
FOSSEE Summer Fellowship Report
on

FLOSS - R

submitted by

Ashwin Guptha (Vellore Institute of Technology, Chennai)

under the guidance of

Prof. Kannan M. Moudgalya
Chemical Engineering Department

IIT Bombay

Prof. Radhendushka Srivastava
Department of Mathematics

IIT Bombay

June 15, 2020

Acknowledgement
I want to express my sincere gratitude to Prof. Kannan M. Moudgalya, Depart-
ment of Chemical Engineering, IIT Bombay, for creating the FOSSEE Fellowship
programme and providing students from all over India an opportunity to participate
in it. I would equally like to thank my FLOSS mentor, Prof. Radhendushka Srivas-
tava, Department of Mathematics, IIT Bombay, for his immense support, patience,
motivation, knowledge & influence throughout this fellowship and for helping me
on various statistical models. I would also like to express my gratitude to the other
members of the R FLOSS team, namely Mrs. Smita Wangikar and Mr. Digvijay
Singh for their guidance and valuable inputs throughout the fellowship and also
for providing me with an overview on data analysis and LATEX. I would also like
to thank the other fellows who got selected along with me, namely M. Sai Anand,
Sakshee Phade and Amish Sharma for their support, intellectual discussions and
enthusiasm. I am very grateful to be given such a fantastic opportunity to work on
this exciting project.

1

Contents

1 Introduction 3

2 Spoken Tutorial 4
2.1 Decision Tree . 4
2.2 Random Forest . 4

3 Analysis of the effects of COVID-19 on Indian stock market 5
3.1 Abstract . 5
3.2 Introduction . 5
3.3 Methodology . 6

3.3.1 Data Collection . 6
3.3.2 Data Exploration . 6
3.3.3 Data Analysis . 8

3.3.3.1 Spline Regression . 8
3.3.3.2 First Order Differentiation 11
3.3.3.3 Second Order Differentiation 11
3.3.3.4 Residuals . 11
3.3.3.5 ACF and PACF . 13
3.3.3.6 AR(1) Model . 15
3.3.3.7 GARCH(1,1) Model 16

3.4 Results . 18
3.4.1 Differentiation . 18
3.4.2 GARCH(1,1) with AR(1) . 20

4 Conclusion 25

2

Chapter 1

Introduction

In this report, I mention my contributions to open-source software, made in the du-
ration of the FOSSEE Fellowship, starting from 20th April 2020 to 15th June 2020.
Contributions were made using a Free-Libre/Open Source Software (FLOSS) known
as "R" as a part of the FOSSEE project by IIT Bombay and MHRD, Government of
India. The FOSSEE project is a part of the National Mission on Education through
ICT. The thrust area is the adaptation and deployment of open-source simulation
packages equivalent to proprietary software, funded by MHRD, based at the Indian
Institute of Technology Bombay (IITB). My contributions involved making Spoken
Tutorial scripts and analysis of the effect of COVID-19 on the Indian stock market.

3

Chapter 2

Spoken Tutorial

The Spoken Tutorial project aims to make video tutorials on Free and Open Source
Software (FOSS) available in several Indian languages. The goal is to enable the
use of spoken tutorials to teach in any Indian language to learners of all levels of
expertise - Beginner, Intermediate or Advanced. Every tutorial has to go through
a series of stages to ensure that it is perfect for its audience, which is crucial for
achieving the goal of this project. I contributed to the creation of the "Decision
Tree" and "Random Forest" classification tutorial scripts.

2.1 Decision Tree
The decision tree is a supervised learning algorithm useful for classification by split-
ting data into two or more subsets based on the significance of the input variables.
This tutorial shall explain how to use the decision tree algorithm on a data set using
R packages. The data set used is "Aids2" from the "MASS" package [1]. Other pack-
ages used were "party" [2] and "caret" [3] for applying and visualizing the accuracy
of the algorithm.

