
Summer Fellowship Report

On

Video Processing System for Spoken
Tutorial

Submitted by

Pratik Daigavane

Under the guidance of

Prof. Kannan Moudgalya

Chemical Engineering Department

IIT Bombay

May 2020

Acknowledgement

I, the summer intern of the FOSSEE - Video Processing System for Spoken
Tutorial Project am overwhelmed in all humbleness and gratefulness to acknowl-
edge my sincere gratitude to all those who have helped me put my ideas to perfection
and have assigned tasks well above the level of simplicity and into something con-
crete and unique. I wholeheartedly thank Prof. Kannan M. Moudgalya for
having faith in me, selecting me to be a part of his valuable project, and for contin-
ually motivating me to do better. I thank Mr. Nagesh Karmali and Ms. Firuza
Aibara for providing me with the opportunity to work on this project. I am also
very thankful to my mentors for their valuable suggestions. They were and are al-
ways there to show me the right track when needed help. With the help of their
brilliant guidance and encouragement, I was able to complete my tasks correctly
and was up to the mark in all the assigned tasks. During the process, I got a chance
to see the stronger side of my technical and non-technical aspects and strengthen
my concepts. Last but not least, I sincerely thank all other colleagues working in
different projects under Prof. Kannan M. Moudgalya for helping me evolve
better with their critical advice.

1

Declaration

I declare that this written submission represents my ideas in my own words,
and whenever others’ ideas or words have been included, I adequately cited and
referenced the sources. I declare that I have accurately and adequately acknowledged
all sources used in the production of this thesis.

I also declare that I have adhered to all principles of academic honesty and in-
tegrity and have not misrepresented or fabricated or falsified any idea/data/fact/-
source in my submission. I understand that any violation of the above will be a
cause for disciplinary action by the Institute and can also evoke penal action from
the sources which have not been appropriately cited or from whom proper permission
has not been taken when needed.

Pratik Daigavane

2

Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Project Objective . 5
1.3 Project Outcome . 5
1.4 Project Requirements . 6

2 Project Overview 7
2.1 Current System . 7
2.2 Proposed Solution . 8

3 Architecture 9
3.1 Overview . 9
3.2 React . 9
3.3 Django . 10
3.4 Celery and Redis . 10
3.5 FFmpeg . 10

3.5.1 Filtering . 11

4 Logic Flow 12
4.1 Creating Chunks . 12
4.2 Changing Audio of a Chunk . 12
4.3 Compiling Chunks . 13

5 DevOps 14
5.1 Docker . 14
5.2 Travis CI . 14
5.3 OpenAPI Compliant API Documentation 15

6 Frontend 16
6.1 Contributor User Interface . 16

6.1.1 Tutorials List . 16
6.1.2 Dashboard . 17

6.2 Reviewer User Interface . 19
6.2.1 Tutorials List . 19
6.2.2 Dashboard . 20

7 API Endpoints 22

3

List of Figures

2.1 Video Editing Dashboard . 8

3.1 Architecture Diagram . 9
3.2 Transcoding process in FFmpeg . 10
3.3 Simple filtergraph . 11

4.1 Creating Chunks . 12
4.2 Changing Audio of a Chunk . 13
4.3 Compiling Chunks . 13

5.1 Travis CI Job . 14
5.2 API Documentation Screenshot . 15

6.1 Tutorials List . 16
6.2 Video editing dashboard . 17
6.3 Change Audio Dialog Box . 18
6.4 Revisions of a chunk . 19
6.5 Comparing Two Versions . 19
6.6 Tutorials List for Reviewer . 20
6.7 Reviewer Dashboard . 20
6.8 Comparing the new and the old version 20

4

Chapter 1

Introduction

1.1 Problem Statement

Design and develop a web-based platform for Spoken Tutorial, for streamlining the
process of editing the tutorials.

1.2 Project Objective

The project’s objective is to add a module to the existing spoken-tutorial.org web-
site so that contributors can seamlessly edit tutorials. Revisions history should be
maintained after each edit and can be reverted to the previous version. A reviewer
should be able to review and comment on that tutorial.

