
Summer Fellowship Report

On

Developing Test module and integrating with TravisCI, GUI
modification, Design Preference UI development and Crash Reporting

Submitted by

Nitin Singh

Under the guidance of

Prof. Siddhartha Ghosh

Civil Engineering Department
IIT Bombay

Under the Mentorship of

Deepthi Reddy

Project Research Associate

July 6, 2020

Acknowledgment

I would like to thank FOSSEE for providing me a platform to work
on something I am very interested in. I am thankful to everyone who
thought of having and involved in selection process based on screening
tasks. I am grateful to be a part of team which promotes open source
software.

I thank all the Osdag members, who are wonderful mentors and
great team. I thank Sourabh Das (Project Research Associate), Aj-
mal Babu MS (Project Research Associate), Danish Ansari (Project
Research Assistant), Yash Lokhande (Project Research Assistant),
Darshan Viswakarma (Project Research Associate), Anand Swaroop
(Project Research Associate), Anjali Jatav (Project Research Assis-
tant) and whole team, who made us feel welcome and planned all the
tasks meticulously during this period.

I am grateful that I got a chance to work under Prof. Siddhartha
Ghosh, who took time to mentor us and monitored individual contri-
butions as well.

1

Contents

1 Introduction 3
1.1 Osdag Internship . 3
1.2 What is Osdag? . 3
1.3 Who can use ? . 4

2 Development and Integration of Test module 5
2.1 Development . 5
2.2 Integration . 6

3 GUI modification 8
3.1 Input and Output Docks 8
3.2 Save Output . 9
3.3 Adding styles and themes 10
3.4 Working with widgets 17

4 Design Preference UI 23

5 Crash Reporting 25
5.1 Exception Dialog . 25
5.2 Report Issue . 26

6 Other modifications and Bug/Error Fixes 31
6.1 Wrapped C/C++ object of type QTextEdit has been

deleted . 31
6.2 Modifying Source Code 32

2

Chapter 1

Introduction

1.1 Osdag Internship

Osdag internship is provided under the FOSSEE project. FOSSEE
project promotes the use of FOSS (Free/Libre and Open Source Soft-
ware) tools to improve quality of education in our country. FOSSEE
encourages the use of FOSS tools through various activities to ensure
availability of competent free software equivalent to commercial (paid)
softwares.
The FOSSEE project is a part of the National Mission on Education
through Infrastructure and Communication Technology(ICT), Min-
istry of Human Resources and Development, Government of India.
Osdag is one such open source software which comes under the FOS-
SEE project. Osdag internship is provided through FOSSEE project.
Any UG/PG/PhD holder can apply for this internship. And the se-
lection will be based on a screening task.

1.2 What is Osdag?

Osdag is Free/Libre and Open Source Software being developed for
design of steel structures. Its source code is written in Python, 3D
CAD images are developed using PythonOCC. Github is used to en-
sure smooth workflow between different modules and team members.
It is in a path where people from around the world would be able to
contribute to its development. FOSSEE’s “Share alike” policy would
improve the standard of the software when the source code is fur-
ther modified based on the industrial and educational needs across
the country.

3

https://fossee.in/

Design and Detailing Checklist (DDCL) for different connections, mem-
bers and structure designs is one of the important bi-products of this
project. It would create a repository and design guide book for steel
construction based on Indian Standard codes and best industry prac-
tices.

1.3 Who can use ?

Osdag is created both for educational purpose and industry profes-
sionals. As Osdag is currently funded by MHRD, Osdag team is de-
veloping software in such a way that it can be used by the students
during their academics and to give them a better insight look in the
subject.
Osdag can be used by anyone starting from novice to professionals.
It’s simple user interface makes it flexible and attractive than other
software. Video tutorials are available to help get started. The video
tutorials of Osdag can be accessed here.

4

https://osdag.fossee.in/resources/videos

Chapter 2

Development and Integration of
Test module

I have created a Unit Testing module using which individual mod-
ules like FinPlateConnection, BasePlateConnection are tested to de-
termine if there are any issues by the developer himself. It is concerned
with functional correctness of the standalone modules. This module
is then integrated with TravisCI with the help of a .yml script which
automatically builds a pull request when it is first opened, and when-
ever commits are added to the pull request.