2.2 Random Forest
The random forest algorithm uses a set of decision trees. Each tree is assigned a
random collection of features. This tutorial shall explain the significance of this al-
gorithm and how it is used on a data set using R packages. It also gives a comparison
with other classification algorithms and techniques described in previous tutorials.
The data set used is "Aids2" from the "MASS" package [1]. Other packages used
were "randomForest" [4] and "caret" [3] for applying and visualizing the accuracy of
the algorithm.

4

https://spoken-tutorial.org/

Chapter 3

Analysis of the effects of
COVID-19 on Indian stock market

3.1 Abstract
The stock market always excited many researchers and business analysts. It is a
general belief that predicting or capturing a trend in the stock market is close to
impossible due to its randomness. Now due to COVID-19 pandemic, the fluctuations
have been more random than they were before, which further piques the interest for
researchers to capture a trend of a challenging market. Applications of models like
"spline regression," "auto-regressive" and "GARCH" show great promise in time series
analysis of the market. In this report, I focused on capturing the trend of both Nifty
and Sensex, before and after the pandemic. I shall conclude in this report whether
COVID-19 affected the market or not, and what model best captures the trend using
R.

3.2 Introduction
COVID-19 is enormously impacting various economic sectors of the world. One of
these is the stock market. The stock market is defined as an aggregation of buy-
ers and sellers of stocks or shares which represent possession of part of a business.
In India, there are two leading stock exchanges, namely, Bombay Stock Exchange
(BSE), whose index is Sensex and the National Stock Exchange (NSE), whose index
is Nifty. Stock market data was very irregular, and during COVID-19, its trend
changed dramatically. Various statistical models were already available for predic-
tion, but the goal was to find the one fitting best over the data under observation.
Spline regression tested to be the best option for a prediction model that represents
the major trends from the original data. I also calculated the residuals from the
model. Later the differentiated curves of the fitted data were observed to realize the
rate of change of the stock market. Also, the initial residuals indicate a prominent
periodic curve in which the "AR" and "GARCH" models were able to capture the
trend well and fit satisfactorily. The overall objective was to examine how, where
and when COVID-19 affects the stock market.

5

3.3 Methodology

3.3.1 Data Collection
The analysis was performed over the stock market open data for both exchanges from
1st January 2019 till 19th May 2020. There were also other indices for the data apart
from open, namely, close, high and low. All four show identical trends, so analysis
on any one would prove to be sufficient. The Sensex open data was collected from
the official BSE India website [5] and the Nifty open data was collected from the
official NSE India website [6]. The data obtained was in good shape and no cleaning
was required.

3.3.2 Data Exploration
The data consisted of 339 data points.

Figure 3.1: Time series data of Sensex and Nifty prices

A better method to improve the data is to convert it into a time series. In R, this
could be done using the function "xts" of the package "quantmod" [7]. The default
function is as follows -

xts(x,order.by=NULL)

x - object containing the time series data
order.by - vector of different dates/times

By executing the following code, I changed the original data into a time series -

6

1 library (quantmod)
2 timeS <-xts(dataS [,-1], order .by = dataS [,1])
3 timeN <-xts(dataN [,-1], order .by = dataN [,1])

The next step would be to visualize the data. Significant fluctuations could be
observed from the generated plot.

Figure 3.2: Sensex and Nifty data

From figure 3.2, many dips and rises in the values could be observed. Towards
February end, there was a sharp decline in the prices. Differentiation would help
quantify the significance of the drop. Understandably, such a sharp decline was
unseen in the recent past. There was also a sharp increase in March-end and April.
The primary statistical measures for both Sensex and Nifty prices were calculated
by making use of "summary" function on the respective data.

