Summer Fellowship Report

Arduino On Cloud

Submitted by

Navonil Das
Meet Shah

Under the guidance of

Prof. Kannan Moudgalya
Chemical Engineering Department
II'T Bombay

May 2020

Acknowledgement

We, the summer interns of the FOSSEE - Arduino On Cloud are overwhelmed
in all humbleness and gratefulness to acknowledge our deep gratitude to all those
who have helped us put our ideas to perfection and have assigned tasks well above
the level of simplicity and into something concrete and unique. We wholeheartedly
thanks Prof. Kannan M. Moudgalya for having faith in us, selecting us to be
a part of his valuable project and for constantly motivating us to do better. We
thanks Mr. Nagesh Karmali and Ms. Firuza Aibara for providing us the
opportunity to work on this project. We are also very thankful to our mentors for
their valuable suggestions. They were and are always there to show us the right
track when needed help. With help of their brilliant guidance and encouragement,
we all were able to complete our tasks properly and were up to the mark in all
the tasks assigned. During the process, we got a chance to see the stronger side
of our technical and nontechnical aspects and also strengthen our concepts. Last
but not the least, we sincerely thank all our other colleagues working in different
projects under Prof. Kannan M. Moudgalya for helping us evolve better with
their critical advice.

Declaration

We declare that this written submission represents our ideas in our own words
and whenever others’ ideas or words have been included, We adequately cited and
referenced the original sources. We declare that We have properly and accurately
acknowledged all sources used in the production of this thesis.

We also declare that We have adhered to all principles of academic honesty and
integrity and have not misrepresented or fabricated or falsified any idea/data/fac-
t/source in our submission. We understand that any violation of the above will be
a cause for disciplinary action by the Institute and can also evoke penal action from
the sources which have not been properly cited or from whom proper permission
has not been taken when needed.

Navonil Das
Meet Shah

Contents

(1 _Introduction|

[B_Backend

[3.1 Compilation|
3.2 Celeryl

[3.4 API Endpoints|

3.4.1 POST /arduino/compile|

3.4.2 GET /arduino/compile/status|

3.4.6 GET /save/{SavelD
3.4.7 POST /save/{SavelD

3.4.8 DELETE /save/{SavelD}|

3.4.9 POST /save/{SavelD

- /sharing /on

3.4.10 POST /save/{SavelD

- /sharing /onl

[Creating an Custom Component|

3.4.3 POST /save|
3.4.4 GET /save/arduino/list|
3.4.5 GET /save/searchl

....................................

(5.2 Future Improvements|o

6 Examples| 28

(6.1 Blink Example]o 28
BT Codd 28
6.1.2 Connectionl e 29
[6.1.3 Output|. 29

[6.2 Seven Segment| 30
B2T Code 30
022 Connections L 31
[6.2.3 Output|. 31

B3 _Counferd 32
B3T Coddo 32
6.32 Connections 33
[6.3.3 Output|. 33

(6.4 Buzzer With User Input| 34
BAT _Codd. 34
6.42 Connectiond 34
[6.4.3 Output|. 35

6.5 Motion Detection] 36
BT Codd 36
652 Connections 36
[6.5.3 Output|. 37

0.6 Temperature Sensor{. 38
B6T _Coddo 38
0.6.2 Connections 38

6.7 Output|. 38

[6.8 Measuring Distance|o 39
BRI Coddo 39
682 Connections 40
[6.8.3 Output|. 41

[6.9 Detecting Smoke|o 42
BOT Codd. 42
6.9.2 Connectionl 42
[6.9.3 Output|. 43

[6.10 Relay Example] oo 44
BIOT Codd 44
0.10.2 Connections 44
[6.10.3 Output|. 45