2.1 Development

Unit Testing module is created with the help of ‘unittest’library present
in python3. It also uses off-screen renderer to create the design for
each input file without popping up the OCC Viewer each time a de-
sign would be created. All the modules to be tested are modified such
that they do not contain any imports related to pyqt5. Checkout the
code here.

5

https://github.com/ns3098/Osdag3/blob/restructure/Module_test.py

Figure 2.1: Ouput of the Test module on local system.

2.2 Integration

Above Module Testing code interacts with travisCI using a .travis.yml
file.This file specifies the programming language used, the desired
building and testing environment (including dependencies which must
be installed before the software can be built and tested), and vari-
ous other parameters.Instead of using the native python environment
offered by travis, a custom CONDA environment is created which is
much faster than the native one and offer functionalities like using
multiple python versions, installing texlive and caching.

Caching is used to decrease the execution time of testing, all the
packages once installed will be cached for future use.Checkout the
.travis.yml file.

To install Texlive on Travis server for creating design report pdf, a
*.sh script is used along with a *.profile file. Checkout the .sh script
here and .profile script here.

6

https://github.com/ns3098/Osdag3/blob/restructure/.travis.yml
https://github.com/ns3098/Osdag3/blob/restructure/texlive/texlive_install.sh
https://github.com/ns3098/Osdag3/blob/restructure/texlive/texlive.profile

Figure 2.2: Output on travis Server.

Figure 2.3: Pull requests build on travis Server.

7

Chapter 3

GUI modification

3.1 Input and Output Docks

Fixed the scaling of both the docks according to system resolution.
Checkout the PR here and the original code here. (Check the new
class added to resize the dock from line no. 106 to 152). All other
changes are not at one place.

Figure 3.1: Before the modification.

8

https://github.com/d33pthi/Osdag3/pull/334
https://github.com/ns3098/Osdag3/blob/restructure/gui/ui_template.py

Figure 3.2: After the modification.

3.2 Save Output

Added a ‘Save Output’button in the Output dock which saves all the
data present in both Input and Ouput dock in a CSV file. Checkout
the PR here and original code here. (from line no. 1375 to 1417)

Figure 3.3: CSV file.

9

https://github.com/d33pthi/Osdag/pull/4
https://github.com/ns3098/Osdag3/blob/restructure/gui/ui_template.py

3.3 Adding styles and themes

Created two themes for the application light and dark. Also added
a toggle button to change the stylesheet. Fixed the resizing issue of
Osdag header and images in popup window.
Checkout the dark theme here.
Checkout the light theme here.
PyQt5 does not offer a toggle button, so i created one of my own by
inheriting the QAbstractButton class. Checkout the code here.

Above stylesheets are used in the application with the help of func-
tion setStyleSheet, this function is used with a QApplication variable
i.e. app in Fig 3.4 .

*.qss file contains the styleSheets of each type of widgets. It can
style the widget specifically and generally both. To style the widget
specifically we need to give it an objectName then we can use it in our
qss file to style it.

For example Tabs and button style of ’Design Preference’ Dialog is
different from OsdagMainPage and Module Window in light theme.
We have used objectName of the Design Preference dialog to set the
stylesheet. Note the use of # to interact with widget using its object-
Name. See Fig 3.5 and Fig 3.6.

But see Fig 3.7 and Fig 3.8 how we generally declared the stylesheet
without using any particular objectName.

It is also advised to not declare the StyleSheet of any widget inside
the main UI code, instead declare it inside the qss file using its object-
Name. If we specifically set the styleSheet inside the main UI code
then the styles declared in qss file will have no effect on this widget.