Figure 3.3: Summary of Sensex data

7

Figure 3.4: Summary of Nifty data

3.3.3 Data Analysis
3.3.3.1 Spline Regression

Spline regression is a preferred version of the standard linear or polynomial regres-
sion as it requires a low degree polynomial for curve fitting [8]. A simple linear or
polynomial regression fit would prove to be insufficient in this case as the graph fol-
lows two different trajectories before and after the COVID-19 pandemic. To capture
both trends and obtain an accurate fitting model, I used spline regression. The most
common spline regression fit is cubic spline fitting in which I defined a set of points
called knot points. Since spline is a special function defined piecewise for the whole
fit, knot points help separate each piece and compute individual cubic equations.
In other words, these knot points help determine the start and endpoint for each
equation. Out of the initial 339 data points, eleven points, as marked in figure 3.5,
were chosen to be the knot points. The same knot points were applied to Nifty as
well as Sensex as both have similar trends.

Figure 3.5: Knot points

To apply the spline regression in R, I used the "lm" function with stock values as the

8

dependent variable and date as the independent variable. I utilized cubic regression
with the knot points mentioned in figure 3.5. The following code elucidates how to
execute spline regression with the given data in R -

1 # Applying spline regression using knots points . The points are the index of chosen
values . They will be same for Nifty and Sensex .

2
3 # The following is for Nifty and similarly I had applied for Sensex .
4
5 point <-c(1 ,29 ,91 ,177 ,181 ,189 ,282 ,305 ,311 ,327 ,339)
6 # Knot points by index number .
7
8 dataN <-data. frame (index , dataN)
9

10 for(i in c(1:(length (point) -1)))
11 {
12 fit2 <-lm(dataN [point [i]: point [i+1] ,3]~((I(dataN [point [i]: point [i+1] ,1])+I(dataN

[point [i]: point [i+1] ,1]^2)+I(dataN [point [i]: point [i+1] ,1]^3))))
13 dataN [point [i]: point [i+1] ,4] <-fit2$ fitted
14 dataN [point [i]: point [i+1] ,5] <-fit2$ residuals
15 }
16 names (dataN)[4] <-"Fit"
17 names (dataN)[5] <-"Res"
18 dataN $ points <-NA
19 dataN [point ,6] <-dataN [point ,3]

Following coefficients were obtained for generating ten equations of the fitted curve
as per the given eleven knot points -

Figure 3.6: Sensex coefficients

9

Figure 3.7: Nifty coefficients

From the generated coefficients, equations were created to obtain the best fit. The
fit is shown in figures 3.8 and 3.9.

Figure 3.8: Sensex spline regression fit

10

Figure 3.9: Nifty spline regression fit

3.3.3.2 First Order Differentiation

First-order differentiation/derivative of a function measures the sensitivity of the
function to change to the independent variable. Here, I differentiated the two fitted
graphs obtained after the spline regression. "D()" function in R was used to perform
differentiation over the acquired expressions as shown below -

D(exp,"x")

exp - expression to be differentiated
x - variable by which the equation is differentiated

3.3.3.3 Second Order Differentiation

Second-order differentiation/derivative of a function measures the sensitivity of the
rate of change of the function to the independent variable. This test indicates the
pace at which the stock prices fluctuate within this given timeline. I again used the
function "D()" to compute derivatives.

3.3.3.4 Residuals

Applying a model on the initial graph (figure 3.2) obtained by the data points may
prove to be insufficient. There is more scope to fit a curve on the residuals of the
fitted model than on the actual data. These residuals indicate when the predicted

11

model has a higher value than the actual data and vice versa. It provides excellent
accuracy on how and when the model differs from the actual data which will prove
to be very useful.

Figure 3.10: Residuals of Sensex

Figure 3.11: Residuals of Nifty

12

3.3.3.5 ACF and PACF

ACF is an autocorrelation function which returns the correlation of the series with
its lagged values considering all components of a time series like seasonality, trend,
cyclic, etc. before computation. PACF is a partial autocorrelation function that
finds the correlation of the residuals with the lag of the next value. The ACF and
PACF plots of this residual, may not be used for finding the AR value or the MA
value but can be used to see yet another periodic trend. It can be done in R using
the following code -

1 Acf(dataS $Res ,100)
2 # 100 is the lag value .
3
4 Pacf(dataS $Res ,100)

The ACF and PACF plots have been applied on the residuals, as shown in figures
3.10 and 3.11.