6.11 Motordl e 46
6.11.1 Connections 46
[6.11.2 Output|. 46

[6.12 Servo Motor] 47
BI21 Codd 47
6.12.2 Connections 48
[6.12.3 Output|. 48

0,13 RGB LEDI 49
BIZT Coddo 49

List of Figures

2.1 Front Page|[. 9
................................... 10
2.3 Dashboard 11
2.4 Project Properties) 12
2.5 Simulator Ullo 13
2.6 Code Editorl 14
2.7 View Project| 16
4.1 Simulation Flowlo 21
[6.1 Blink Example Connection| 29
[6.2 Blink Example Output|{ 29
[6.3 Seven Segment Connection| 31
[6.4 Seven Segment Output| 31
6.5 Counter Connectionl. 33
6.6 Counter Output|. 33
6.7 Buzzer Connectionsl 34
[6.8 Buzzer Output| 35
6.9 PIR Sensor Connectiond 36
[6.10 PIR Sensor Output| 37
[6.11 Temprature Sensor Connection| 38
[6.12 Temprature Sensor Qutput|. 39
[6.13 Ultrasonic Sensor Connectionl 40
[6.14 Ultrasonic Sensor Output| 41
6.15 Gas Sensor Connectionlo L Lo 42
[6.16 Gas Sensor Output| 43
[6.17 Relay Connection| 44
[6.18 Relay Output| 45
[6.19 Motor Connection|. 46
[6.20 Motor Output| 46
6.21 Servo Motor Connectionl oL 48
[6.22 Servo Motor Output| 48
0.23 RGB LED Connectionl 49
[6.24 RGB LED Output|, 50

Chapter 1

Introduction

Currently, the most of products available are not in open source which limits people
from using it. This project is about to develop an open source Web Application for
building Arduino Projects.

Arduino On Cloud is a Web Application which simulates 8 bit microcontroller
mostly the Arduino Family.It is an alternative for the software like tinkercad and
proteus as both of them are private software and proteus is paid software. It will
be easy to prototype for example user may perform wrong connection which can
damage the component. This can be overcomed through our application.

This Application allows the user to choose components from the lists and drag-
and-drop on the main workspace for building circuitry with component name and
value.User can connect components using virtual wires which will stick to the pins
of the components legs, parts of Arduino etc.Whole circuit can be stored in a file
format at the backend by just a button for uploading.

Secondly, it also allows to compose the code and provides simulation of the circuit
by retreiving Output in console(terminal).

1.1 Project Requirements

We are using the following tools during development

Angular 7 (v7.0) - used for front-end development.

Material Design UI Angular.

Bootstrap (v4.5).

Rahphaeljs (v2.2.7) - Javascript library for vector graphics on web
AVRSjs(v0.9.0) - Open-source Arduino simulator based on JavaScript.
Arduino CLI - For Compiling Arduino Source Code

Canvg(v3.0.6) - JavaScript SVG parser and renderer on Canvas.
Django (v1.11) - used for developing the back-end of the platform.
Celery - open source asynchronous task queue or job queue

MySQL/ postgresql(default v9.6) - the database used for storing the data.

Chapter 2

Front-end

2.1 Front Ul

Arduino On Cloud Gallery Login

Design Your circuits with
Arduino On Cloud!

LAUNCH EDITOR

Figure 2.1: Front Page

It is the landing page for a particular user using our Web Application. User can
either direct to Simulation Editor through it or can view the Gallery. Gallery
contains the public projects which are contributed by users.

2.2 Gallery Ul

€ 5 C O localhost/arduinofs/gallery

Arduino on Cloud

Gallery

Experimerts Recents

Blink Example Buzzer

4deys ago By Navcnl Das

Counter

Push Button Example
4 days ago By Naven | Das

Seven Segment

4daysago By Nevonil Das

Motors

4days ago By Nevonil Das

-

7 days ago By Navonll Des

4 days ago By Navoni Des

RGB LED

Temperature Sensor

* 0 Q:

& hoursago By Navanil Das

7days ago By Navonil Das

The Gallery contains public circuits which are contributed by users.This is an

Figure 2.2: Gallery

addon material helpful for novice users to know what others have created.

