
1

 SUMMER FELLOWSHIP REPORT

 ON

 MATHEMATICS USING PYTHON

 Submitted by

 ABITHA V

 Under the Guidance of

 Dr. ARVIND AJOY,

 Assistant Professor,

 Indian Institute of Technology, Palakkad.

 August 9,2020

2

 ACKNOWLEDGEMENT

I would like to thank the FOSSEE project from IIT Bombay for giving

me an opportunity to do internship with Python. The internship

opportunity was a great chance for me to learn and develop myself

professionally. It helped me to enhance my knowledge in NumPy. I feel

grateful to have met so many wonderful people and professionals who

guided me through this internship period.

I would like to specially acknowledge Dr. Arvind Ajoy with my deepest

gratitude who in spite of being busy with his duties, took time out to

hear, guide and keep me on the correct path.

 I consider this opportunity as a big milestone in my career

development. I shall strive to use the acquired skills and knowledge in

the best possible way, and I will continue to work on its improvement,

in order to attain desired career objectives.

3

 CONTENTS

1 Introduction

 1.1 NumPy in Python 4

 1.2 Why NumPy 5

2 Random Walk

 2.1 Generating and Plotting Trajectories 6

 2.2 Plotting Displacement 9

 2.3 Random Events 13

 2.4 Applications 16

3 Conclusion 17

 References

4

 CHAPTER 1

 INTRODUCTION

Mathematics using python fellowship is provided under the FOSSEE

project. FOSSEE project promotes the use of FOSS (Free and Open

Source Software) tools to improve quality of education in our country.

FOSSEE promotes the use of FOSS tools through various activities to

ensure commercial(paid) softwares are replaced by equivalent FOSS

tools.

The FOSSEE project is a part of the National Mission on Education

through Infrastructure and Communication Technology (ICT),

Ministry of Human Resources and Development (MHRD),

Government of India.

1.1 NUMPY IN PYTHON

Python is an interpreted, high-level, general purpose programming

language. It was created by Guido van Rossum and released in

1991.Python’s design emphasizes code readability with its use of

significant whitespace. Python is dynamically typed and garbage

collected. It supports object-oriented and functional programming.

Python’s large standard library considered as one of its greatest

strengths provides tools suited for many tasks. The combination of

python with fast computation has attracted scientists and others in large

5

numbers. NumPy and SciPy are two powerful python packages that

enable the language to be used efficiently for scientific purposes.

1.2 WHY NUMPY?

The basic operations used in scientific programming include arrays,

matrices, integration, differential equation solvers, statistics and much

more. NumPy is the fundamental Python package for scientific

computing. It adds the capabilities of N-dimensional arrays, element-

by-element operations, core mathematical operations like linear

algebra, and the ability to wrap C/C++/Fortran code.

Python stores data in several different ways, but the most popular

methods are lists and dictionaries. But operating the elements in a list

can only be done through iterative loops, which is computationally

inefficient in python. The NumPy package enables users to overcome

the shortcomings of the Python lists by providing a data storage object

called ndarray.

6

 CHAPTER 2

 RANDOM WALK

2.1 GENERATING AND PLOTTING TRAJECTORIES

A Random walk is a mathematical object, known as stochastic or

random process, that describes a python that consists of a succession of

random steps on some mathematical spaces such as the integers.

An elementary example of a random walk is the random walk on the

integer number line, which starts at 0 and at each step moves +1 or -1

with equal probability.

Other examples are the path traced by a molecule as it travels in a liquid

or a gas, the price of a fluctuating stock and the financial status of a

gambler: all can be approximated by random walk models, even though

they may not be truly random in reality.

Adding the following code:

import numpy

#import pylab

import random

import matplotlib.pyplot as plt

defining the number of steps

num_steps = 1000

function to generate random walk

def makeRandomWalk(n):

 x = numpy.zeros(n)

 y = numpy.zeros(n)

7

 for i in range(1, n):

 val = random.randint(1, 4)

 if val == 1:

 x[i] = x[i - 1] + 1

 y[i] = y[i - 1]

 elif val == 2:

 x[i] = x[i - 1] - 1

 y[i] = y[i - 1]

 elif val == 3:

 x[i] = x[i - 1]

 y[i] = y[i - 1] + 1

 else:

 x[i] = x[i - 1]

 y[i] = y[i - 1] - 1

 return x,y

plotting stuff:

plt.figure()

x,y=makeRandomWalk(num_steps)

plt.subplot(2,2,1)

plt.axis('equal')

plt.plot(x,y)

x,y=makeRandomWalk(num_steps)

plt.subplot(2,2,2)

plt.axis('equal')

plt.plot(x,y)

x,y=makeRandomWalk(num_steps)

plt.subplot(2,2,3)

plt.axis('equal')

plt.plot(x,y)

8

x,y=makeRandomWalk(num_steps)

plt.subplot(2,2,4)

plt.axis('equal')

plt.plot(x,y)

plt.show()

 Fig 2.1. Simulation Results for Random walk trajectories

The first task is to create a random walk of 1000 steps and each

trajectory will be list of 1000 x values and 1000 y values. The four such

trajectories are also plotted.

