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Abstract 

This study aims to modify existing OpenFOAM solvers in order to perform conjugate heat 

transfer studies on bluff bodies. In order to get introduced to the problem and obtain familiarity 

with the solver codes in OpenFOAM, the task of modifying an existing incompressible flow 

solver viz. icoFoam to solve thermal transport is carried out first. Following this, the conjugate 

heat transfer problem involving natural convection over a heated sphere is solved using 

chtMultiregionSimpleFoam. Finally the effects of temperature dependent thermo-physical 

properties are brought in and the results are validated with predictions obtained using existing 

correlations. 
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CHAPTER 1 

MODIFYING EXISTING ICOFOAM SOLVER TO SOLVE 

THERMAL TRANSPORT 

1.1 Introduction and problem description 

Each solver included in OpenFOAM is a stand-alone application that solves a set of equations 

on a specified grid. Different solvers may share existing code but they can vary significantly 

among one another. In this work the existing solver icoFoam[1] solves for the pressure and 

velocity field in laminar incompressible flows is modified by adding a scalar equation for solving 

transient heat transfer. 

The icoFoam solver solves the incompressible laminar Navier-Stokes equations using the PISO 

algorithm. The solver is inherently transient and uses the PISO algorithm to solve the continuity 

and momentum equations. The modification in the icoFoam solver is done by adding the scalar 

energy transport equation to calculate the temperature [2,3]. The transport equation for 

calculating temperature as follows. 

 

∇. (�⃗� 𝑇) −  𝛼∇2𝑇 = −
𝜕𝑇

𝜕𝑡
 

 

 

(1.1) 

 

The modified solver is then tested with a two inlet elbow, in which air enters at two different 

velocities and temperature. The code for modified icoFoam solver is provided in the appendix 

of this report. 

1.2 Elbow case study using modified solver 

1.2.1 Background 

This case study demonstrates the simulation of incompressible air flow through an elbow with 

two different inlets in which air enters at different temperatures, using modified icoFoam solver 

by adding the energy transport equation. The geometric model is created using Ansys Design 

Modeler and the meshing is done using Ansys meshing Academic R3. The simulations are 

performed using OpenFOAMv7. The velocity profiles, pressure and temperature distributions 

are obtained from the performed simulations. 
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1.2.2 Problem statement 

Incompressible, flow of air entering at two different temperatures and mixing in an elbow as 

shown in Fig.1 is analysed. Air at a temperature 303 K enters into elbow through “inlet 1”with a 

velocity of 0.01 m/s, simultaneously air at temperature of 373 K enters into the elbow through 

“inlet 2” with a velocity of 0.04 m/s and the air mixture flows out through the “outlet”. The 

temperature and velocity distributions are calculated for this case. The steps followed for the 

analysis are: 

1. Creating 2D Geometry by using Ansys Design Modeler utility [4]. 

2. Creating 2D mesh by using Ansys Fluent meshing utility [4]. 

3. Converting mesh to OpenFOAM compatible format using the utility 

fluentMeshToFoam[1]. 

4. Setting boundary/initial conditions (BC/IC). 

5. Solving using newly modified solver. 

The dimensions and problem description for the scenario mentioned above is depicted in Fig.1. 

 

 

 

Fig. 1: Problem description 

 

 

 

 

Inlet 1 

 

 

 

Inlet 2 

 

Outlet 
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1.2.3 Meshing  

The 2D meshing of the geometry (elbow) is generated using Ansys meshing utility [4]. Then the 

conversion of Ansys Fluent mesh to OpenFOAM compatible format is done by using the utility 

fluentMeshToFoam in the OpenFOAM. Fig. 2 shows the refined 2 D mesh used for the 

simulation generated using Ansys Fluent meshing utility. 

 

 

 

Fig. 2: Mesh for elbow generated using Ansys meshing 

 

1.2.4 Simulation details (Initial and boundary conditions) 

 

 Air is taken as the fluid that flows through the elbow. Kinematic viscosity of air [4] at 

30℃ is 16× 10−6 
𝑚2

𝑠
  and the thermal diffusivity [4] is 22.561× 10−6 

𝑚2

𝑠
 .  

 At “inlet 1” air at a temperature 303 K enters into the elbow with a velocity of 0.01 m/s.  

 At “inlet 2” air at a temperature 373 K enters into the elbow with a velocity of 0.04 m/s. 

