
Summer Fellowship Report

On

Developing Osdag Section Modeller module, Qt Template and Database
Version Controlling

Submitted by

Satyam Singh Niranjan

Under the guidance of

Prof.Sidhartha Ghosh

Civil Engineering Department
IIT Bombay

Under the Mentorship of

Deepthi Reddy

Project Research Associate
Danish Ansari

Assistant Project Manager

July 1, 2020

Acknowledgment

I would like to thank FOSSEE for providing me a platform to work
on something I am very interested in. I am thankful to everyone who
thought of having and involved in selection process based on screening
tasks. I am grateful to be a part of team which promotes open source
software.

I thank all the Osdag members, who are wonderful mentors and
great team. I thank Sourabh Das (Project Research Associate), Aj-
mal Babu MS (Project Research Associate), Danish Ansari (Project
Research Assistant), Yash Lokhande (Project Research Assistant),
Darshan Viswakarma (Project Research Associate), Anand Swaroop
(Project Research Associate), Anjali Jatav (Project Research Assis-
tant) and whole team, who made us feel welcome and planned all the
tasks meticulously during this period.

I am grateful that I got a chance to work under Prof. Sidharth
Ghosh, who took time to mentor us and monitored individual contri-
butions as well.

1

Contents

1 Introduction 3
1.1 Osdag Internship . 3
1.2 What is Osdag? . 3
1.3 Who can use ? . 4

2 Navigation Window Templatization 5
2.1 3-Level Dictionary-Parsing 6
2.2 Modifying Existing Module Opening Methods 7

3 Database Version Controlling 8
3.1 Pre-Build Database Updation/Creation 8
3.2 Post-Exit SQL file Updation 9

4 LaTex Report Changes and Bug/Error Fixes 10
4.1 LaTex Compilation Errors 10
4.2 Oddly-sized Image Bug for LaTex Report 11

5 Osdag Section Modeller Creation 12
5.1 Define Section with Inputs 13
5.2 Coded Formulas and Attached them to Section Properties 14
5.3 OCC viewer with Respective CAD model 15
5.4 Import,Export and Save Features 16

2

Chapter 1

Introduction

1.1 Osdag Internship

Osdag internship is provided under the FOSSEE project. FOSSEE
project promotes the use of FOSS (Free/Libre and Open Source Soft-
ware) tools to improve quality of education in our country. FOSSEE
encourages the use of FOSS tools through various activities to ensure
availability of competent free software equivalent to commercial (paid)
softwares.
The FOSSEE project is a part of the National Mission on Education
through Infrastructure and Communication Technology(ICT), Min-
istry of Human Resources and Development, Government of India.
Osdag is one such open source software which comes under the FOS-
SEE project. Osdag internship is provided through FOSSEE project.
Any UG/PG/PhD holder can apply for this internship. And the se-
lection will be based on a screening task.

1.2 What is Osdag?

Osdag is Free/Libre and Open Source Software being developed for
design of steel structures. Its source code is written in Python, 3D
CAD images are developed using PythonOCC. Github is used to en-
sure smooth workflow between different modules and team members.
It is in a path where people from around the world would be able to
contribute to its development. FOSSEE’s “Share alike” policy would
improve the standard of the software when the source code is fur-
ther modified based on the industrial and educational needs across
the country.

3

https://fossee.in/

Design and Detailing Checklist (DDCL) for different connections, mem-
bers and structure designs is one of the important bi-products of this
project. It would create a repository and design guide book for steel
construction based on Indian Standard codes and best industry prac-
tices.

1.3 Who can use ?

Osdag is created both for educational purpose and industry profes-
sionals. As Osdag is currently funded by MHRD, Osdag team is de-
veloping software in such a way that it can be used by the students
during their academics and to give them a better insight look in the
subject.
Osdag can be used by anyone starting from novice to professionals.
It’s simple user interface makes it flexible and attractive than other
software. Video tutorials are available to help get started. The video
tutorials of Osdag can be accessed here.