10

2.3 Dashboard Ul

<« C @ localhost:4200/#/dashboard ax @0 @

Arduino Circuits

Blinking LED Example Buzzer Example Seven Segment Example PIR Sensor Example
This is blinking LED Example This is Example of Buzzer This is an example of Seven Segment This is an example of PIR Sensor and Buzzer
2 hours ago 2 hours ago 2 hours ago 2 hours ago

Gas Sensor MQ2 Example Ultrasonic Sensor Motor Push Button example
This is an example of Gas sensor MQ2 This is an example of Ultrasoni Sensor This is an example of Motor This an Example of Push Button/Tactile Switch
2 hours ago 2 hours ago 2 hours ago 2 hours ago

Figure 2.3: Dashboard

The Dashboard Ul is used for displaying user-created projects. After clicking to
a particular project the project properties can be viewed.It allows the users the view
and search theirs circuits whether he has saved On Cloud i.e building and saving the
circuit after login into system or Temporary(building and saving the circuit without
login).

11

Temperaure Sensor

Description
a

This is an Example of Temperature Sensor

Author name: You
Created At: Monday, June 15, 2020 12:25 PM
Edited At: Wednesday, June 17, 2020 8:22 PM

00600

Figure 2.4: Project Properties
The User will able to edit and delete the circuit, reap description for that circuit,

and other details like when he created, edited it.User can share the circuit through
social media options, by mail and through Sharing URL option.

12

2.4 Simualtion Ul

[@ code) StartSimulation i a a

Circuit Components Project Info £

General

Controllers

Output

Input

Sources

Drivers

Miscellaneous

Figure 2.5: Simulator UI

After clicking launch editor we are directed to Simulator ULIt ia an editor where
user can build and edit his circuit, put down his code and simulate it.

Following are the sections of this page :
e Components Section.
e Code Editor.

¢ Workspace.

2.4.1 Component Section

It is categorized into six divisions:

General section contains mostly/generally used components like resistors, bread-
board etc.

Controller section contains all programmable devices.

Output section consists of output components that will generate output like
Buzzer, led, RGBled and many more..

Input section consists of switches and sensors.

Sources part consist of components which will supply energy source to our circuit.
Miscellaneous part consist of labelling of wires.

All the Components used in the building circuit are created in Raphael [1] and
Inkscape [2].

13

2.4.2 Code Editor

Simulator | Blinking led Project ¥ Export View ¥ Login
Code. o Stop Simulation i a Q
L om adun .
L @ AduinoUNOR31 Arduino Uno &
1 void setup(){
2 pintlode(11, OUTPUT); Name
3} Arduino UNOR3 1
4 void loop()ff
5 dte(11, HIGH); m

Figure 2.6: Code Editor

After building circuit the user can write code by clicking to Code button which
opens to Code Editor. The code Editor is a Monaco code-editor[3] for composing
code(logic) for programmable devices.

It allows user to jot down functions from suggestions and the suggestion will auto
complete syntax for it to.User can also download the code(ino file) and compile it
in Arduino IDE.There is also a facility to include the supported header files like
EEPROM, LiquidCrystal, Servo, SoftwareSerial, Wire, and SPI.

Code editor opens only if Programmable Components(Arduino or any other con-
troller) is present in the workspace else shows a message as "No Programmable
Component present in the Circuit”.

2.4.3 Workspace

Workspace is a area where user can build his circuit by dragging and dropping
the components and connect components using virtual wires which will stick to
the pins of the component legs,parts of Arduino etc.Components can be copied,
paste, and deleted by right click on context menu or can be done through keyboard
options.Circuit can also be zoom in and zoom out. Labels to wires can be given
while dealing with complex circuits.

14

2.4.4 Other Features

Export

The Export feature will allow user to export his circuit in different file format(
mainly SVG, PNG, JPEG).

View Component List

View option shows the Component List (the components present on Workspace)
which will specify the name, quantity, and info of the components.The Component
List can also be downloaded.

View Info Box

A View Info Box appears after the user drag-n-drop the component on the workspace,
where he can view the specification, description, and datasheets of a particular com-
ponent.

15

2.5 View Project

The user can share his circuit with his friends or colleagues by various sharing op-
tions present in project properties. He can share his circuit through social media
like Facebook, LinkedIn, and Reddit and also through Mail.

Arduino on Cloud 0
Temperature Sensor

= Description

Thisg is an Example of Temperature Sensor

Run Simulation

Author Name: admin
Created At: Tuesday, June 16, 2020 8:32 AM
Edited At: Saturday, June 13,2020 11:26 AM

00600

Figure 2.7: View Project

Clicking on sharing option through URL and launching the URL will redirect
the user to View Project UI where user can reap description, get the details when
we created it, view and simulate his circuit but cannot edit.