 The “outlet” is set as pressure outlet boundary condition with the gauge kinematic 

pressure prescribed as zero. 

 The temperature of all the walls are prescribed as 303 K along with non-slip at the surface. 

 The simulation is run for a total flow time of 125 s. 
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1.2.5 Results and discussion 

Distributions of temperature, kinematic pressure and velocity in the elbow as obtained from the 

simulations is depicted in Figures 3, 4 and 5 respectively. Fig. 3 shows the distribution of 

temperature inside the elbow. The cold air from “inlet 1” (303K) and the hot air from “inlet 2” 

(373 K) combines and flows through the “outlet”. 

 

 

Fig. 3: Temperature distributions in the elbow obtained using modified solver in OpenFOAM 

at time (t) = 125s 

 

Fig. 4: Kinematic pressure distributions in the elbow obtained using modified solver in 

OpenFOAM at time (t) = 125 s 

(𝐾) 

(𝑚2/𝑠2) 
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Figure 4 shows the distribution of kinematic pressure inside the elbow. The hot air is initially at 

atmospheric pressure which flows through the “inlet 2” , while reaching the bend of the elbow, 

kinematic pressure decreases at the point where the two streams intersect that is because of the 

increased velocity at that region caused due to temperature effects. 

 

 

Fig. 5: Velocity distribution in the elbow obtained using modified solver in OpenFOAM at 

time (t) = 125 s. 

 

By referring to the above Fig. 5 it is observed that the velocity is maximum at “ inlet 2 ”  and as 

the flow progress through the elbow the velocity starts decreasing because of the mixing of the 

two streams as a consequence of momentum exchange between them. 

The contour plots show how the kinematic pressure gets decreased at the connecting “inlet 2” 

due to which kinematic pressure loss occur in the pipe and the velocity and temperature of the 

flow gets increased due to mixing. The flow velocity near the wall approaches zero because of 

the no-slip condition imposed at the walls. The inertia at the curve causes bend in the flow and 

at the entry of the “inlet 2” where the maximum mixing occurs and the temperature gradually 

decreases towards “outlet”.  The results obtained were also compared with Ansys 19 Academic 

version and were found to be in good agreement. 

 

 

(𝑚/𝑠) 
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1.3 Closure 

Based on the simulation of incompressible air flow through an elbow with two different inlets in 

which air enters at different temperatures using modified icoFoam solver, the velocity profiles, 

kinematic pressure and temperature distributions were obtained. The results were also compared 

with the commercial software package and were found to be in good agreement. 
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CHAPTER 2 

SIMULATION OF STEADY NATURAL CONVECTION 

AROUND A HOT SPHERE IN AIR 

2.1 Introduction  

Natural convection over a heated sphere is numerically solved as a conjugate heat transfer 

problem and the same is described in this chapter. The term conjugate heat transfer (CHT) is 

used to describe processes which involve variations of temperature within solids and fluids, due 

to the thermal interaction between them. 

In OpenFOAM v1912 the steady Conjugate heat transfer problem involving solid and fluid 

regions are solved using the solver chtMultiRegionSimpleFoam [6] and it also facilitates a way 

to model variable thermo-physical properties to take into account the effect of temperature 

variation in the flow. 

A steady case of natural convection in air surrounding a hot sphere is simulated using the solver 

chtMultiRegionSimpleFoam (OpenFOAMv1912). A sphere of 30 mm diameter with a wall 

temperature of 500 K is surrounded by an open volume of dry air at 1atm, initially quiescent and 

maintained at a uniform temperature of 300 K. The schematic below (Fig. 6) depicts the case 

being studied. The thermo-physical properties are evaluated at the mean film temperature. 