10

https://github.com/ns3098/Osdag3/blob/restructure/themes/darkstyle.qss
https://github.com/ns3098/Osdag3/blob/restructure/themes/light.qss
https://github.com/ns3098/Osdag3/blob/restructure/gui/toggle_button.py
https://github.com/ns3098/Osdag3/blob/restructure/gui/toggle_button.py

Figure 3.4: stylesheet applied over app variable which is of type QApplication

Figure 3.5: Specifically setting the stylesheet of Design Preference Dialog (Check light.qss
file)

Figure 3.6: Specifically setting the stylesheet of Design Preference Dialog (Check light.qss
file)

11

Figure 3.7: Generally setting the stylesheet for QTab Widgets and it’ll be applied to
all QTabs except those in Design Preference dialog because we are declaring separate
stylesheet for Design Preference using its objectName (Check light.qss file)

Figure 3.8: Generally setting the stylesheet for all QPushButton Widgets and it’ll be
applied to all QPushButtons except those in Design Preference dialog because we are
declaring separate stylesheet for Design Preference using its objectName (Check light.qss
file)

12

Figure 3.9: Easy to identify which tab is selected.

Figure 3.10: Toggle button at the bottom.

13

Figure 3.11: Dark Mode enabled.

Figure 3.12: Dark Mode enabled.

14

Figure 3.13: Dark Mode enabled.

Figure 3.14: Dark Mode enabled.

15

Figure 3.15: Before(Popup Window) Figure 3.16: After(Popup Window)

Figure 3.17: Before(Osdag logo on lower res-
olutions)

Figure 3.18: After(Osdag logo on lower res-
olutions)

16

3.4 Working with widgets

How to adjust drop-down width of QCombobox according to
length of longest text present?

This was not an issue till Qt4.8, If you had a QComboBox with a
fixed size and added items which were longer than it, when the popup
listview opened it would automatically resize to the longest string con-
tent.
But this doesn’t work anymore with latest versions like Qt5.5+, this
is a known issue.

Only way to deal with problem is to calculate the width of each
item to be added in QCombobox and then set the width using mini-
mumWidth, shown in the image below.

Figure 3.19: Demo to set the drop down width.

17

https://bugreports.qt.io/browse/QTBUG-3097

Image sizes on QLabel?

To control the size of image we need to use the function shown in
the image below.

Figure 3.20: Demo to set the size of image.

How to avoid images from occupying bigger percentage in
lower resolutions?

Simple answer is we can’t unless and until we are ready to make the
extra effort it requires, let me explain the reason.

The solution to this depends upon what we want to do in the low
resolution. Do we want it to look the same, but without the larger
images or do we want to display a different design? It may not be
practical to use the same design for a lower resolution.

The first thing to do is to connect to the QApplication.desktop()
resized event to detect that a screen resolution change has occurred.
At this point we could either forward the event to all our widgets to
resize and use different images, resize the images they have, or display
different forms that you create for different screen sizes.

So if we want the images to be the same size proportionally to the
screen resolution then the only options we have is to either reduce the
image sizes on the fly, after detecting the lower screen resolution, or
have a separate set of images to load, which would be much quicker

18

than the first option.

That being said it totally depends on developers whether they want
to use different images for different resolutions or not.

How to resize window size according to screen resolution
and move it to center of screen?

Always follow the order of using the function, first resize the win-
dow then move it to center, then in the last use self.show() to show
the window.

Figure 3.21: Demo to resize and center any window.

Should we use *.ui files to create the UI or Custom code
everything from scratch?

Every time we start a project with some graphical toolkit, one of
the first conflicts happen with the decision of how to deal with the vi-
sual design and the widget layout: A graphical tool or custom coding?

This is a quite tricky/subjective question because most people will
decide based on personal preference. These are some of the points to
be considered -

19

Qt Designer

� Good

1. Exploration. Discover what widgets are available, the names
for those widgets, what properties you can set for each, etc.

2. Enforces separation of UI logic from application logic.

� Bad

1. If you need to add or remove widgets at run-time, you have
to have that logic in code. I think it’s a bad idea to put your
UI logic in two places.

2. Making changes to nested layouts. When a layout has no wid-
gets in it, it collapses, and it can be really hard to drag and
drop a widget in to the location you want.

Custom coding

� Good

1. Fast if you are very familiar with Qt.

2. Best choice if you need to add or remove widgets at run-time.

3. Easier than Qt Designer if you have your own custom widgets.

4. With discipline, we can still separate UI layout from behavior.
Just put the part to create and layout widgets in one place,
and the part to set signals and slots in another place.

� Bad

1. Slow and confusing if you are new to Qt.

2. Does not enforce separation of layout from behavior.

In summary, start with Qt Designer and let it take you as far as it
can, then custom code everything from there.