16

Chapter 3

Backend

The Backend is written on the Django and uses Django rest framework for API. We
use API for compilation and saving the circuit on the cloud.

3.1 Compilation

For Compilation, we use Arduino Cli[4]. The Arduino CLI takes sketch files as
input and returns compiled hex file. For Alpine Linux which we were using in docker,
the Arduino CLI was not compiling so we have to switch our compiler to avr gcc.

3.2 Celery

We are using Celery [5] for Task Queue, As we need to compile the source code, for
large source code the compilation could take up resource we don’t want the system
to stop for compilation so we use the task queue. Each compilation process is a
task. The initial state for a task is PROGRESS. if our task is done or failed the
status is updated accordingly. If the task is completed we send the response back
to the user. if there is some compilation error we send those to the user specifying
the error inside the code.

3.3 Database

We are using SQL[6] and MongoDB[7] as our databases. We Store Circuits inside
Mongo and for publishing the circuit we are using SQL.

3.4 API Endpoints

3.4.1 POST /arduino/compile

This API is used to append the compilation task into the task queue. It Returns a
compilation id which can be used to get compilations status.

17

=W N = Tt W N =

© 00 N O Ot e W N =

== =
N = O

Input

The number inside the json is the id of arduino.

{

"1":"void setup(){delay(100);}void loop(){",

"o":"#include <IRremote.h>\nvoid setup(){}void loopO{}",

"3":"void setup(){}void loop({}",

"6":"void setup(){pinMode (13, OUTPUT); }void loop(){
digitalWrite(13, HIGH); delay(1000);digitalWrite(13, LOW);
delay(1000);\n}",

"14":"#include <Servo.h>\nvoid setup(){}void loop(){}",

"17":"void setup(){}void loop(){}"

}
Output

It returns the current state and the uuid which is the compilation id for codes.

{

"state": "PENDING",
"uuid": "18890ff8-82a6-4c92-94a7-611555a2b68f"

3.4.2 GET /arduino/compile/status

(arduino/compile/status?task_id=188901f8-82a6-4c92-94a7-611555a2b68f) This API
returns the compilation status of the respective compilation id.

Output
{
"state": "SUCCESS",
"details": {
nqn. {
"output": "Compilation success output.",
"error": "If Compilation failed this contains the error.",
"data": "This will contain the hex."
}s
}

18

N O Ot e W N =

3.4.3 POST /save
Input

"data_dump":"JSON Data for Circuit",
"is_arduino":true,

"description":"Project Description",
"name":"Project Name",
"base64_image":"Project Thumbnail in base 64"

Output

returns the save id for the respective circuit.

3.4.4 GET /save/arduino/list

This API returns a list of Arduino circuits created by a particular user.

3.4.5 GET /save/search

This API returns a list of arduino circuits created by a particular user which contains
some search parameters. The Search parameters are query parameters and case
insensitive.

Query Parameters

name__1icontains: Checks that the string is inside the Project Name
description__icontains: Check that the string is inside the Project
Description

save_time__icontains: Check if the time is inside the save time.
create_time__icontains: Check if the time is inside the create time.
is_ardutno: It is Boolean true if we want to search Arduino Circuits
false if we want to search EDA circuits.

Example

save/search?name__icontains=seven&is_arduino=true

3.4.6 GET /save/{SavelD}

This API is used to read a respective circuit using the save id.

Input
SavelD It is a UUID which is received after saving.

19

© 00 N O Ut s W N

—_
o

Output

{
"save_time":"2020-06-16T04:01:32.707350Z",
"save_id":"b67207bf-db37-414b-8b96-748d48a75400" ,
"data_dump":"",
"owner":"User name",
"shared":false,
"base64_image":"Saved Thumbnail Url",
"create_time":"2020-06-13T05:56:05.481143Z2",
"is_arduino":true

}

3.4.7 POST /save/{SavelD}

This API is used to update the existing Saved Circuit. The input is same as the
/save api but it doesn’t returns any saved it, It returns a Boolean value that tells
true if update wass success,

3.4.8 DELETE /save/{SavelD}

This API is used to Delete an existing circuit.

