

Summer Fellowship Report

On

 CONJUGATE HEAT TRANSFER STUDIES ON BLUFF

BODIES USING OPENFOAM

Submitted by

VIPINKUMAR C P

Under the guidance of

Dr. Samarjeet Chanda

Discipline of Mechanical Engineering

INDIAN INSTITUTE OF TECHNOLOGY PALAKKAD

July 2020

Acknowledgment

I would like to express my sincere gratitude to Dr. Samarjeet Chanda, Assistant Professor,

Discipline of Mechanical Engineering, Indian Institute of Technology Palakkad for his guidance.

I deeply thank FOSSEE, IIT Bombay for starting the fellowship program and providing me a

work opportunity at Indian Institute of Technology Palakkad. In addition, I am thankful to all the

FOSSEE members for their mentorship and help during my fellowship.

CONTENTS

 Contents Page No.

Abstract

1. Modifying existing icoFoam solver to solve thermal transport 1

1.1 Introduction and problem description 1

1.2. Elbow case study using modified solver 1

 1.2.1 Background 1

1.2.2 Problem statement 2

1.2.3 Meshing 3

1.2.4 Simulation details (Initial and boundary conditions) 3

 1.2.5 Results and discussion 4

 1.3 Closure 6

2. Simulation of steady natural convection around a hot sphere in air 7

 2.1 Introduction 7

 2.2 Meshing 8

 2.3 Initial and boundary conditions 10

 2.4 Thermo-physical properties 10

 2.5 Results and discussion 11

 2.5.1 Solution convergence 11

 2.5.2 Temperature and velocity profiles 12

 2.6 Validation 14

 2.6.1 Nusselt number calculation from numerical simulation 14

 2.6.2 Nusselt number calculation from correlation 15

 2.6.3 Error estimation 17

2.7 Closure 17

References

Appendix

Abstract

This study aims to modify existing OpenFOAM solvers in order to perform conjugate heat

transfer studies on bluff bodies. In order to get introduced to the problem and obtain familiarity

with the solver codes in OpenFOAM, the task of modifying an existing incompressible flow

solver viz. icoFoam to solve thermal transport is carried out first. Following this, the conjugate

heat transfer problem involving natural convection over a heated sphere is solved using

chtMultiregionSimpleFoam. Finally the effects of temperature dependent thermo-physical

properties are brought in and the results are validated with predictions obtained using existing

correlations.

1

CHAPTER 1

MODIFYING EXISTING ICOFOAM SOLVER TO SOLVE

THERMAL TRANSPORT

1.1 Introduction and problem description

Each solver included in OpenFOAM is a stand-alone application that solves a set of equations

on a specified grid. Different solvers may share existing code but they can vary significantly

among one another. In this work the existing solver icoFoam[1] solves for the pressure and

velocity field in laminar incompressible flows is modified by adding a scalar equation for solving

transient heat transfer.

The icoFoam solver solves the incompressible laminar Navier-Stokes equations using the PISO

algorithm. The solver is inherently transient and uses the PISO algorithm to solve the continuity

and momentum equations. The modification in the icoFoam solver is done by adding the scalar

energy transport equation to calculate the temperature [2,3]. The transport equation for

calculating temperature as follows.

∇. (�⃗� 𝑇) − 𝛼∇2𝑇 = −
𝜕𝑇

𝜕𝑡

(1.1)

The modified solver is then tested with a two inlet elbow, in which air enters at two different

velocities and temperature. The code for modified icoFoam solver is provided in the appendix

of this report.

1.2 Elbow case study using modified solver

1.2.1 Background

This case study demonstrates the simulation of incompressible air flow through an elbow with

two different inlets in which air enters at different temperatures, using modified icoFoam solver

by adding the energy transport equation. The geometric model is created using Ansys Design

Modeler and the meshing is done using Ansys meshing Academic R3. The simulations are

performed using OpenFOAMv7. The velocity profiles, pressure and temperature distributions

are obtained from the performed simulations.

2

1.2.2 Problem statement

Incompressible, flow of air entering at two different temperatures and mixing in an elbow as

shown in Fig.1 is analysed. Air at a temperature 303 K enters into elbow through “inlet 1”with a

velocity of 0.01 m/s, simultaneously air at temperature of 373 K enters into the elbow through

“inlet 2” with a velocity of 0.04 m/s and the air mixture flows out through the “outlet”. The

temperature and velocity distributions are calculated for this case. The steps followed for the

analysis are:

1. Creating 2D Geometry by using Ansys Design Modeler utility [4].

2. Creating 2D mesh by using Ansys Fluent meshing utility [4].

3. Converting mesh to OpenFOAM compatible format using the utility

fluentMeshToFoam[1].