20

Some Qt practices to follow

Below mentioned points are totally based on my personal experience
and it comes from at least one real bug I encountered while working
with Qt applications.

Specific Workarounds / Bugs

� Using QTimer.singleShot repeatedly can cause lockups.

� Avoid using QGraphicsView with QGLWidget.

� QGraphicsItems should never keep a reference to the QGraph-
icsView they live in. (weakrefs are ok).

� Raising exceptions inside QGraphicsItem.paint() can cause crashes.
Always catch exceptions inside paint() and display a message
rather than letting the exception proceed uncaught.

� Changing the bounds of QGraphicsItems without calling prepare-
GeometryChange() first can cause crash.

Practices for Avoiding Exit Crashes

� QObjects that reference their parent or any ancestor can cause
an exit crash.

� The easiest way to avoid exit crashes is to call os. exit() be-
fore python starts collecting Qt objects. However, this can be
dangerous because some part of the program may be relying on
proper exit handling to function correctly (for example, terminat-
ing log files or properly closing device handles). At a minimum,
one should manually invoke the atexit callbacks before calling
os. exit().

� QGraphicsScene with no parent can cause an exit crash.

� QGraphicsItems that are not part of a QGraphicsScene can cause
crash on exit.

21

General Programming Practices

� If you must use multi-threaded code, never-ever access the GUI
from a non-GUI thread. Always instead send a message to the
GUI thread by emitting a signal or some other thread-safe mech-
anism.

� Be careful with Model/View anything. TableView, TreeView, etc.
They are difficult to program correctly, and any mistakes lead to
untraceable crashing. Use Model Test to help ensure your model
is internally consistent.

� Understand the way Qt object management interacts with Python
object management and the cases where this can go wrong.See.

– Qt objects with no parent are ”owned” by Python; only Python
may delete them.

– Qt objects with a parent are ”owned” by Qt and will be
deleted by Qt if their parent is deleted.

– Example of Core Dump.

� A QObject should generally not have a reference to its parent
or any of its ancestors (weak references are ok). This will cause
memory leaks at best and occasional crashes as well.

� Be aware of situations where Qt auto-deletes objects. If the
python wrapper has not been informed that the C++ object was
deleted, then accessing it will cause a crash. This can happen in
many different ways due to the difficulty PyQt and PySide have
in tracking Qt objects.

– Compound widgets such as a QScrollArea and its scroll bars,
QSpinBox and its QLineEdit, etc. (Pyside does not have this
problem)

– Deleting a QObject will automatically delete all of its children
(however PyQt usually handles this correctly).

22

https://wiki.qt.io/Model_Test
 http://python-camelot.s3.amazonaws.com/gpl/release/pyqt/doc/advanced/development.html
https://stackoverflow.com/questions/18416201/core-dump-with-pyqt4
https://doc.qt.io/archives/qt-4.8/qobject.html#dtor.QObject

Chapter 4

Design Preference UI

Rewrote the whole UI code of Design preference dialog with improve-
ments like adding SrollArea in each tab along with required layouts.Before
the modification every widget was added according to x and y coor-
dinates, which could have caused problems on systems with lower
resolutions where widgets could go out of the screen. Checkout the
code here.

Figure 4.1: Design Preference dialog with layouts and ScrollArea.

23

https://github.com/ns3098/Osdag3/blob/restructure/gui/UI_DESIGN_PREFERENCE.py

Figure 4.2: Design Preference dialog with layouts and ScrollArea.

Figure 4.3: Design Preference dialog with layouts and ScrollArea.

24

Chapter 5

Crash Reporting

For most people, crashing means either an application has frozen or
entirely disappeared. Sometimes, this is followed by a dialog box ask-
ing “Would you like to send a crash report?” Users hit “Send” and
move on with their lives, and, most of the time, never think about
that moment again.

But there is an entire world behind that interaction which is key to
driving technology forward.

To break it down into layman’s terms, a crash happens when a com-
puter program fails to function properly and shuts down unexpectedly.
Crashes happen for all kinds of reasons, but the main idea is that a
program crashes when its code runs into a problem. In order to fix a
crash, the code must be debugged, which is the process of finding and
fixing the faulty code which caused the crash so the program can run
smoothly again.