9

2.2 PLOTTING DISPLACEMENT

For more understanding, we want to know what is the distance from

the starting point (0,0) to the ending point (x1000, y1000). We could

manually examine all plots, but it would be hard to see the common

features. So, we use Python to generate all the random walks, but show

us only a summary. We could create two arrays x_final and y_final to

store the ending x and y positions and embedded it inside a for loop.

Adding this code:

#creating 100 plots

x_final=[]

y_final=[]

displacement=[]

for i in range(1000):

 x,y=makeRandomWalk(num_steps)

 x_final.append(x[-1])

 y_final.append(y[-1])

 displacement.append(numpy.sqrt(x[-1]**2+y[-1]**2))

plt.figure()

plt.scatter(x_final,y_final)

10

 Fig.2.2 Scatter plot of the end points

It turns out that random walks are partially predictable after all. Out of

all the randomness comes systematic statistical behaviour. We can look

at the distributions of various positions at various steps in making

histograms of the positions of each simulation. We can also compute

the mean by iterating through each time step from our simulation.

Adding this code:

import numpy

#import pylab

import random

import matplotlib.pyplot as plt

defining the number of steps

num_steps = 1000

function to generate random walk

def makeRandomWalk(n):

 x = numpy.zeros(n)

11

 y = numpy.zeros(n)

 for i in range(1, n):

 val = random.randint(1, 4)

 if val == 1:

 x[i] = x[i - 1] + 1

 y[i] = y[i - 1]

 elif val == 2:

 x[i] = x[i - 1] - 1

 y[i] = y[i - 1]

 elif val == 3:

 x[i] = x[i - 1]

 y[i] = y[i - 1] + 1

 else:

 x[i] = x[i - 1]

 y[i] = y[i - 1] - 1

 return x,y

#creating 100 plots

x_final=[]

y_final=[]

displacement=[]

for i in range(1000):

 x,y=makeRandomWalk(num_steps)

 x_final.append(x[-1])

 y_final.append(y[-1])

 displacement.append(numpy.sqrt(x[-1]**2+y[-1]**2))

displacementsquare=[]

for i in displacement:

 displacementsquare.append(i**2)

12

plt.figure()

plt.hist(displacementsquare)

plt.show()

 Fig 2.3. Semi-log axes of the random walk histogram

 Fig 2.4 log-log axes of the random walk histogram

13

 Fig 2.5 Mean- square displacement of the random walk

2.3 RANDOM EVENTS

Rare event simulation involves extremely small but important

probabilities. If we flip our imaginary coin once every second, then our

string of heads and tails becomes a time series called a Poisson

process. Flipping head is a rare event, and it raises an interesting

question: What is the distribution of the waiting times from heads to

next. This example is useful in demonstrating the problem of rare-event

simulation and this probability maybe estimated by conducting

repeated experiments using random number generator.

Adding this code:

import numpy

import random

from scipy.special import factorial

14

import math

import matplotlib.pyplot as plt

p=[]

for l in range(50):

 p.append(math.exp(-8)*(8**l)/factorial(l))

print("poisson distribution for l value in range 1 to 50 :")

for i in p:

 print(i)

 Fig 2.6 Rare event distribution

We want to know the distribution of the waiting times from one head

to next. To know this, we can make a long list of ones and zeros, then

search it for each occurrence of a 1 by using NumPy’s np.nonzero

function. NumPy’s np.diff function will take the difference of the

successive entries in an array.

Adding this code:

import numpy as np

15

def coinFlip(p):

 result = np.random.binomial(1,p)

 return result

#probability of heads vs. tails. .

probability = .08

#num of flips required. This can be changed.

n = 1000

#initiate array

fullResults = np.arange(n)

#perform desired numbered of flips at required probability set above

for i in range(0, n):

 fullResults[i] = coinFlip(probability)

 i+=1

a=np.nonzero(fullResults)

waitingtime=np.diff(a)

#plotting waiting time

plt.figure()

plt.hist(waitingtime)

plt.show()

16

 Fig 2.7 Waiting Times

2.4 APPLICATIONS

❖ In population genetics, random walk describes the statistical

properties of genetic drift.

❖ In physics, random walks and some of the self-interacting walks

play a role in quantum field theory.

❖ In computer science, random walks are used to estimate the size

of the web.

❖ Rare event simulation is used in modern packet-switched

telecommunication networks, in order to reduce delay in real-

time video traffic.

❖ In insurance settings, the overall wealth of the insurance

companies is modelled as a rare event process.

17

 CHAPTER 3

 CONCLUSION

On the whole, this internship was a useful experience. I have

gained new knowledge and skills. I achieved several learning

goals, and have moved a step further in achieving other.

Fellowship has proved to be satisfactory and it has allowed as an

opportunity to get an exposure of the practical implementation of

theoretical fundamentals.

Here during the fellowship period I developed my new skills in

following software/tools:

1. Python (how different packages and libraries works and their

uses)

2. NumPy

3. SciPy

4. Random walk trajectories

I would like to once again appreciate everyone who has made my

fellowship training a superb experience.

REFERENCES:

1. Jesse M. Kinder, Philip M. Nelson, “A Student’s Guide to

Python for Physical Modelling”.

2. Eli bressert, “SciPy and NumPy”.

18

3. GeeksforGeeks

4. Github

5. NumPy tutorials