Assumptions made for this simulation are: 

 Steady state 

 Laminar flow (Turbulent effects are not considered ) 

 Newtonian fluid 

 Perfect gas 

 Negligible radiation effect 

 The thermo-physical properties of the fluids are functions of the temperature 
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Fig. 6: Description of the problem 

 

2.2 Meshing  

SnappyHexMesh, a powerful 3D meshing tool which can generate meshes based on STL or OBJ 

geometry files is used [6,7]. The sphere of 30 mm diameter is created using a 3D modelling 

software and meshed using snappyHexMesh. Before using snappyHexMesh it is first necessary 

to generate a background mesh covering all the domain inside the air volume. This is usually 

done with blockMesh. The mesh is generated with blockMesh using the blockMeshDict, The 

surfaceFeatures for snappyHexMesh is generated using surfaceFeatureExtractDict and mesh 

regions (soild,air) is  defined using snappyHexMeshDict. The mesh used in the study is depicted 

in Fig. 7. 
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Fig. 7: Mesh and zones generated using snappyHexMesh 

 

 

Fig. 8: Layer of cells over sphere created using add layer function in snappyHexMesh 

 

To capture the physics associated with the fluid near the boundaries, a high quality layered mesh 

is used. The add layer function in snappyHexMesh defines parameters for adding a boundary 

layer mesh. Fig. 8 shows the layer of cells over sphere created using add layer function in 

snappyHexMesh. 
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2.3 Initial and boundary conditions 

Setting the proper initial and boundary conditions for natural convection cases can be a delicate 

matter. The boundary patches are placed far from the sphere in order to minimize their effect 

around the sphere. The following conditions are set for the simulation 

Air 

 Velocity of air is set to 0 m/s in all direction. 

 Pressure is assumed to be constant over the entire fluid domain and assigned a 

value of 1 atm. 

 The temperature of air is assigned a value of 300 K over the entire domain.  

 The outer boundary of air domain is assigned adiabatic wall boundary condition. 

 Air to sphere Temperature coupling between air and the sphere is assigned.      

Sphere (copper) 

 The wall temperature of copper sphere is as set 500 K. 

 Sphere to air Temperature coupling assigned.  

 

2.4 Thermo-physical properties 

In order to model the temperature dependence of thermo-physical properties, the thermo-physical 

properties dictionary is used for both air and the copper sphere regions. The properties of air and 

the copper sphere are defined using polynomial functions for wide range of temperatures [8].The 

solver solves each region separately according to the applicable equations and couples them with 

the appropriate prescribed boundary conditions. As far as the dependence of thermo-physical 

properties of air and copper sphere on temperature is concerned, it is modelled using the 

following expressions [5,9]:  

For air (valid from 300-500 K)  

𝜌(𝑇) = 2.7558 − 6.974 × 10−3𝑇 + 5.84 × 10−6𝑇2 

 

(2.1) 

𝐶𝑝(𝑇) = 1.0406571429 × 103 − 2.4971428571 × 10−1𝑇 

+4.5714285714 × 10−4𝑇2 

 

 

(2.2) 
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𝜇(𝑇) = 1.4982857143 × 10−6 + 6.4871428571 × 10−8𝑇 

−2.7714285714 × 10−11𝑇2 

 

 

(2.3) 

𝑘(𝑇) = 7.5428571429 × 10−4 × 9.2771428571 × 10−5𝑇 

−2.5714285714 × 10−8𝑇2 

 

(2.4) 

 

For copper sphere (valid from 300-600 K)  

𝑘(𝑇) =  4.5555533587 × 102 − 3.0223468118 × 10−1𝑇 +  5.0530909016

× 10−4𝑇2 − 3.5717443591 × 10−7𝑇3 

 

 

(2.5) 

 𝐶𝑝(𝑇) =  1.8658483803 × 102 +  1.4920474673T −  4.1752372544 × 10−3T2

+ 5.5111636355 × 10−6T3  − 2.7194694879 × 10−9T4  

 

 

(2.6) 

 

2.5 Results and discussion 

2.5.1 Solution convergence 

Residuals are the most fundamental measures of an iterative solution’s convergence, as they 

directly quantify the error in the solution of the system of equations. In a CFD analysis, the 

residual measures the local imbalance of a conserved variable in each control volume. In an 

iterative numerical solution, the residual will never be exactly zero. However, the lower the 

residual value is, the more numerically accurate the solution. Here from Fig. 9 it shows that the 

residuals of the simulation carried out for around the 2600 iterations. 
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Fig. 9: Residual plot 

 

2.5.2 Temperature and velocity profiles 

Free convection fluid motion is due to buoyancy forces with in the fluid, while in forced 

convection it is externally imposed. Here we consider the situation for which there is no forced 

velocity, yet convection currents exists within the fluid. Such situations are referred to as free or 

natural convection and they originate due to the presence of density gradients in the medium. 