3.4.9 POST /save/{SavelD} /sharing/on

This API is used to Enable the sharing for a respective circuit.

3.4.10 POST /save/{SavelD} /sharing/on

This API is used to Disable the sharing for a respective circuit.

20

Chapter 4

Working

4.1 Simulation

Report Errors in
Console

Show Pop-ups

Create a Virtual
Microcontroller Using
AVR8

Draw Circuit and Check Connections &
Program Short Circuits and High
Microcontroller Voltage

Compile Sketch files
With Arduino CLI

Compiler
Errors

Y

Update Value of
Register by AVR8

~—

——

Read Updated Value
and Visualize it using
Raphael

A

Update the
Respective Register

Figure 4.1: Simulation Flow

The User First needs to draw his/her respective circuit. If the circuit contains a
programmable device then the user needs to provide the respective code. The basic
template of the code is already provided the user just needs to modify the code
or can write his own. As the user presses the Start Simulation button. checking
is done and the code is sent to the server for compilation. The Server queues the
compilation task using celery. After the compilation is done the user gets back the
compiled hex file. The hex is parsed by avr8js[]], for each microcontroller we need

21

to specify some configuration to avr8js. The avr8js changes the value of the register
depending on the instruction and calls a hook (function). Inside the hook, we read
the value of the register depending on which we visualize it. The visualization is
done by Raphael js[I]. Now to simulate a component we have to write the simulation
logic. The Simulation Logic is in frontend in their respective classes the reason being
we need to simulate everything with precision. As the user presses stop simulation
we stop the simulation loop and clear all variable or animation applied.

4.2 Saving

As the user presses the save button we take the SVG of the circuit and try to gen-
erate a thumbnail which is a png file. In simple terms, we need to render the SVG
to PNG. This can be done using the python library however the library does not
support nested image tag which mostly used in our circuit. To solve this we used a
different approach we render SVG to HTML5 Canvas using the library Canvg[9].
The rendered canvas is then transformed into a base64 string. The base64 string is
sent to the server saves it into an image file and save its path on the database.

The circuit is saved as a JSON inside the database, fields like name, description,

creation date, modification date are stored in a separate column. To redraw circuit
we parse the saved JSON and create components with respect to it.

22

B~ W N

© 00 N O Ot

11
12
13
14

16
17

Chapter 5

Creating an Custom Component

As our frontend needs to work as close as realtime our component logic and simula-
tion logic are written in frontend. Each component in the workspace is a child of a
Circuit Element Class

5.1 Steps

e The first thing we need to understand how our system renders component.
If our component is static during the whole simulation we use an image. If
some animation is to be applied to the component we use shapes. To be noted
inside the component if only one portion is to be simulated you should shape
to make the system more efficient.

e We need to create a data JSON file which will store the information regarding
one component.

"name": <Component Name>,

"className": <Class Name For the Component>,

"pointHalf": <Half Size of the Circuit Node(Red Rectangle While
connecting)>,

"pins": [

{

"x": <X offset>,
"y": <Y Offset>,
"name": <Label For the Circuit Node>

1,
"draw": [
{
|ltypell : Ilpathll R
"value": "M5,35L5,70",
"stroke'": "#000000"

23

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

"type": '"circle",
"radius": 30,

|IXI| ° O’

|lyll: 5

"type": '"rectangle",

"width": 60,
"height": 60,
"X": O,

|lyll o O’

"radius": 10,
"stroke": "#969696",
"fill": "#bfbfbf"

"type": '"circle",
"radius": 5,

"x": 10,

|ly|| o 10’

"fill": "#383838",
"stroke": "#383838"

|ltypell |limagell s

"url": "assets/images/smokingEffect.svg",

"width": 327,
"height": 290,
"x": -163.5,
nyn: -300
}
],
"data": {

<Key Value Pairs of data like colors of LED etc.>

}s

"info": {
"name": <Complete Name>,
"image": <URL of the Image>,

"description": <Description of Component>,

"properties": {

<Key Value Pairs to be represented in a Tabular Form>

24

As we can see the draw array contains shapes and images to be drawn. The last
element of the array will be at the top while drawing. The x,y values inside the
drawing object are the X offset and Y Offset i.e if our component is to be placed
at (0,0) how far it is from the origin. We get these values from Inkscape or Illustrator.