4

https://osdag.fossee.in/resources/videos

Chapter 2

Navigation Window
Templatization

I have added a dictionary-parsing code which when provided with a
dictionary with certain values will create the GUI using that informa-
tion. This creates the Left-side Module Navigation buttons and con-
nect these buttons to the respective Tab and further, sub-tabs. Also,
Each tab/sub-tab can include any number of modules/sub-modules
respectively. All modules will have a respective radio button and an
image, which when clicked selects that particular module.On clicking
the start button, finally, the respective module is launched in a sep-
arate window and the navigation window disappears. Checkout the
Code here

Figure 2.1: Navigation Window

5

https://github.com/Satanarious/Osdag/blob/FSF20/osdagMainPage.py

2.1 3-Level Dictionary-Parsing

A pre-created variable is assigned atmost a 3-level dictionary.Now,
there are 3 kinds of values allowed:

1. Dictionary(tab/sub-tab)

2. List/Tuple(modules)

3. Under Development Variable(under development notice)

Figure 2.2: 3-Level Dictionary Structure Example

The 1st level will contain keys as names of left-side module navigation
buttons. The values of these keys can be either of the three values
mentioned earlier.
The 2nd level is created on passing a dictionary as the value of 1st
level dictionary key(s). The values of these 2nd level dictionary keys
can be either of the three values mentioned earlier.
The 3rd level is created on passing a dictionary as the value of 2nd
level dictionary key(s). The values of these 3nd level dictionary keys
can be either List/tuple or under development variable.

6

The dictionary is then parsed through the code and both the front-
end and back-end are created through code, saving the trouble of
hardcoding everything and making a fuss on trying to make changes.

2.2 Modifying Existing Module Opening Methods

The list/tuple value on the 3-level dictionary will contain sub-lists/sub-
tuples with 3 values each:

1. The Name of the Module

2. The location of the module image

3. Name of the radio button object for that module

Also, the last value of the main list/tuple will be a function that con-
nects the start button on the respective tab to the respective module
window; e.g.

’Beam to Beam’ :[
(’Cover Plate Bolted’,’images/coverplate.png’,’B2BCPBolted’),
(’Cover Plate Welded’,’images/coverplate.png’,’B2BCPWelded’),
(’End Plate Connection’,’images/endplate.png’,’B2BEPConnection’),
self.showmomentconnection,
]

Now, the function provided as the last element of the list/tuple should
have conditions for searching the radio button object with the name
provided and open the respective module window.

7

Chapter 3

Database Version Controlling

As far as git is concerned, database tables are just big binary blobs,
and git has no way of tracking differences between versions in that
case. You can track changes in your database by exporting your tables
as flat files, and keeping those under git control. So, there’s no op-
timal/ideal way of version controlling Databases with git rather than
using commercial software like Redgate’s SQL source control (Allows
version controlling a database with your choice of VCS like git, TFS,
etc). So to this was achieved by storing a SQL file in the repository
instead of the database file itself. Since SQL files are flat file, thus ver-
sion controlling was automatically done for them. The difficult task
was keeping the database as well as SQL file updated on changes in
one another.This whole concept is based on one single property that
is the ’Date/Time modified’ of the SQL or Database file. Checkout
the Code here

3.1 Pre-Build Database Updation/Creation

A check is built into the code, to be performed on each run of the
program. This check searches for the database. This is all done in
lieu of maintaining the database on fresh install/pull or a consecutive
pull. The code for this can be found in OsdagMainPage.py under
“Pre-Build Database Updation/Creation”

� If the database doesn’t exist (Database Creation):
Then with the help of the SQL file, the database is created and the
SQL file is touched, making its last modified date/time slightly
higher(in milliseconds) than the database file.

8

https://github.com/Satanarious/Osdag/blob/FSF20/osdagMainPage.py

� If the database exists (Database Updation):
Then a check is performed to compare the last modification date/-
time of the SQL and SQLite file(database). If the last modifica-
tion date/time of SQL file minus one is more recent than that of
SQLite file(database), then:

1. The SQL file is used to create an updated database with a
new name.

2. If the operation (1) doesn’t throw any error then, the original
database is removed and the new one is named as the old one.

3. The SQL file is touched, making its last modified date/time
slightly higher(in milliseconds) than the database file.

4. If an error is thrown then, any residue of the corrupt database
created in the operation (1) is removed.

3.2 Post-Exit SQL file Updation

A check is built into the code, to be performed on each exit of the
program. This check compares the last modified date/time of the SQL
and the SQLite file(database) minus one. This is all done in lieu of
maintaining the SQL (source code) file. If the SQLite file(database) is
more recent than the SQL file, then another database dump is created
and overwritten on the SQL file, thus updating the SQL file.