5.1 Exception Dialog

I have created a Dialog box which would appear immediately after
application crashes due to some bugs or unhandled exceptions. It’ll
show all the information regarding the crash and also have two but-
tons in it “SAVE” and “REPORT ISSUE”.

Clicking on “SAVE” button will write the whole crash report in a
log file.

Checkout the Exception Dialog code here.

25

https://github.com/ns3098/Osdag3/blob/restructure/gui/ExceptionDialog.py

Checkout it’s implementation code here.

Figure 5.1: Imported CriticalExceptionDialog and appcrash framework

Figure 5.2: Exception Dialog

5.2 Report Issue

User can also report the issue by clicking on “REPORT ISSUE” but-
ton. I have created a framework for reporting application crash (un-
handled exception) and/or let the user report an issue/feature request.

26

https://github.com/ns3098/Osdag3/blob/restructure/osdagMainPage.py

Some features of the framework:

1. Multiple builtin backends for reporting bugs:

� GithubBackend: let you create issues on github.

� Emailbackend: let you send an email with the crash report.

2. Highly configurable, you can create your own backend, set your
own formatter,...

3. A thread safe exception hook mechanism with a way to setup your
own function.

Steps involved in reporting the issue:

� Enter title and description of the issue.

� Review the report.

� Sign in to github using your username and password or Personal
Access Token.

� Issue will be created on the application github repo, where devel-
opers can see it.

Checkout the whole framework code here.

Checkout it’s implementation code here. (From line no. 840 to 862,
738 to 790)

27

https://github.com/ns3098/Osdag3/tree/restructure/APP_CRASH
https://github.com/ns3098/Osdag3/blob/restructure/osdagMainPage.py

Figure 5.3: Report issue Dialog.

Figure 5.4: Review report before submitting.

28

Figure 5.5: Review report before submitting.

Figure 5.6: Basic authentication using Github username and password.

29

Figure 5.7: Sign in using personal access token.(In case user has enabled two factor au-
thentication or basic authentication is not working.)

30

Chapter 6

Other modifications and
Bug/Error Fixes

6.1 Wrapped C/C++ object of type QTextEdit has been
deleted

This error was thrown because of creating multiple handler for the
same logger without removing the previous ones while closing the mod-
ule. Whenever any module opens a logging handle is created for this
particular module which points to the QTextEdit box to show logs to
the user. So when we close this module without removing this handler
and open a new module, this particular handler is still there point-
ing to the address of QTextEdit box of the previously opened module
which is actually closed(deleted) and hence this error shows up.
Solution was to remove all the created handlers while closing the mod-
ule, so that a new handler can be created whenever we open another
module pointing to new address of QtextEdit box.
Checkout the code here.

31

https://github.com/ns3098/Osdag3/blob/restructure/gui/ui_template.py

Figure 6.1: Handlers removed here

6.2 Modifying Source Code

I have modified the souce code of python-occ to offer off-screen render-
ing for creating designs. It is used in Module testing to create design
reports. Some useful links which helped me a lot for this modification:
Link 1 Link 2 Link 3 Link 4 Link 5

Checkout the code here.

32

https://stackoverflow.com/questions/45588823/qt-opengl-widgets-and-offscreen-rendering
https://stackoverflow.com/questions/31323749/easiest-way-for-offscreen-rendering-with-qopenglwidget
https://stackoverflow.com/questions/17221730/do-offscreen-renderopengl-with-qt5
https://stackoverflow.com/questions/19934102/qglwidget-and-fast-offscreen-rendering
https://stackoverflow.com/questions/28005693/why-does-qglwidget-only-render-a-blank-screen
https://github.com/ns3098/Osdag3/blob/restructure/texlive/Design_wrapper.py

	Introduction
	Osdag Internship
	What is Osdag?
	Who can use ?

	Development and Integration of Test module
	Development
	Integration

	GUI modification
	Input and Output Docks
	Save Output
	Adding styles and themes
	Working with widgets

	Design Preference UI
	Crash Reporting
	Exception Dialog
	Report Issue

	Other modifications and Bug/Error Fixes
	Wrapped C/C++ object of type QTextEdit has been deleted
	Modifying Source Code