Figure 3.12: ACF plot of Sensex residuals

13

Figure 3.13: ACF plot of Nifty residuals

Figure 3.14: PACF plot of Sensex residuals

14

Figure 3.15: PACF plot of Sensex residuals

3.3.3.6 AR(1) Model

An AR model or autoregressive model predicts the behaviour of a time series based
on previous values. "AR(p)" model will make a prediction based on the "p" number
of past values (number of lagged targets). It is generally used for stationary values. I
used "AR(1)" model on the residuals obtained, to create a model where the predicted
value will depend only on the previous value and the intercept. Every "AR(1)" model
will follow the following general equation -

y(t) = µ + φ*y(t-1) + e(t)

y(t) - predicted value at time t
y(t-1) - value at time t-1
µ - intercept value
φ - coefficient for the lagged value
e(t) - error at time t (error function)

3.3.3.6.1 Significance of φ

When φ=0, y(t) is a white noise.
When φ=1 and w=0, y(t) is equivalent to a random walk.
When φ=1 and w is not equal to 0, y(t) is equivalent to a random walk with drift.
When φ<0, y(t) tends to oscillate around the mean. In almost every case, 1<φ<1.

15

In R, I used the function "arima()" which is defined as follows -

arima(data,order=c(0,0,0))

data - data for model fitting
order - specifications corresponding to the order of the model

The first integer given to the "order" parameter is the AR order, the second is
the degree of difference and the last integer is the MA order. As AR(1) was applied,
the second and third integers were set to zero and the first integer was assigned the
value one as shown below -

1 ar1_ model <-arima (dataS $Res ,c(1 ,0 ,0))

3.3.3.7 GARCH(1,1) Model

Heteroskedasticity describes the irregularity of the error term in a statistical model,
and hence the results drawn from such models shall not be accurate all the time.
Therefore I used the generalized autoregressive conditional heteroskedasticity (GARCH)
process to describe an approach for estimating the volatility as mentioned earlier [9].

GARCH involves the following three steps -
1. Fit the best autoregressive model
2. Compute autocorrelations of the error terms
3. Test for significance

The following equations represent the GARCH(1,1) model -

a(t) = e(t)v(t)

a(t) - predicted function
e(t) - error function
v(t) - standard deviation or volatility of the time series

v(t) = sqrt(ω + α1*a(t-1)2 + β1*v(t-1)2)

"ω," "α1" and "β1" are constants or coefficients that are unique to the chosen data. In
R, I used "ugarchspec" and "ugarchfit" functions (from package "rugarch" [10]) to fit
the residual curve. "gsSelect" function (from package "GEVStableGarch" [11]) helps
to select the best GARCH model parameters for curve fitting. I applied "gsSelect"
function on the generated residual data to obtain the most suitable model. The
function is as follows -

gsSelect(data,order.max=c(1,1,1,1),selection.criteria = "AIC")

data - data for processing
selection.criteria - criteria for selecting the most suitable model
order.max - maximum order of the GARCH model to be fitted when searching for

16

the best model.

The first two integers passed into the "order.max" parameter are the maximum AR
and MA orders and the last two integers represent the maximum GARCH parame-
ters‘.

3.3.3.7.1 Selection Criteria

3.3.3.7.1.1 AIC

AIC or Akaike Information Criterion tests the accuracy of a fitted model. The AIC
value is the estimate of the amount of information lost by a given model. The AIC
equation is as follows [12] -

AIC = -2*(loglikelihood) + 2K

K - number of model parameters
loglikelihood - measure of model fit

"Loglikelihood" is directly proportional to the quality of fit.