9

Chapter 4

LaTex Report Changes and
Bug/Error Fixes

The LaTex report created and saved as Design report threw errors
on certain circumstances and had some minor bugs which disabled
the smooth and continuous run of the application. Most errors were
minor and were handled with an error dialog displayed to the user.

4.1 LaTex Compilation Errors

One of the LaTex compilation error was thrown when the a file with
the same name if already open , with which name the user is trying
to save. Because since PDF viewers generally lock the PDF files from
being edited when opened using them. Thus editing the file when
it was open wasn’t possible. This error was detected by searching
if the log file created after error had this particular error in it. If
this error was found in the log file then, the a respective Error dialog
was displayed to the user. All other errors were handled the same,
by asking the user to send the log file created to the developers to
investigate the compilation error. Checkout the Code here

Figure 4.1: LaTex Error Dialog

10

https://github.com/Satanarious/Osdag3/blob/satyam/gui/ui_design_summary.py

4.2 Oddly-sized Image Bug for LaTex Report

In small resolutions and improper-sized window the screenshot taken
of the OCC viewer for attaching in the LaTex design report was oddly-
sized. To solve this bug:
A Screenshot is taken and saved.Checkout the Code here

� If the screenshot is sized higher than a certain size:
Then, the screenshot is kept and report is created.

� If the screenshot is sized lower than a certain size:
Then,

1. The previous screenshot is deleted.

2. The logger,Input and output docks are hidden.

3. A screenshot is taken.

4. The logger,Input and output docks are shown back.

Figure 4.2: OCC Viewer Screenshot Bug

11

https://github.com/Satanarious/Osdag3/blob/satyam/gui/ui_template.py

Chapter 5

Osdag Section Modeller Creation

Osdag Section Modeller is a new feature dialog that helps design,visualize
and save Sections to be further used in the Main Application.The Sec-
tion Modeller has 3 sections namely:

1. Define Section

2. CAD Viewer

3. Section Properties

Checkout the Code here

Figure 5.1: Osdag Section Modeller

12

https://github.com/Satanarious/Osdag/blob/FSF20/gui/ui_OsdagSectionModeller.py

5.1 Define Section with Inputs

The Define section is where the user enters/selects the required pa-
rameters.It has 4 Inputs:

1. Section Type

2. Section Template

3. Section Parameters

4. Section Designation

Figure 5.2: Define Section

There are 5 Types of section out of which user can select one. On
selection of a type, the Section template drop down is automatically
updated with the available templates for the selected section.Next, the
user show enter the Section Parameters by clicking the ’Enter/Edit Pa-
rameters’ button.This opens a separate dialog which has the required
parameters for the selected template. As soon as the user clicks save
on the Section Parameters dialog and if the parameters are all valid,
then a CAD model is created and displayed in the CAD viewer and all
the Section Properties are updated and displayed in their respective
text boxes.

13

Figure 5.3: Section Parameters Dialog

5.2 Coded Formulas and Attached them to Section Proper-
ties

Coded formulas from manual calculations provided by fetching data
from the user as well as the database.These formulas were then used
to update the respective Section Property in the Section Properties
Section.Each time a user saves the Section parameter, the Section
properties are updated if the parameters entered are valid.

Figure 5.4: Section Properties

14

5.3 OCC viewer with Respective CAD model

Respective CAD model creation and display in OCC Viewer coded
with input and database parameters for each model. Each time a
user saves the Section parameter, respective CAD model based on
parameters is created and displayed if the parameters entered are valid.

Figure 5.5: CAD Model Examples

15

5.4 Import,Export and Save Features

The Import feature helps import previously saved Sections from the
location of choice in the system.
The Export feature allows the creation of a LaTex formatted Design
report of the Designed Section.
The Save feature helps save Designed Sections into .osm file to be used
further in the Application or the Modeller itself.

Figure 5.6: Design Report

Figure 5.7: Saved Section

16

	Introduction
	Osdag Internship
	What is Osdag?
	Who can use ?

	Navigation Window Templatization
	3-Level Dictionary-Parsing
	Modifying Existing Module Opening Methods

	Database Version Controlling
	Pre-Build Database Updation/Creation
	Post-Exit SQL file Updation

	LaTex Report Changes and Bug/Error Fixes
	LaTex Compilation Errors
	Oddly-sized Image Bug for LaTex Report

	Osdag Section Modeller Creation
	Define Section with Inputs
	Coded Formulas and Attached them to Section Properties
	OCC viewer with Respective CAD model
	Import,Export and Save Features