The info object will contain information which needs to be displayed inside the
View Info Dialog. Remember to put JSON inside assets/json Folder.

e Now we have the data file we have to create a class file. You can place the
class file anywhere inside the angular project however we recommend to use
the Libs Folder. Class Needs to inherit the Circuit Element Class. After
inheriting we may get a few errors as we have not implemented the abstract
functions and called the constructor properly.

export class MyClass extends CircuitElement {
/** Declare Variable *x*/
constructor(public canvas: any, public x: number, y: number) {
super ('MyClass', x, y, 'data_filename.json', canvas);

b
/* This function is called after rendering */
init O {
X
/**
* Function provides component details
* Q@param keyName Unique Class name
* Q@param id Component id
* @param body body of property box
* QOparam title Component title

*/

properties(): { keyName: string; id: number; body: HTMLElement;
title: string; } {
const body = document.createElement('div');

return {
keyName: this.keyName,
id: this.id,
title: 'Propeties box title',
body
s

initSimulation(): void {
// Called When Start Simulation is pressed
// Write Simulation Logic Here

}

closeSimulation(): void {

25

// Called When Stop simulation is pressed
}
simulate(): void {

// No Use For Now
}

SaveData() {
return {
// key Value data that needs to be stored in database for
recreation
s
}
LoadData(data: any) {
// This is called after retriving of data
// data.data will contain the actual data

e Now our class file is completed we are almost done. Now Typescript has a
layer of abstraction we know that in javascript we can create an object of a
class by only using class Name as a string. We cannot do that in our system.
This needs to be solved for dynamically object creation while dragging and
drop. We solve this issue by creating a map for a string class name to the
Class. This is done inside the utils file.

Inside /src/app/Libs/Utils.ts we have to create the mapping.

static components = {
MyClass: {
name: 'Name to be displayed inside the compoent bar',
image: '<thumbnail image path>',
className: <Link to the Class>
}
3

Note: Don’t delete existing components variable the object MyClass is
just need to be implemented inside the components. To show the component
inside the list the user has to modify the ”componentBox” variable according to
the category just append the class name.

The whole procedure is complex and requires good knowledge of AVRS8js,
Raphaeljs and our existing system. As we are doing modification to the Fron-
tend we have to build the app for production mode.

26

5.2 Future Improvements

Creating an API to load components List.

As the structure of the data file is almost same we can have models and
admin/contributor pages where one can write these data files easily with val-
idation.

The whole component is a part of Frontend which makes the building proce-
dure complex. As the number of the component increases the Frontend could
become heavy. One can use some method to lazy load Javascript files for the
respective component.

To write component one must be proficient in typescript. This can cause a
problem for beginners who are new and wants to add a component. This can
be solved by using some approach as NGSPICE does for creating a model.

27

Chapter 6

Examples

6.1 Blink Example

For a beginner, the Blink example is an introduction to Arduino. In this example,
we change the state of the Digital pin 13 From to HIGH to LOW with a delay of 1
second in a repetition.

6.1.1 Code

void setupO{
pinMode (LED_BUILTIN, OQUTPUT);

3

void loop(){
digitalWrite (LED_BUILTIN, HIGH);
delay(1000) ;
digitalWrite (LED_BUILTIN, LOW);
delay(1000) ;

28

6.1.2 Connection

@ Code) StartSimulation i Qa a
& AdunoUNOR31 v
L @ | Project Info &
1 void setup(){ == Project T
2 inMode (LED_BUILTIN, OUTPUT);
s piiode(LED 4 % Blink Example
4 .
5 void loop(){ Deacrplof
6 digitalWrite(LED_BUILTIN, HIGH); This is an Introduction to
7 delay(1000) ; Arduino 4
s digitalhirite(LED_BUILTIN, LOW);
9 delay(1000);
0}

Figure 6.1: Blink Example Connection

6.1.3 Output

(UNO}

e — T .
Ardumo

B
|-
| =]
=

Figure 6.2: Blink Example Output

29

6.2 Seven Segment

In this example we will interface a seven segment display with the Arduino.The Pins
a to g are connected to the Arduino Digital pins from 2 to 8 respectively.