1.3 Project Outcome

The contributor will be able to edit the tutorial using a web-based dashboard. A
tutorial will be broken into chunks based on subtitles, and their timings, the con-
tributor, will be able to edit the audio and subtitle of each chunk. After each edit,
revisions will be maintained, and the contributor will have the option to compare
versions and revert to the previous version. Once the contributor edits the tutorial,
he/she can send it for review. The existing publishing workflow will be followed in
the review process.

5

1.4 Project Requirements

Following technologies have been used during the development of this project.

• Django (v1.11)

• React (v16.13.1)

• Docker Containers

• MySQL

• Celery

• Redis

• FFmpeg

6

Chapter 2

Project Overview

2.1 Current System

In the current system of Spoken Tutorial, the tutorial (video) is recorded by an in-
dividual, which is then approved through some process. The final output is a video
in English. This tutorial is then passed on to others for dubbing in different lan-
guages, where each language contributor creates a tutorial (video) in the respective
language. A timed script is also created manually. The current limitation is
that if a change is needed in a particular script, the entire tutorial must
be re-created.

7

2.2 Proposed Solution

The video (English or dubbed) will be uploaded by the contributor as usual. When
the contributor selects a particular tutorial to be edited; that tutorial will be broken
into various chunks based on the subtitles and their timings. Then the contributor
will be provided with a facility to edit video.

Figure 2.1: Video Editing Dashboard

A chunk represents a part of the video which starts and ends at some specific
times. For example: in the above diagram, Chunk 1 represents part of the tutorial,
which starts at 00:00:07 and ends at 00:00:14.

The contributor will be able to change the audio and subtitle of chunks as needed.
Revisions history will be maintained after each edit and can be reverted to the
previous version. After editing is done, the contributor will have an option to submit
the tutorial for review.

8

Chapter 3

Architecture

3.1 Overview

Figure 3.1: Architecture Diagram

3.2 React

React [1] is used for developing the frontend. This project comprises of two SPAs
(Single Page Application): one each for contributor and reviewer.

9

3.3 Django

Django[2] Framework along with Django-Rest-Framework[3] have been utilised to
create API endpoints required for the frontend.

3.4 Celery and Redis

Celery[4] uses the same environment as Django but runs the celery daemon with
multiple workers to handle heavy processing tasks in the background asynchronously.
It is also worth noting that multiple celery containers can ’discover’ each other on
the network and share tasks amongst themselves. Celery also requires a Task Queue,
for which Redis has been utilised. Redis[5] is essentially an In-memory Key-Value
Store; this is utilised to store the task details, and it’s data which is later fetched
and processed by a Celery worker.

3.5 FFmpeg

FFmpeg[6] is the primary media processing library used in this project. FFmpeg is
a high-speed video and audio converter that can also grab from a live audio/video
source. It can also convert between arbitrary sample rates and resize a video on
the fly with a high-quality polyphase filter. The transcoding process in FFmpeg for
each output can be described in Figure 3.2

Figure 3.2: Transcoding process in FFmpeg

FFmpeg calls the libavformat library (containing demuxers) to read input files
and get packets containing encoded data from them. When there are multiple input
files, FFmpeg tries to keep them synchronised by tracking the lowest timestamp on
any active input stream.

10

Encoded packets are then passed to the decoder (unless streamcopy is selected
for the stream). The decoder produces uncompressed frames (raw video/PCM au-
dio/...), which can be processed further by filtering (see next section). After filter-
ing, the frames are passed to the encoder, which encodes them and outputs encoded
packets. Finally, they are passed to the muxer, which writes the encoded packets to
the output file.

3.5.1 Filtering

Before encoding, FFmpeg can process raw audio and video frames using filters from
the libavfilter library. Several chained filters form a filter graph. FFmpeg distin-
guishes between two types of filtergraphs: simple and complex.

Simple filtergraphs

Simple filtergraphs are those that have exactly one input and output, both of the
same type. In Figure 3.2, they can be represented by simply inserting an additional
step between decoding and encoding:

Figure 3.3: Simple filtergraph

Complex filtergraphs

Complex filtergraphs are those that cannot be described simply as a linear processing
chain applied to one stream. This is the case, for example, when the graph has
more than one input and/or output, or when output stream type is different from
the input.

11

Chapter 4

Logic Flow

This chapter gives a high-level overview of the logic flow of the system.