Here density gradient is due to a temperature gradient and the body force is due to the 

gravitational field. In absence of adjoining surface, free boundary flows may occur in the form 

of a plume or a buoyant jet. A plume is associated with the fluid rising from the submerged 

heated object [10]. 

Fig. 10 shows the heated plume discharged vertically quiescent medium that has air at a 

temperature. 
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Fig. 10: Temperature profile around the hot sphere  

Fig.11 depicts the velocity profile around the hot sphere formed as a consequence of natural 

convection over it. 

 

Fig. 11: Velocity profile around the hot sphere  

(𝐾) 

(𝑚/𝑠) 
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In the case of sphere the width of the plume increases along the diameter of the sphere. From the 

Fig. 10 it is observed that the plume itself will eventually dissipate as a result of viscous effects 

and a reduction in the buoyancy force caused by cooling the fluid in the plume. 

 

2.6 Validation 

A validation exercise is carried out to demonstrate the accuracy of the CFD codes used for this 

simulation. Validation exercise determines if the computational simulation agrees with other 

established solution or measurements. For the simulation of conjugate heat transfer problem on 

bluff bodies the Nusselt number is calculated from a well-established correlation and is compared 

with that obtained from the CFD simulation. 

2.6.1 Nusselt number calculation from numerical simulation 

The Nusselt number is defined as the dimensionless temperature gradient at surface and is given 

as   𝑁𝑢 =
ℎ𝐷

𝐾
 , here  ℎ is the heat transfer co-efficient or convection co-efficient,  𝑘 is the thermal 

conductivity of the fluid (air) and D is the characteristic length (here the diameter of the 

sphere)[10]. In the OpenFOAM v1912 there is a special function called 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐹𝑖𝑒𝑙𝑑𝑉𝑎𝑙𝑢𝑒 which calculates the average surface heat transfer coefficient in each 

iteration [5,11].  

Heat transfer co-efficient obtained from CFD simulation using special function 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐹𝑖𝑒𝑙𝑑𝑉𝑎𝑙𝑢𝑒 is ℎ𝐶𝐹𝐷  =12.32 𝑊/𝑚2𝐾 

 Surface temperature of sphere at last iteration 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒= 499.23 K 

 The bulk temperature of air 𝑇𝑏𝑢𝑙𝑘= 300 K 

 The thermo-physical properties are evaluated at the film temperature 𝑇𝑓𝑖𝑙𝑚  

𝑇𝑓𝑖𝑙𝑚= 
𝑇𝑏𝑢𝑙𝑘+𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

2
 = 399.61 K 

 For the given film temperature the thermal conductivity k = 0.0337 W/m-k 

 From the above relation for Nusselt number 𝑁𝑢𝐶𝐹𝐷= 10.97 
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2.6.2 Nusselt number calculation from correlation 

For natural convection over a sphere, Churchill (1983) suggested the following correlation which 

gave the best fit with the available experimental data [10,12].  

 

 𝑁𝑢̅̅ ̅̅ = 2 +
0.589 𝑅𝑎𝐷

1
4

[1 + (
0.469
𝑝𝑟 )

9
16

]

4
9

 

The correlation is valid for the Pr≥ 0.7 and the Ra < 1011 

 

 

(2.7) 

Rayleigh number Ra, is a dimensionless number as defined [10,13]. 

Rayleigh number  𝑅𝑎 =  𝐺𝑟 × 𝑃𝑟 

where Gr is the Grashof number and Pr is the Prandtl number. 

 

 

(2.8) 

Prandtl number is defined as the ratio of momentum to thermal diffusivities [10]. 

Prandtl number is given as 

Pr =
𝜇𝐶𝑝

𝐾
 

 

 

(2.9) 

The Grashof number indicates the ratio of the buoyancy force to the viscous force 

acting on the fluid [10]. The Grashof number for bluff bodies calculated as  

 

𝐺𝑟 = 𝑔
𝛽(𝑇𝑠−𝑇𝑓)𝐷3

𝜈2  = 𝑔
𝛽(𝑇𝑠−𝑇𝑓)𝐷3

𝜇2 𝜌2                                             

 

 

(2.10) 

 

If density variations are due to only  temperature variations, volumetric thermal 

expansion coefficient 𝛽 can be calculated as[10]   

 

𝛽 = −
1

𝜌
(
𝜕𝑝

𝜕𝑇
)
𝑝
 

 

 

(2.11) 
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Where all the thermos-physical properties are calculated at the film temperature (399.61 K) using 

the polynomial functions of respective property and are mentioned below.  