4. Setting boundary/initial conditions (BC/IC).

5. Solving using newly modified solver.

The dimensions and problem description for the scenario mentioned above is depicted in Fig.1.

Fig. 1: Problem description

Inlet 1

Inlet 2

Outlet

3

1.2.3 Meshing

The 2D meshing of the geometry (elbow) is generated using Ansys meshing utility [4]. Then the

conversion of Ansys Fluent mesh to OpenFOAM compatible format is done by using the utility

fluentMeshToFoam in the OpenFOAM. Fig. 2 shows the refined 2 D mesh used for the

simulation generated using Ansys Fluent meshing utility.

Fig. 2: Mesh for elbow generated using Ansys meshing

1.2.4 Simulation details (Initial and boundary conditions)

 Air is taken as the fluid that flows through the elbow. Kinematic viscosity of air [4] at

30℃ is 16× 10−6
𝑚2

𝑠
 and the thermal diffusivity [4] is 22.561× 10−6

𝑚2

𝑠
 .

 At “inlet 1” air at a temperature 303 K enters into the elbow with a velocity of 0.01 m/s.

 At “inlet 2” air at a temperature 373 K enters into the elbow with a velocity of 0.04 m/s.

 The “outlet” is set as pressure outlet boundary condition with the gauge kinematic

pressure prescribed as zero.

 The temperature of all the walls are prescribed as 303 K along with non-slip at the surface.

 The simulation is run for a total flow time of 125 s.

4

1.2.5 Results and discussion

Distributions of temperature, kinematic pressure and velocity in the elbow as obtained from the

simulations is depicted in Figures 3, 4 and 5 respectively. Fig. 3 shows the distribution of

temperature inside the elbow. The cold air from “inlet 1” (303K) and the hot air from “inlet 2”

(373 K) combines and flows through the “outlet”.

Fig. 3: Temperature distributions in the elbow obtained using modified solver in OpenFOAM

at time (t) = 125s

Fig. 4: Kinematic pressure distributions in the elbow obtained using modified solver in

OpenFOAM at time (t) = 125 s

(𝐾)

(𝑚2/𝑠2)

5

Figure 4 shows the distribution of kinematic pressure inside the elbow. The hot air is initially at

atmospheric pressure which flows through the “inlet 2” , while reaching the bend of the elbow,

kinematic pressure decreases at the point where the two streams intersect that is because of the

increased velocity at that region caused due to temperature effects.

Fig. 5: Velocity distribution in the elbow obtained using modified solver in OpenFOAM at

time (t) = 125 s.

By referring to the above Fig. 5 it is observed that the velocity is maximum at “ inlet 2 ” and as

the flow progress through the elbow the velocity starts decreasing because of the mixing of the

two streams as a consequence of momentum exchange between them.

The contour plots show how the kinematic pressure gets decreased at the connecting “inlet 2”

due to which kinematic pressure loss occur in the pipe and the velocity and temperature of the

flow gets increased due to mixing. The flow velocity near the wall approaches zero because of

the no-slip condition imposed at the walls. The inertia at the curve causes bend in the flow and

at the entry of the “inlet 2” where the maximum mixing occurs and the temperature gradually

decreases towards “outlet”. The results obtained were also compared with Ansys 19 Academic

version and were found to be in good agreement.

(𝑚/𝑠)

6

1.3 Closure

Based on the simulation of incompressible air flow through an elbow with two different inlets in

which air enters at different temperatures using modified icoFoam solver, the velocity profiles,

kinematic pressure and temperature distributions were obtained. The results were also compared

with the commercial software package and were found to be in good agreement.

7

CHAPTER 2

SIMULATION OF STEADY NATURAL CONVECTION

AROUND A HOT SPHERE IN AIR

2.1 Introduction

Natural convection over a heated sphere is numerically solved as a conjugate heat transfer

problem and the same is described in this chapter. The term conjugate heat transfer (CHT) is

used to describe processes which involve variations of temperature within solids and fluids, due

to the thermal interaction between them.

In OpenFOAM v1912 the steady Conjugate heat transfer problem involving solid and fluid

regions are solved using the solver chtMultiRegionSimpleFoam [6] and it also facilitates a way

to model variable thermo-physical properties to take into account the effect of temperature

variation in the flow.