3.3.3.7.1.2 BIC

BIC or Bayesian Information Criterion also tests goodness of fit of a model. It is
similar to AIC as it is also an estimate of the amount of information lost by a given
model. The BIC equation is as follows [12] -

BIC = k*log(n) - 2*log(L(θ))

n - sample size
k - number of model parameters
θ - set of all parameters
L(θ) - likelihood of the tested model

I used "gsSelect" to find the best model for Sensex residuals as shown in the following
code snippet -

1 library (GEVStableGarch)
2 gsSelect (dataS $Res , order .max=c(1 ,1 ,1 ,1) ,cond.dist = "norm",selection . criteria = "

AIC")

Figure 3.16: Result of "gsSelect"

17

The function tested all possible models within the range of "order.max" parameter
and found "AR(1) + GARCH(1,1)" to be the best model for the data under consid-
eration. The same result is obtained when substituted with Nifty residuals and BIC
selection criterion.

3.4 Results

3.4.1 Differentiation
The first order differentiation equations are as follows -
Sensex -

1. 136.8888 − 10.954319 ∗ (2 ∗ x) + 0.2645245 ∗ (3 ∗ x2)
2. 17.246052 ∗ (2 ∗ x) − 820.8614 − 0.1051567 ∗ (3 ∗ x2)
3. 2179.449 − 16.31802 ∗ (2 ∗ x) + 0.03922962 ∗ (3 ∗ x2)
4. 150576.5 ∗ (2 ∗ x) − 26930540 − 280.6208 ∗ (3 ∗ x2)
5. 2727.266 + 6.828232 ∗ (2 ∗ x) − 0.0528367 ∗ (3 ∗ x2)
6. 1783.014 − 6.709182 ∗ (2 ∗ x) + 0.008373018 ∗ (3 ∗ x2)
7. 331396.4 − 1109.087 ∗ (2 ∗ x) + 1.233731 ∗ (3 ∗ x2)
8. 25018690 − 80975.87 ∗ (2 ∗ x) + 87.36028 ∗ (3 ∗ x2)
9. 1440811 − 4509.379 ∗ (2 ∗ x) + 4.704413 ∗ (3 ∗ x2)
10. 9086.384 ∗ (2 ∗ x) − 3025995 − 9.09456 ∗ (3 ∗ x2)

Nifty -

1. 37.14412 − 3.26023 ∗ (2 ∗ x) + 0.07994356 ∗ (3 ∗ x2)
2. 4.592556 ∗ (2 ∗ x) − 210.8956 − 0.02851471 ∗ (3 ∗ x2)
3. 715.6223 − 5.399194 ∗ (2 ∗ x) + 0.01305044 ∗ (3 ∗ x2)
4. 43281.66 ∗ (2 ∗ x) − 7739206 − 80.67917 ∗ (3 ∗ x2)
5. 61.75447 ∗ (2 ∗ x) − 10084.47 − 0.1247896 ∗ (3 ∗ x2)
6. 464.5525 − 1.73293 ∗ (2 ∗ x) + 0.002137055 ∗ (3 ∗ x2)
7. 88851.48 − 297.0629 ∗ (2 ∗ x) + 0.3300245 ∗ (3 ∗ x2)
8. 7218807 − 23372.34 ∗ (2 ∗ x) + 25.22361 ∗ (3 ∗ x2)
9. 458817 − 1435.558 ∗ (2 ∗ x) + 1.497179 ∗ (3 ∗ x2)
10. 2546.241 ∗ (2 ∗ x) − 848241.8 − 2.547684 ∗ (3 ∗ x2)