𝜌(𝑇𝑓𝑖𝑙𝑚) = 0.8712665590 𝑘𝑔/𝑚3 

𝐶𝑃(𝑇𝑓𝑖𝑙𝑚) =1013.8697224304   j/kg-k 

𝜇(𝑇𝑓𝑖𝑙𝑚) = 0.0000274108228093  kg/m3 

𝑘(Tfilm) =0.033721 W/m-K 

From the polynomial function for density 

(
𝜕𝜌

𝜕𝑇
)
𝑝
= - 6.974× 10−3 + 11.68× 10−6T 

Then (
𝜕𝜌

𝜕𝑇
)
𝑝
= - 0.00464 𝑘𝑔/𝑚3 

The Prandtl number(Pr) , Volumetric thermal expansion coefficient 𝛽, Grashof  Number Gr, 

Rayleigh number Ra are calculated using respective equations stated above. The calculated 

values are given below. 

Prandtl number Pr = 0.824 m2 s− 1 

𝛽 = 0.005326 

Grashof Number Gr =141973.3 

Rayleigh number Ra =117007.3 

 

Nusselt number thus obtained from the correlation is  

  𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 2 +
0.589 𝑅𝑎𝐷

1
4

[1+(
0.469

𝑝𝑟
)

9
16]

4
9

  = 10.54 
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2.6.3 Error estimation 

Percentage error between Nusselt number 𝑁𝑢𝐶𝐹𝐷 and  𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is calculated as follows  

Percentage error =
  𝑁𝑢𝐶𝐹𝐷−𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝐶𝐹𝐷
  × 100 = 3.91 % error 

 

2.7 Closure 

Natural convection over a heated sphere was solved as a conjugate heat transfer problem using 

chtMultiRegionSimpleFoam (OpenFOAMv1912) and the results were presented in this chapter. 

The percentage error in the Nusselt number calculated from the correlation and the Nusselt 

number obtained from the CFD simulation is about 3.91 % which is acceptable since the 

turbulent and the radiations effects are not considered. Results obtained from the computational 

simulation and correlations give a good match which shows that the physics of the problem under 

consideration were captured well by numerical simulations. 
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Appendix  

 

OpenFOAM Code for modified icoFoam solver to solve thermal transport 

 

 Make/files 

 

 

 

 

 Make/Options 

 

 

 

 
 icoFoamT.C    

 

 EXE = $(FOAM_APPBIN)/icoFoamT 

 

 

EXE_INC = \ 

    -I$(LIB_SRC)/finiteVolume/lnInclude \ 

    -I$(LIB_SRC)/meshTools/lnInclude 

 

EXE_LIBS = \ 

    -lfiniteVolume \ 

    -lmeshTools 

 



 
 

 
 

 createfiled.H 

 

 

 

 
Info<< "Reading transportProperties\n" << endl; 

 

IOdictionary transportProperties 

( 

    IOobject 

    ( 

        "transportProperties", 

        runTime.constant(), 

        mesh, 

        IOobject::MUST_READ_IF_MODIFIED, 

        IOobject::NO_WRITE 

    ) 

); 

 

dimensionedScalar nu 

( 

    "nu", 

    dimViscosity, 

    transportProperties.lookup("nu") 

); 

//Thermal diffusivity 𝐴𝑙𝑝ℎ𝑎(𝛼)  

//***************************************** 

      dimensionedScalar alpha 

( 

    "alpha", 

    dimensionSet(0,2,-1,0,0,0,0), 

    transportProperties.lookup("alpha") 

); 

//***************************************** 

 



 
 

  
Info<< "Reading field p\n" << endl; 

volScalarField p 

( 

    IOobject 

    ( 

        "p", 

        runTime.timeName(), 

        mesh, 

        IOobject::MUST_READ, 

        IOobject::AUTO_WRITE 

    ), 

    mesh 

); 

//Temperature scalar  

//******************************** 

volScalarField T 

( 

    IOobject 

    ( 

        "T", 

        runTime.timeName(), 

        mesh, 

        IOobject::MUST_READ, 

        IOobject::AUTO_WRITE 

    ), 

    mesh 

); 