A steady case of natural convection in air surrounding a hot sphere is simulated using the solver

chtMultiRegionSimpleFoam (OpenFOAMv1912). A sphere of 30 mm diameter with a wall

temperature of 500 K is surrounded by an open volume of dry air at 1atm, initially quiescent and

maintained at a uniform temperature of 300 K. The schematic below (Fig. 6) depicts the case

being studied. The thermo-physical properties are evaluated at the mean film temperature.

Assumptions made for this simulation are:

 Steady state

 Laminar flow (Turbulent effects are not considered)

 Newtonian fluid

 Perfect gas

 Negligible radiation effect

 The thermo-physical properties of the fluids are functions of the temperature

8

Fig. 6: Description of the problem

2.2 Meshing

SnappyHexMesh, a powerful 3D meshing tool which can generate meshes based on STL or OBJ

geometry files is used [6,7]. The sphere of 30 mm diameter is created using a 3D modelling

software and meshed using snappyHexMesh. Before using snappyHexMesh it is first necessary

to generate a background mesh covering all the domain inside the air volume. This is usually

done with blockMesh. The mesh is generated with blockMesh using the blockMeshDict, The

surfaceFeatures for snappyHexMesh is generated using surfaceFeatureExtractDict and mesh

regions (soild,air) is defined using snappyHexMeshDict. The mesh used in the study is depicted

in Fig. 7.

9

Fig. 7: Mesh and zones generated using snappyHexMesh

Fig. 8: Layer of cells over sphere created using add layer function in snappyHexMesh

To capture the physics associated with the fluid near the boundaries, a high quality layered mesh

is used. The add layer function in snappyHexMesh defines parameters for adding a boundary

layer mesh. Fig. 8 shows the layer of cells over sphere created using add layer function in

snappyHexMesh.

10

2.3 Initial and boundary conditions

Setting the proper initial and boundary conditions for natural convection cases can be a delicate

matter. The boundary patches are placed far from the sphere in order to minimize their effect

around the sphere. The following conditions are set for the simulation

Air

 Velocity of air is set to 0 m/s in all direction.

 Pressure is assumed to be constant over the entire fluid domain and assigned a

value of 1 atm.

 The temperature of air is assigned a value of 300 K over the entire domain.

 The outer boundary of air domain is assigned adiabatic wall boundary condition.

 Air to sphere Temperature coupling between air and the sphere is assigned.

Sphere (copper)

 The wall temperature of copper sphere is as set 500 K.

 Sphere to air Temperature coupling assigned.

2.4 Thermo-physical properties

In order to model the temperature dependence of thermo-physical properties, the thermo-physical

properties dictionary is used for both air and the copper sphere regions. The properties of air and

the copper sphere are defined using polynomial functions for wide range of temperatures [8].The

solver solves each region separately according to the applicable equations and couples them with

the appropriate prescribed boundary conditions. As far as the dependence of thermo-physical

properties of air and copper sphere on temperature is concerned, it is modelled using the

following expressions [5,9]:

For air (valid from 300-500 K)

𝜌(𝑇) = 2.7558 − 6.974 × 10−3𝑇 + 5.84 × 10−6𝑇2

(2.1)

𝐶𝑝(𝑇) = 1.0406571429 × 103 − 2.4971428571 × 10−1𝑇

+4.5714285714 × 10−4𝑇2

(2.2)

11

𝜇(𝑇) = 1.4982857143 × 10−6 + 6.4871428571 × 10−8𝑇

−2.7714285714 × 10−11𝑇2

(2.3)

𝑘(𝑇) = 7.5428571429 × 10−4 × 9.2771428571 × 10−5𝑇

−2.5714285714 × 10−8𝑇2

(2.4)

For copper sphere (valid from 300-600 K)

𝑘(𝑇) = 4.5555533587 × 102 − 3.0223468118 × 10−1𝑇 + 5.0530909016

× 10−4𝑇2 − 3.5717443591 × 10−7𝑇3

(2.5)

 𝐶𝑝(𝑇) = 1.8658483803 × 102 + 1.4920474673T − 4.1752372544 × 10−3T2

+ 5.5111636355 × 10−6T3 − 2.7194694879 × 10−9T4

(2.6)

2.5 Results and discussion

2.5.1 Solution convergence

Residuals are the most fundamental measures of an iterative solution’s convergence, as they

directly quantify the error in the solution of the system of equations. In a CFD analysis, the

residual measures the local imbalance of a conserved variable in each control volume. In an

iterative numerical solution, the residual will never be exactly zero. However, the lower the

residual value is, the more numerically accurate the solution. Here from Fig. 9 it shows that the

residuals of the simulation carried out for around the 2600 iterations.

