   would   be   the   most   ideal.   However,   if   we   were   to   set  

appendfsync   always,   every   write   to   Redis   would   result   in   a   write   to   disk,   and   we   can   ensure  

minimal   data   loss   if   Redis   were   to   crash.   Unfortunately,   because   we’re   writing   to   disk   with  
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every   write   to   Redis,   we’re   limited   by   disk   performance,   which   is   roughly   200   writes/second  

for   a   spinning   disk,   and   maybe   a   few   tens   of   thousands   for   an   SSD   (a   solid-state   drive).  

As   a   reasonable   compromise   between   keeping   data   safe   and   keeping   our   write  

performance   high,   we   can   also   set   appendfsync   everysec.  

A   sample   Redis   configuration   file   with   appendfsync   can   be   found   in   the   repo     here .  

Further   Reading  
 

MongoDB-Elasticsearch   Connection   and   Sync  
 

For   improved   visualizations   and   performance   of   statistics   calculations,   moving   the   logs  

from   MongoDB   to   Elasticsearch   was   briefly   explored.   To   sync   a   MongoDB   collection   to   an  

Elasticsearch   collection,   we   explored   the   following   options:  

Initial   choices:  

● Mongo   Connector  

● Mongoosastic  

● Mongo   Stream  

● Monstache  

● Logstash   Input   MongoDB  

● MongoDB   input   driver   plugin   for   logstash  

After   considering   various   factors   like   appropriateness   for   our   use   case,   frequency   of  

updates,   presence   of   support,   ease   of   use,   support   for   newer   versions   of   Elasticsearch   etc.,  

we   narrowed   it   down   to   two   choices:  

1. MongoDB   input   driver   plugin   for   logstash  

This   uses   the   Logstash   part   of   the   Elastic   stack   to   sync   the   two   databases.   Since   Logstash  

does   not   have   an   official   MongoDB   input   plugin,   we   have   to   use   a   3rd   party   plugin.   The  
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logstash   configuration   file   for   this   purpose   can   be   found   in   the   Spoken-Analytics-System  

repository     here .  

To   understand   the   use   of   the   driver,   please   refer   to   the   following   links:  

● Link   1  

● Link   2  

● Link   3  

● Link   4  

● Link   5  

 

       2.      Monstache  

Monstache   is   a   go   daemon   that   syncs   MongoDB   to   Elasticsearch   in   real-time.   Probably   the  

easiest   to   setup.  

 

Saving   of   Offline   Tutorial-Related   Logs  
 

A   good   portion   of   Spoken   Tutorials   users   hail   from   rural-type   areas,   where   internet  

connectivity   is   limited.   In   these   cases,   the   cdcontent   download   feature   is   used   to   download  

the   Spoken   Tutorials   and   view   them   locally,   in   a   web   browser.   To   record   these   logs,   we   can  

use   the   HTML5   Web   Storage   API   to   save   the   required   logs   locally.   When   the   user   comes  

online,   the   browser   can   automatically   send   this   data   to   a   Spoken   Tutorials   API.  
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Conclusion  

This   project   dealt   with   creating   robust   pipelines   for   the   saving   of   user   activity   logs,   such   as  

website   browsing   logs   and   course/tutorial   progress   logs.   This   data   can   be   then   used   for  

generating   insights,   analytics,   and   visualizations   of   the   user   activities   on   the   website.   The  

presence   of   tutorial   progress   logs   and   their   associated   features   contribute   toward  

improving   the   user   experience.   Further   explorations   had   been   done   with   respect   to   Redis  

data   backup,   visit   duration   logging,   and   pipelining   data   between   MongoDB   and  

Elasticsearch.  

For   future   improvements,   we   can   extend   the   events   tracking   to   other   subdomains   under  

spoken-tutorials.org   (such   as   forums.spoken-tutorial.org,     process.spoken-tutorial.org,   etc.)  

and   improve   the   cdcontent   download   logging.   We   can   also   log   the   user   activity   paths,  

similar   to   how   it   is   shown   by   StatCounter.   The   idea   of   syncing   MongoDB   and   Elasticsearch  

can   be   further   explored   to   improve   the   performance   of   statistical   calculations   and  

visualizations.  

In   the   end,   I   would   like   to   thank   FOSSEE   and   the   Spoken   Tutorials   project   for   providing   me  

the   opportunity   to   work   on   this   project.   I   would   like   to   thank   my   mentor,   Sir   Abhijit   Bonik,  

for   providing   guidance   and   allowing   the   freedom   to   explore   different   approaches.   I   would  

also   like   to   thank   Ma’am   Nancy   Varkey   and   Ma’am   Kirti   Ambrey   for   periodically   reviewing  

my   work.  
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