4.1 Creating Chunks

Figure 4.1: Creating Chunks

This is the initial step while processing the tutorial. The audio is first extracted
from the tutorial’s video file and is then broken into chunks, taking into consideration
the subtitle file.

4.2 Changing Audio of a Chunk

When any change in a chunk is requested by the client, the newly uploaded audio
is processed, and needful changes are made to its characteristics such as bit rate,
sample rate, length, encoding, etc. Finally, the old chunk is then replaced with the
new chunk.

12

Figure 4.2: Changing Audio of a Chunk

4.3 Compiling Chunks

Figure 4.3: Compiling Chunks

At this stage, all the chunks are concatenated in a particular order. Then the
newly processed audio stream is compiled with the video stream, and the newly
processed video is created.

13

Chapter 5

DevOps

5.1 Docker

Docker[7, 8] is a set of platform as a service (PaaS) products that uses OS-level vir-
tualisation to deliver software in packages called containers. Containers are isolated
from one another and bundle their own software, libraries and configuration files;
they can communicate with each other through well-defined channels. All containers
are run by a single operating system kernel and therefore use fewer resources than
virtual machines. In this project: Django, Celery and Redis were containerised.
They were managed with the help of Docker Compose[9].

5.2 Travis CI

Travis CI[10] is a hosted continuous integration service used to build and test soft-
ware projects hosted on GitHub. Travis CI was used to check linting in every
commit. The linter used is Flake8[11]

Figure 5.1: Travis CI Job

14

5.3 OpenAPI Compliant API Documentation

Swagger[12] has been used to generate OpenAPI compatible schema and also docu-
menting the endpoints. This also provides various API endpoints which are easy to
try out, from the browser itself.

Figure 5.2: API Documentation Screenshot

15

Chapter 6

Frontend

This project has two user interfaces.

• Contributor UI

• Reviewer UI

6.1 Contributor User Interface

This user interface will be used by a contributor to edit a video and then submit it
for review.

6.1.1 Tutorials List

Figure 6.1: Tutorials List

16

Tutorials List page will enlist in a tabular manner: all the tutorials allotted to
a contributor. The table will have FOSS, Tutorial name, Language, Status and
Edit video button. After clicking on edit video button of a particular tutorial, the
contributor will be directed to a dashboard page from where he/she will be able to
edit the video.

6.1.2 Dashboard

Figure 6.2: Video editing dashboard

The dashboard page will have all the chunks of tutorial listed in a tabular manner.
Each row in the table has Chunk No, Audio, Subtitle, Change Audio and Revert
button. The status, along with the preview of the video, is present in the top section.
For each chunk, the contributor will be able to edit its audio and subtitle. After
each edit, the previous versions are maintained; and if needed, the contributor can
revert to the previous version.

Change Audio/Subtitle

When clicked on Change Audio/Subtitle button, a modal will appear as shown in
Figure 6.3. Here, the contributor can edit the subtitle and change the audio. The
changing of audio can be done in two ways: either by uploading a new one or by
recording at that instant by using the record feature.

On the left side, a timeline will be shown, where the contributor can preview the
previous chunk, current chunk and next chunk in sync to get an idea about the flow
of the video.

17

After the needful changes are made, the contributor has to click on the Upload
Button to confirm changes. After clicking the button, the changes will be processed
by the server, and the video preview will be updated with new changes.

Figure 6.3: Change Audio Dialog Box

Revisions

When clicked on the Revert button, a modal will appear as shown in Figure 6.4. All
the revisions will be listed, and the contributor will have an option to revert to any
version of that chunk.

The contributor can also compare any two versions of a chunk using the Compare
tab shown in Figure 6.5. This feature will highlight the differences between the two
versions. The implementation of text differencing is based on the algorithm proposed
in ”An O(ND) Difference Algorithm and its Variations” (Myers, 1986)[13].

Submitting for Review

The contributor can submit the tutorial for review after making all the needful
changes in the tutorial. The tutorial will then be reviewed by a reviewer, and the
verdict will be communicated back to the contributor.

18

Figure 6.4: Revisions of a chunk

Figure 6.5: Comparing Two Versions

6.2 Reviewer User Interface

This user interface will be used by the reviewer to review tutorials and communicate
their verdicts to the contributor.