12

Fig. 9: Residual plot

2.5.2 Temperature and velocity profiles

Free convection fluid motion is due to buoyancy forces with in the fluid, while in forced

convection it is externally imposed. Here we consider the situation for which there is no forced

velocity, yet convection currents exists within the fluid. Such situations are referred to as free or

natural convection and they originate due to the presence of density gradients in the medium.

Here density gradient is due to a temperature gradient and the body force is due to the

gravitational field. In absence of adjoining surface, free boundary flows may occur in the form

of a plume or a buoyant jet. A plume is associated with the fluid rising from the submerged

heated object [10].

Fig. 10 shows the heated plume discharged vertically quiescent medium that has air at a

temperature.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500
No. of iterations

Residuals

h_0 - Enthalpy of air region

h_1- Enthalpy of sphere region

p_rgh - Pressure-density

U_x - Velocity in x direction

U_y- Velocity in Y direction

U_z - Velocity in Z direction

13

Fig. 10: Temperature profile around the hot sphere

Fig.11 depicts the velocity profile around the hot sphere formed as a consequence of natural

convection over it.

Fig. 11: Velocity profile around the hot sphere

(𝐾)

(𝑚/𝑠)

14

In the case of sphere the width of the plume increases along the diameter of the sphere. From the

Fig. 10 it is observed that the plume itself will eventually dissipate as a result of viscous effects

and a reduction in the buoyancy force caused by cooling the fluid in the plume.

2.6 Validation

A validation exercise is carried out to demonstrate the accuracy of the CFD codes used for this

simulation. Validation exercise determines if the computational simulation agrees with other

established solution or measurements. For the simulation of conjugate heat transfer problem on

bluff bodies the Nusselt number is calculated from a well-established correlation and is compared

with that obtained from the CFD simulation.

2.6.1 Nusselt number calculation from numerical simulation

The Nusselt number is defined as the dimensionless temperature gradient at surface and is given

as 𝑁𝑢 =
ℎ𝐷

𝐾
 , here ℎ is the heat transfer co-efficient or convection co-efficient, 𝑘 is the thermal

conductivity of the fluid (air) and D is the characteristic length (here the diameter of the

sphere)[10]. In the OpenFOAM v1912 there is a special function called

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐹𝑖𝑒𝑙𝑑𝑉𝑎𝑙𝑢𝑒 which calculates the average surface heat transfer coefficient in each

iteration [5,11].

Heat transfer co-efficient obtained from CFD simulation using special function

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐹𝑖𝑒𝑙𝑑𝑉𝑎𝑙𝑢𝑒 is ℎ𝐶𝐹𝐷 =12.32 𝑊/𝑚2𝐾

 Surface temperature of sphere at last iteration 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒= 499.23 K

 The bulk temperature of air 𝑇𝑏𝑢𝑙𝑘= 300 K

 The thermo-physical properties are evaluated at the film temperature 𝑇𝑓𝑖𝑙𝑚

𝑇𝑓𝑖𝑙𝑚=
𝑇𝑏𝑢𝑙𝑘+𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

2
 = 399.61 K

 For the given film temperature the thermal conductivity k = 0.0337 W/m-k

 From the above relation for Nusselt number 𝑁𝑢𝐶𝐹𝐷= 10.97

15

2.6.2 Nusselt number calculation from correlation

For natural convection over a sphere, Churchill (1983) suggested the following correlation which

gave the best fit with the available experimental data [10,12].

 𝑁𝑢̅̅ ̅̅ = 2 +
0.589 𝑅𝑎𝐷

1
4

[1 + (
0.469
𝑝𝑟)

9
16

]

4
9

The correlation is valid for the Pr≥ 0.7 and the Ra < 1011

(2.7)

Rayleigh number Ra, is a dimensionless number as defined [10,13].

Rayleigh number 𝑅𝑎 = 𝐺𝑟 × 𝑃𝑟

where Gr is the Grashof number and Pr is the Prandtl number.

(2.8)

Prandtl number is defined as the ratio of momentum to thermal diffusivities [10].