18

Figure 3.17: First order differentiation

The second order differentiation equations are as follows -
Sensex -

1. 0.2645245 ∗ (3 ∗ (2 ∗ x)) − 10.954319 ∗ 2
2. 17.246052 ∗ 2 − 0.1051567 ∗ (3 ∗ (2 ∗ x))
3. 0.03922962 ∗ (3 ∗ (2 ∗ x)) − 16.31802 ∗ 2
4. 150576.5 ∗ 2 − 280.6208 ∗ (3 ∗ (2 ∗ x))
5. 6.828232 ∗ 2 − 0.0528367 ∗ (3 ∗ (2 ∗ x))
6. 0.008373018 ∗ (3 ∗ (2 ∗ x)) − 6.709182 ∗ 2
7. 1.233731 ∗ (3 ∗ (2 ∗ x)) − 1109.087 ∗ 2
8. 87.36028 ∗ (3 ∗ (2 ∗ x)) − 80975.87 ∗ 2
9. 4.704413 ∗ (3 ∗ (2 ∗ x)) − 4509.379 ∗ 2
10. 9086.384 ∗ 2 − 9.09456 ∗ (3 ∗ (2 ∗ x))

Nifty -

19

1. 0.07994356 ∗ (3 ∗ (2 ∗ x)) − 3.26023 ∗ 2
2. 4.592556 ∗ 2 − 0.02851471 ∗ (3 ∗ (2 ∗ x))
3. 0.01305044 ∗ (3 ∗ (2 ∗ x)) − 5.399194 ∗ 2
4. 43281.66 ∗ 2 − 80.67917 ∗ (3 ∗ (2 ∗ x))
5. 61.75447 ∗ 2 − 0.1247896 ∗ (3 ∗ (2 ∗ x))
6. 0.002137055 ∗ (3 ∗ (2 ∗ x)) − 1.73293 ∗ 2
7. 0.3300245 ∗ (3 ∗ (2 ∗ x)) − 297.0629 ∗ 2
8. 25.22361 ∗ (3 ∗ (2 ∗ x)) − 23372.34 ∗ 2
9. 1.497179 ∗ (3 ∗ (2 ∗ x)) − 1435.558 ∗ 2
10. 2546.241 ∗ 2 − 2.547684 ∗ (3 ∗ (2 ∗ x))

Figure 3.18: Second order differentiation

3.4.2 GARCH(1,1) with AR(1)
I created a GARCH object using "ugarchspec." The mean model selected was "ar-
maOrder(1,0,0)," indicating AR(1) and the variance model was "garch(1,1)," indi-
cating GARCH(1,1). The code snippet for the above is as follows -

1 spec <-ugarchspec (variance . model = list(garchOrder =c(1 ,1)),mean. model = list(
armaOrder =c(1 ,0 ,0)))

2 spec_fitS <-ugarchfit (spec , dataS $Res)
3 spec_fitS

20

Figure 3.19: GARCH and AR coefficients (Sensex)

21

Figure 3.20: GARCH and AR coefficients (Nifty)

Five coefficients were obtained from the "ugarchfit" model namely, "ω," "α1," "β1,"
"ar1" and "mu." Out of the five, "mu" was the only coefficient to be rejected because
of a very high p-value. A very high p-value indicates that the null hypothesis was
accepted, implying insignificance of the associated coefficient. The "ar1" coefficient
gave the "φ" value from the "ugarchfit" model. Since the "µ" value was rejected, I
ignored it in the equations. I also ignored the error function as it was insignificant.
Finally the following results were obtained -

Sensex AR equation of the generated model -

y(t) = 0.61493*y(t-1)

Sensex GARCH equation of the generated model -

v(t) = sqrt(3424.07822 + 0.16351*y(t-1)2 + 0.83549*v(t-1)2)

22

Nifty AR equation of the generated model -

y(t) = 0.60398*y(t-1)

Nifty GARCH equation of the generated model -

v(t) = sqrt(643.78612 + 0.16296*y(t-1)2 + 0.79934*v(t-1)2)

Figure 3.21: GARCH Sensex residual fit

23

Figure 3.22: GARCH Nifty residual fit

Figures 3.21 and 3.22 depict the GARCH fitted values in conjunction with the gener-
ated residuals. It was observed that the model fits accurately for both Nifty & Sensex
values and all necessary equations were obtained. Since the AIC and BIC values
were low (around 12), it further supports the model. Hence "AR(1) + GARCH(1,1)"
concluded to be the residual fit.