6.2.1 Tutorials List

In this page, all tutorials to be reviewed are listed along with their status such as
Submitted for Review, Accepted, Rejected. After clicking on the Review button of
a particular tutorial, the reviewer will be directed to a dashboard page from where
the tutorial can be reviewed.

19

Figure 6.6: Tutorials List for Reviewer

6.2.2 Dashboard

The dashboard lists all the chunks of a tutorial and the chunks which have changed
are highlighted. For the chunk which is changed, the reviewer can compare the old
and new versions proposed by the contributor.

Figure 6.7: Reviewer Dashboard

Figure 6.8: Comparing the new and the old version

20

In the top section, the reviewer can preview the tutorial with all the proposed
changes. An option to either Accept or Reject the video is provided. When clicked
on Accept, the changes implemented by the contributor will be approved, and when
clicked on Reject, the reviewer can reject the video along with the reason for re-
jection. After rejecting, the contributor can view the reason for rejection and then
make appropriate changes, after which the tutorial can be resubmitted for review,
following the same cycle.

21

Chapter 7

API Endpoints

In the following API documentation, all API Endpoints are listed.

22

Spoken Tutorial Video Processing

Overview
API Documentaion for Video Processing Applicaton

Version information
Version : 1.0.0

URI scheme
Host : localhost
BasePath : /videoprocessing/api/
Schemes : HTTPS, HTTP

Paths

Sends a tutorial to processing queue

POST /process_tutorials

Description

Sends a tutorial particular to processing queue

Parameters

Type Name Description Schema

Body
tutorial
details
optional

Tutorial Id and Language ID
VideoSubmissionCre
ate

Responses

HTTP
Code

Description Schema

202 Request Accepted
VideoTutorialSub
mission

1

23

HTTP
Code

Description Schema

400 invalid input, object invalid No Content

403 forbidden No Content

Consumes

• application/json

Produces

• application/json

Tags

• Contributor Endpoints

List all tutorials that are processed or are being
processed

GET /process_tutorials

Description

This endpoint will return all the tutorials that are processed or are being processed

Responses

HTTP
Code

Description Schema

200 result listing all the processed tutorials
<
VideoTutorialSub
mission > array

403 forbidden No Content

500 Internal Server Error No Content

Produces

• application/json

2

24

Tags

• Contributor Endpoints

Submit tutorial for review

POST /process_tutorials/submit

Description

Submit tutorial for review

Parameters

Type Name Description Schema

Body
comment
optional

Message for the reviewer string

Responses

HTTP
Code

Description Schema

200 Tutorial sent for review
VideoTutorialSub
mission

400 bad request No Content

409 request already submitted No Content

Consumes

• application/json

Produces

• application/json

Tags

• Contributor Endpoints

get all chunks of a particular tutorial

3

25

GET /process_tutorials/{UUID}

Description

This endpoint return will all the chunks created for a particular video tutorial

Parameters

Type Name Schema

Path
UUID
required

string (uuid)

Responses

HTTP
Code

Description Schema

200 result listing all the chunks
inline_response_2
00

400 Bad Request No Content

403 forbidden No Content

500 Internal Server Error No Content

Produces

• application/json

Tags

• Contributor Endpoints

get information about particular chunk of a video

GET /process_tutorials/{UUID}/{chunkNo}

Description

This endpoint return information about a particular chunk of a video

4

26

Parameters

Type Name Schema

Path
UUID
required

string (uuid)

Path
chunkNo
required

number

Responses

HTTP
Code

Description Schema

200 result listing information of a particular chunk
inline_response_2
00_1

400 Bad Request No Content

403 forbidden No Content

500 Internal Server Error No Content

Produces

• application/json

Tags

• Contributor Endpoints

change audio of a particular chunk

PATCH /process_tutorials/{UUID}/{chunkNo}

Parameters

Type Name Description Schema

Path
UUID
required

string (uuid)

Path
chunkNo
required

number

5

27

Type Name Description Schema

Body
Audio File
optional

Upload new audio Audio File

Responses

HTTP
Code

Description Schema

200 result listing information of a particular chunk
inline_response_2
00_1

400 bad request No Content

404 not found No Content

Produces

• application/json

Tags

• Contributor Endpoints

Revert chunk back to previous version

PATCH /process_tutorials/{UUID}/{chunkNo}/{historyId}

Description

This endpoint revert chunk back to previous version

Parameters

Type Name Schema

Path
UUID
required

string (uuid)