Prandtl number is given as

Pr =
𝜇𝐶𝑝

𝐾

(2.9)

The Grashof number indicates the ratio of the buoyancy force to the viscous force

acting on the fluid [10]. The Grashof number for bluff bodies calculated as

𝐺𝑟 = 𝑔
𝛽(𝑇𝑠−𝑇𝑓)𝐷3

𝜈2 = 𝑔
𝛽(𝑇𝑠−𝑇𝑓)𝐷3

𝜇2 𝜌2

(2.10)

If density variations are due to only temperature variations, volumetric thermal

expansion coefficient 𝛽 can be calculated as[10]

𝛽 = −
1

𝜌
(
𝜕𝑝

𝜕𝑇
)
𝑝

(2.11)

16

Where all the thermos-physical properties are calculated at the film temperature (399.61 K) using

the polynomial functions of respective property and are mentioned below.

𝜌(𝑇𝑓𝑖𝑙𝑚) = 0.8712665590 𝑘𝑔/𝑚3

𝐶𝑃(𝑇𝑓𝑖𝑙𝑚) =1013.8697224304 j/kg-k

𝜇(𝑇𝑓𝑖𝑙𝑚) = 0.0000274108228093 kg/m3

𝑘(Tfilm) =0.033721 W/m-K

From the polynomial function for density

(
𝜕𝜌

𝜕𝑇
)
𝑝
= - 6.974× 10−3 + 11.68× 10−6T

Then (
𝜕𝜌

𝜕𝑇
)
𝑝
= - 0.00464 𝑘𝑔/𝑚3

The Prandtl number(Pr) , Volumetric thermal expansion coefficient 𝛽, Grashof Number Gr,

Rayleigh number Ra are calculated using respective equations stated above. The calculated

values are given below.

Prandtl number Pr = 0.824 m2 s− 1

𝛽 = 0.005326

Grashof Number Gr =141973.3

Rayleigh number Ra =117007.3

Nusselt number thus obtained from the correlation is

 𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 2 +
0.589 𝑅𝑎𝐷

1
4

[1+(
0.469

𝑝𝑟
)

9
16]

4
9

 = 10.54

17

2.6.3 Error estimation

Percentage error between Nusselt number 𝑁𝑢𝐶𝐹𝐷 and 𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is calculated as follows

Percentage error =
 𝑁𝑢𝐶𝐹𝐷−𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝐶𝐹𝐷
 × 100 = 3.91 % error

2.7 Closure

Natural convection over a heated sphere was solved as a conjugate heat transfer problem using

chtMultiRegionSimpleFoam (OpenFOAMv1912) and the results were presented in this chapter.

The percentage error in the Nusselt number calculated from the correlation and the Nusselt

number obtained from the CFD simulation is about 3.91 % which is acceptable since the

turbulent and the radiations effects are not considered. Results obtained from the computational

simulation and correlations give a good match which shows that the physics of the problem under

consideration were captured well by numerical simulations.

References

[1] Greenshields, C. J. "The OpenFOAM Foundation User Guide 7.0." The OpenFOAM

Foundation Ltd: London, United Kingdom, 10th July (2019).

[2] https://openfoamwiki.net/index.php/How_to_add_temperature_to_icoFoam

[3] https://openfoamwiki.net/index.php/ScalarTransportFoam

[4] ANSYS Fluent User's Guide, 2019R1

[5] https://www.openfoam.com/documentation/user-guide/

[6] https://www.engineeringtoolbox.com/material-properties-t_24.html

[7] https://sites.google.com/site/snappywiki/snappyhexmesh

[8] https://cfd.direct/openfoam/user-guide/v6-thermophysical/

[9] https://www.thermalfluidscentral.org/

[10] Incropera, Frank P. "David P De witt, “." Fundamentals of Heat & Mass Transfer”, 5th

Edition, John Wiley& Sons (2007).

[11] https://cpp.openfoam.org/v6/classFoam_1_1functionObjects_1_1fieldValues_1_1surface

FieldValue.html

[12] Churchill SW. Free convection around immersed bodies. Section 2.5.7, New York:

Hemisphere, 1983. In: Schlender EU, editor. Chief Heat Exchanger Design Handbook.