 

//********************************** 

Info<< "Reading field U\n" << endl; 

volVectorField U 

( 

    IOobject 

    ( 

        "U", 

        runTime.timeName(), 

        mesh, 

        IOobject::MUST_READ, 

        IOobject::AUTO_WRITE 

    ), 

    mesh 

); 

 

 
#include "createPhi.H" 

 

 

label pRefCell = 0; 

scalar pRefValue = 0.0; 

setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue); 

mesh.setFluxRequired(p.name()); 

 



 
 

 

 Application 

 

 

 

 

 

#include "fvCFD.H" 

#include "pisoControl.H" 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// 

 

int main(int argc, char *argv[]) 

{ 

    #include "setRootCaseLists.H" 

    #include "createTime.H" 

    #include "createMesh.H" 

 

    pisoControl piso(mesh); 

 

    #include "createFields.H" 

    #include "initContinuityErrs.H" 

 

    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// 

 

    Info<< "\nStarting time loop\n" << endl; 

 

    while (runTime.loop()) 

    { 

        Info<< "Time = " << runTime.timeName() << nl << endl; 

 

        #include "CourantNo.H" 

 

        // Momentum predictor 

 

        fvVectorMatrix UEqn 

        ( 

            fvm::ddt(U) 

          + fvm::div(phi, U) 

          - fvm::laplacian(nu, U) 

        ); 

 

        if (piso.momentumPredictor()) 

        { 

            solve(UEqn == -fvc::grad(p)); 

        } 

 



 
 

         // --- PISO loop 
        while (piso.correct()) 

        { 

            volScalarField rAU(1.0/UEqn.A()); 

            volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p)); 

            surfaceScalarField phiHbyA 

            ( 

                "phiHbyA", 

                fvc::flux(HbyA) 

              + fvc::interpolate(rAU)*fvc::ddtCorr(U, phi) 

            ); 

            adjustPhi(phiHbyA, U, p); 

 

            // Update the pressure BCs to ensure flux consistency 

            constrainPressure(p, U, phiHbyA, rAU); 

 

            // Non-orthogonal pressure corrector loop 

            while (piso.correctNonOrthogonal()) 

            { 

                // Pressure corrector 

   fvScalarMatrix pEqn 

                ( 

                    fvm::laplacian(rAU, p) == fvc::div(phiHbyA) 

                ); 

 

                pEqn.setReference(pRefCell, pRefValue); 

 

                pEqn.solve(); 

 

                if (piso.finalNonOrthogonalIter()) 

                { 

                    phi = phiHbyA - pEqn.flux(); 

                } 

            } 

#include "continuityErrs.H" 

 

            U = HbyA - rAU*fvc::grad(p); 

            U.correctBoundaryConditions(); 

        } 

//Transport equation  

//****************************** 

 fvScalarMatrix TEqn 

 ( 

  fvm::ddt(T) 

  +fvm::div(phi,T) 

  -fvm::laplacian(alpha,T) 

 ); 

        TEqn.solve(); 

        runTime.write(); 

//******************************* 

 

        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 

            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 

            << nl << endl; 

    } 

 

    Info<< "End\n" << endl; 

 

    return 0; 

} 

 



 
 

 fvSchemes 

 

 

ddtSchemes 

{ 

    default         Euler; 

    ddt(T)     Euler; 

} 

gradSchemes 

{ 

    default         Gauss linear; 

} 

divSchemes 

{ 

    default         none; 

    div(phi,U)      Gauss limitedLinearV 1; 

    div(phi,T)       Gauss linear; 

} 

laplacianSchemes 

{ 

    default         Gauss linear corrected; 

    laplacian(alpha,T)  Gauss linear corrected;//Laplacian term for 𝛼, 𝑇 

} 

    interpolationSchemes 

{ 

    default         linear; 

} 

snGradSchemes 

{ 

    default         corrected; 

} 

 



 
 

 fvSolution 

solvers 

{ 

    p 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-06; 

        relTol          0.05; 

    } 

    pFinal 

    { 

        $p; 

        relTol          0; 

    } 

    U 

    { 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-05; 

        relTol          0; 

    } 

    T     

 { 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-05; 

        relTol          0; 

    } 

} 

PISO 

{ 

    nCorrectors     2; 

    nNonOrthogonalCorrectors 2; 

} 