Path
chunkNo
required

number

Path
historyId
required

number

6

28

Responses

HTTP
Code

Description Schema

200 result listing information of a particular chunk
inline_response_2
00_1

400 Chunk already up to date No Content

404 not found No Content

Produces

• application/json

Tags

• Contributor Endpoints

List all Tutorials which are to be reviewed

GET /review

Description

This endpoint will return all the tutorials which are to be reviewed

Responses

HTTP
Code

Description Schema

200 result listing all the tutorials < Tutorial > array

400 bad request No Content

403 forbidden No Content

Produces

• application/json

Tags

• Reviewer Endpoints

7

29

get all chunks of a particular tutorial

GET /review/{UUID}

Description

This endpoint return will all the chunks created for a particular video tutorial

Parameters

Type Name Schema

Path
UUID
required

string (uuid)

Responses

HTTP
Code

Description Schema

200 result listing all the chunks
inline_response_2
00

Produces

• application/json

Tags

• Reviewer Endpoints

Set Verdict of a particular tutorial

POST /review/{UUID}/verdict

Description

This endpoint return will set verdict of a particular tutorial

Parameters

8

30

Type Name Description Schema

Path
UUID
required

string (uuid)

Body
Verdict
optional

Verdict of Video Verdict

Responses

HTTP
Code

Description Schema

200 result listing all the chunks
inline_response_2
00

400 Bad Request No Content

403 forbidden No Content

500 Internal Server Error No Content

Produces

• application/json

Tags

• Reviewer Endpoints

get information about a particular chunk of a video

GET /review/{UUID}/{chunkNo}

Description

This endpoint return information about particular chunk of a video

Parameters

Type Name Schema

Path
UUID
required

string (uuid)

9

31

Type Name Schema

Path
chunkNo
required

number

Responses

HTTP
Code

Description Schema

200 result listing information of a particular chunk
inline_response_2
00_1

400 Bad Request No Content

403 forbidden No Content

500 Internal Server Error No Content

Produces

• application/json

Tags

• Reviewer Endpoints

List all Tutorials allotted to a Contributor

GET /tutorials

Description

This endpoint will return all the tutorials uploaded earlier on the server

Responses

HTTP
Code

Description Schema

200 result listing all the tutorials < Tutorial > array

403 forbidden No Content

500 Internal Server Error No Content

10

32

Produces

• application/json

Tags

• Contributor Endpoints

Definitions

Audio File

Name Description Schema

audio_file
optional

Example : "new_audio.mp3" string (binary)

subtitle
optional

Example : "this is new subititle" string

Tutorial

Name Schema

foss_category
required

Tutorial_foss_category

language
required

Tutorial_language

tutorial_detail
required

Tutorial_tutorial_detail

Tutorial_foss_category

Name Description Schema

description
optional

Example : "Advanced C is for the programmer who has some
experience writing applications in C."

string

id
optional

Example : 61 integer

11

33

Name Description Schema

name
optional

Example : "Advance C" string

Tutorial_language

Name Description Schema

id
optional

Example : 22 integer

name
optional

Example : "English" string

Tutorial_tutorial_detail

Name Description Schema

id
optional

Example : 605 integer

tutorial
optional

Example : "Command line arguments in C" string

Verdict

Name Description Schema

comment
optional

Example : "Audio not clear" string

verdict
optional

Example : "accepted" string

VideoChunk

Name Description Schema

audio_chunk
required

Example :
"http://127.0.0.1:8000/media/videoprocessing/2e58b1fc-
c501-46c7-9ca5-2031409cc5a8/chunks/5.mp3"

string (uri)

12

34

Name Description Schema

chunk_no
required

Example : 5.0 number

end_time
required

Example : "00:00:11.350000" string (time)

revisions
optional

Example : 2 integer

start_time
required

Example : "00:00:09.350000" string (time)

subtitle
required

Example : "this is a sample subtitle" string

video_chunk
required

Example :
"http://127.0.0.1:8000/media/videoprocessing/2e58b1fc-
c501-46c7-9ca5-2031409cc5a8/chunks/5.mp4"

string (uri)