[13] Kitamura, K., Mitsuishi, A., Suzuki, T., & Misumi, T. (2015). Fluid flow and heat transfer

of high-Rayleigh-number natural convection around heated spheres. International

Journal of Heat and Mass Transfer, 86, 149-157.

https://www.thermalfluidscentral.org/

Appendix

OpenFOAM Code for modified icoFoam solver to solve thermal transport

 Make/files

 Make/Options

 icoFoamT.C

 EXE = $(FOAM_APPBIN)/icoFoamT

EXE_INC = \

 -I$(LIB_SRC)/finiteVolume/lnInclude \

 -I$(LIB_SRC)/meshTools/lnInclude

EXE_LIBS = \

 -lfiniteVolume \

 -lmeshTools

 createfiled.H

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties

(

 IOobject

 (

 "transportProperties",

 runTime.constant(),

 mesh,

 IOobject::MUST_READ_IF_MODIFIED,

 IOobject::NO_WRITE

)

);

dimensionedScalar nu

(

 "nu",

 dimViscosity,

 transportProperties.lookup("nu")

);

//Thermal diffusivity 𝐴𝑙𝑝ℎ𝑎(𝛼)

//***

 dimensionedScalar alpha

(

 "alpha",

 dimensionSet(0,2,-1,0,0,0,0),

 transportProperties.lookup("alpha")

);

//***

Info<< "Reading field p\n" << endl;

volScalarField p

(

 IOobject

 (

 "p",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

//Temperature scalar

//********************************

volScalarField T

(

 IOobject

 (

 "T",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

//**********************************

Info<< "Reading field U\n" << endl;

volVectorField U

(

 IOobject

 (

 "U",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

#include "createPhi.H"

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

mesh.setFluxRequired(p.name());

 Application

#include "fvCFD.H"

#include "pisoControl.H"

// *

//

int main(int argc, char *argv[])

{

 #include "setRootCaseLists.H"

 #include "createTime.H"

 #include "createMesh.H"

 pisoControl piso(mesh);

 #include "createFields.H"

 #include "initContinuityErrs.H"

 // *

//

 Info<< "\nStarting time loop\n" << endl;

 while (runTime.loop())

 {

 Info<< "Time = " << runTime.timeName() << nl << endl;

 #include "CourantNo.H"

 // Momentum predictor

 fvVectorMatrix UEqn

 (

 fvm::ddt(U)

 + fvm::div(phi, U)

 - fvm::laplacian(nu, U)

);

 if (piso.momentumPredictor())

 {

 solve(UEqn == -fvc::grad(p));

 }

 // --- PISO loop
 while (piso.correct())

 {

 volScalarField rAU(1.0/UEqn.A());

 volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

 surfaceScalarField phiHbyA

 (

 "phiHbyA",

 fvc::flux(HbyA)

 + fvc::interpolate(rAU)*fvc::ddtCorr(U, phi)

);

 adjustPhi(phiHbyA, U, p);

 // Update the pressure BCs to ensure flux consistency

 constrainPressure(p, U, phiHbyA, rAU);

 // Non-orthogonal pressure corrector loop

 while (piso.correctNonOrthogonal())

 {

 // Pressure corrector

 fvScalarMatrix pEqn

 (

 fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

 pEqn.setReference(pRefCell, pRefValue);

 pEqn.solve();

 if (piso.finalNonOrthogonalIter())

 {

 phi = phiHbyA - pEqn.flux();

 }

 }

#include "continuityErrs.H"

 U = HbyA - rAU*fvc::grad(p);

 U.correctBoundaryConditions();

 }

//Transport equation

//******************************

 fvScalarMatrix TEqn

 (

 fvm::ddt(T)

 +fvm::div(phi,T)

 -fvm::laplacian(alpha,T)

);

 TEqn.solve();

 runTime.write();

//*******************************

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

 << " ClockTime = " << runTime.elapsedClockTime() << " s"

 << nl << endl;

 }

 Info<< "End\n" << endl;

 return 0;

}

 fvSchemes

ddtSchemes

{

 default Euler;

 ddt(T) Euler;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(phi,U) Gauss limitedLinearV 1;

 div(phi,T) Gauss linear;

}

laplacianSchemes

{

 default Gauss linear corrected;

 laplacian(alpha,T) Gauss linear corrected;//Laplacian term for 𝛼, 𝑇

}

 interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

 fvSolution

solvers

{

 p

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-06;

 relTol 0.05;

 }

 pFinal

 {

 $p;

 relTol 0;

 }

 U

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-05;

 relTol 0;

 }

 T

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-05;

 relTol 0;

 }

}

PISO

{

 nCorrectors 2;

 nNonOrthogonalCorrectors 2;

}