Since the residuals of the spline regression model have fitted well, it will be eas-
ier to predict future differences of the actual data. It is not possible to estimate
the stock value on any given day accurately. Still, in the forthcoming days, it will
be easier to tell how the actual value shall differ from the predicted value using the
above equations. I conclude from the results that COVID-19 had a visible impact
on the stock market, which can be captured using the generated models.

24

Chapter 4

Conclusion

Both Spoken Tutorial scriptwriting and case study project on the effects of COVID-
19 on Indian Stock Market have contributed to promoting the usage of R FLOSS.
The newly created Spoken Tutorials scripts shall be a part of R tutorial series on
Machine Learning. It will help AI enthusiasts in learning practical machine learning
skills using R. The stock market project can help various researchers to visualize
variations of the market and observe changes in future trends. The case study re-
sults proved to be accurate by the information criterion. Scope of further research
can be in the creation of an automatic function to find the most appropriate knot
points instead of manual selection.

The entire FOSSEE fellowship experience was very informative and enjoyable. Ev-
ery fellow learned new skills and methods which he/she can make use of in the
future. Even though the fellowship was conducted remotely, it didn’t hinder the
experience and interactions between the fellows and instructors. Overall each fellow
learned the different facets of working in an organization while contributing to the
society.

25

References

[1] W. N. Venables and B. D. Ripley, “Modern Applied Statistics with S,” Statistics
and Computing, Springer, 2002.

[2] K. H. Torsten Hothorn and A. Zeileis, “Unbiased Recursive Partitioning: A
Conditional Inference Framework,” Journal of Computational and Graphical
Statistics, 2006.

[3] M. Kuhn, “Caret: Classification and Regression Training,” ASCL, pp. ascl–
1505, 2015.

[4] A. Liaw and M. Wiener, “Classification and Regression by randomForest,” R
News, vol. 2, no. 3, pp. 18–22, 2002.

[5] G. O. India, “Sensex open data,” https://www.bseindia.com/Indices/
IndexArchiveData.html,06 2020.

[6] G. O. India, “Nifty open data,” https://www1.nseindia.com/products/
content/equities/indices/historical_index_data.htm,06 2020.

[7] J. A. Ryan and J. M. Ulrich, “quantmod: Quantitative Financial Modelling
Framework,” R package version 0.4.17, 2020.

[8] C. M. Bishop, “Pattern Recognition and Machine Learning,” 2006.

[9] A. V. Metcalfe and P. S. Cowpertwait, “Introductory Time Series with R,”
2009.

[10] A. Ghalanos, “rugarch: Univariate GARCH models,” R package version 1.4-2,
2020.

[11] A. T. do Rego Sousa, C. E. G. Otiniano, and S. R. C. Lopes, “GEVStable-
Garch,” 2020.

[12] J. Friedman, T. Hastie, and R. Tibshirani, “The Elements of Statistical Learn-
ing,” vol. 1, no. 10, 2006.

26

https://www.bseindia.com/Indices/IndexArchiveData.html
https://www.bseindia.com/Indices/IndexArchiveData.html
https://www1.nseindia.com/products/content/equities/indices/historical_index_data.htm
https://www1.nseindia.com/products/content/equities/indices/historical_index_data.htm

	Introduction
	Spoken Tutorial
	Decision Tree
	Random Forest

	Analysis of the effects of COVID-19 on Indian stock market
	Abstract
	Introduction
	Methodology
	Data Collection
	Data Exploration
	Data Analysis
	Spline Regression
	First Order Differentiation
	Second Order Differentiation
	Residuals
	ACF and PACF
	AR(1) Model
	GARCH(1,1) Model

	Results
	Differentiation
	GARCH(1,1) with AR(1)

	Conclusion