VideoChunkRevisions

Name Description Schema

audio_chunk
required

Example :
"http://127.0.0.1:8000/media/videoprocessing/2e58b1fc-
c501-46c7-9ca5-2031409cc5a8/chunks/5.mp3"

string (uri)

history_data
optional

Example : "2020-06-23T08:05:31.602674+05:30" string (date-time)

history_id
optional

Example : 273.0 number

subtitle
optional

Example : "this is a sample subtitle" string

VideoSubmissionCreate

Name Description Schema

language
required

Example : 22 integer

13

35

Name Description Schema

tutorial_detail
required

Example : 605 integer

VideoTutorialSubmission

Name Description Schema

checksum
optional

Example : "44e437f0e54c0d839e44109b9544ecf1" string

comment
optional

Example : "Chunk 1 is modified" string (string)

id
required

Example : "2e58b1fc-c501-46c7-9ca5-2031409cc5a8" string (uuid)

language
optional

Example : 22 integer

processed_vid
eo
optional

Example :
"http://127.0.0.1:8000/media/videoprocessing/2e58b1fc-
c501-46c7-9ca5-2031409cc5a8/processed_video.mp4"

string (uri)

status
optional

Example : "done" string (string)

submission_st
atus
optional

Example : "accepted" string (string)

subtitle
required

Example :
"http://127.0.0.1:8000/media/videoprocessing/2e58b1fc-
c501-46c7-9ca5-2031409cc5a8/subtitle.srt"

string (uri)

total_chunks
optional

Example : 30.0 number

tutorial_detail
optional

Example : 605 integer

video
required

Example :
"http://127.0.0.1:8000/media/videoprocessing/2e58b1fc-
c501-46c7-9ca5-2031409cc5a8/video.mp4"

string (uri)

14

36

inline_response_200

Name Schema

chunks
optional

< VideoChunk > array

video_data
optional

VideoTutorialSubmission

inline_response_200_1

Name Schema

VideoChunk
optional

VideoChunk

history
optional

< VideoChunkRevisions > array

15

37

Bibliography

[1] https://reactjs.org/ (Last accessed 30 May 2020).

[2] https://www.djangoproject.com/ (Last accessed 30 May 2020).

[3] https://www.django-rest-framework.org/ (Last accessed 30 May 2020).

[4] https://www.celeryproject.org/ (Last accessed 30 May 2020).

[5] https://redis.io/ (Last accessed 30 May 2020).

[6] https://www.ffmpeg.org/ (Last accessed 30 May 2020).

[7] https://www.docker.com/ (Last accessed 30 May 2020).

[8] https://en.wikipedia.org/wiki/Docker_(software) (Last accessed 30
May 2020).

[9] https://docs.docker.com/compose/ (Last accessed 30 May 2020).

[10] https://travis-ci.org/ (Last accessed 30 May 2020).

[11] https://flake8.pycqa.org/en/latest/ (Last accessed 30 May 2020).

[12] hhttps://swagger.io/ (Last accessed 31 May 2020).

[13] E. W. Myers, “An o(nd) difference algorithm and its variations,” Algorithmica,
vol. 1, pp. 251–266, 1986.

38

https://reactjs.org/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://www.celeryproject.org/
https://redis.io/
https://www.ffmpeg.org/
https://www.docker.com/
https://en.wikipedia.org/wiki/Docker_(software)
https://docs.docker.com/compose/
https://travis-ci.org/
https://flake8.pycqa.org/en/latest/
hhttps://swagger.io/

	Introduction
	Problem Statement
	Project Objective
	Project Outcome
	Project Requirements

	Project Overview
	Current System
	Proposed Solution

	Architecture
	Overview
	React
	Django
	Celery and Redis
	FFmpeg
	Filtering

	Logic Flow
	Creating Chunks
	Changing Audio of a Chunk
	Compiling Chunks

	DevOps
	Docker
	Travis CI
	OpenAPI Compliant API Documentation

	Frontend
	Contributor User Interface
	Tutorials List
	Dashboard

	Reviewer User Interface
	Tutorials List
	Dashboard

	API Endpoints