6.2.1 Code

int outs[10][7] = {
{1,1,1,1,1,1,0%}, // O

{0,1,1,0,0,0,0 }, // 1
{1,1,0,1,1,0,1 %}, // 2
{1,1,1,1,0,0,1 %, // 3
{o0,1,1,0,0,1,1 3}, // 4
{1,0,1,1,0,1,1 %}, // 5
{1,0,1,1,1,1,1 %}, // 6
{1,1,1,0,0,0,0 }, // 7
{1,1,1,1,1,1,1 %}, // 8
{1,1,1,0,0,1,1 } // 9

};

void setup(){
pinMode (2,0UTPUT) ;
pinMode (3,0UTPUT) ;
pinMode (4,0UTPUT) ;
pinMode (5,0UTPUT) ;
pinMode (6,0UTPUT) ;
pinMode (7,0UTPUT) ;
pinMode (8,0UTPUT) ;

}

int dig = 0O;

void loop(){
int pin = 2;
for(int i=0;i<7;++i){

digitalWrite(pin,outs[dig] [1]);
++pin;
}
delay(1000) ;
++dig;
if(dig >= 10)
dig -= 10;

30

6.2.2 Connections

[B code » startsimulation ioa Q
L & AduinoUNOR31 v Projectnfo &

1 int outs[10][7] = { r Project Title

2 {L11,1,1,,}, //e i

3 {0,1,1,0,0,0,0 }, /1 e Seven Segment

* {1,1,8,1,1,0,1 3, 12 R

5 {111,001}, //3 Descriptic

6 {0,1,1,0,0,1,1 }, /14 This is an Example of

7 {1,0,1,1,0,1,1 }, 15 Seven Segment. 4

8 {1,0,1,1,1,1,1 }, /16

9 {1,1,1,0,0,0,0 }, 17

10 {9:1,3,0,9,90° Y, [I'8

1 {1,1,1,0,6,1,1} //9

12}

13

14 void setup(){

15 pinMode (2,0UTPUT);

16 pinMode(3,0UTPUT) ;

17 pinMode (4,0UTPUT) ;

18 pinMode (5,0UTPUT);

19 pinMode (6,0UTPUT) ;

20 pinMode (7,0UTPUT);

21 pinMode (8,0UTPUT);

2)

23 int dig = 0;

24 void loop(){

25 int pin = 2;

26 for(int 1=0;i<7;++1){

27 digitalWirite(pin,outs[dig][i]);

28 +4ping

29 3

30 delay(1000);

31 ++dig;

32 if(dig >= 10)

33 dig -= 10;

)

Figure 6.3: Seven Segment Connection

6.2.3 Output

R¥D 40

ICSP2

Figure 6.4: Seven Segment Output

31

6.3 Counter

In this example we will use a Push button with a Seven Segment Display.The User
can Provide Input to the push button and the Seven Segment will show the count.

6.3.1 Code

int outs[10][7] = {
{1,1,1,1,1,1,0%}, // O

{0,1,1,0,0,0,0 }, // 1
{1,1,0,1,1,0,1 %}, // 2
{1,1,1,1,0,0,1 %, // 3
{o0,1,1,0,0,1,1 3}, // 4
{1,0,1,1,0,1,1 %}, // 5
{1,0,1,1,1,1,1 %}, // 6
{1,1,1,0,0,0,0 }, // 7
{1,1,1,1,1,1,1 %}, // 8
{1,1,1,0,0,1,1 } // 9

};

void setup(){
pinMode (2,0UTPUT) ;
pinMode (3,0UTPUT) ;
pinMode (4,0UTPUT) ;
pinMode (5,0UTPUT) ;
pinMode (6, 0UTPUT) ;
pinMode (7,0UTPUT) ;
pinMode (8,0UTPUT) ;
pinMode (12, INPUT) ;
}
int dig = 0;
void loop(){
if(digitalRead(12) == HIGH){
int pin = 2;
for(int i=0;i<7;++i){
digitalWrite(pin,outs[dig] [i]);
++pin;
}
++dig;
delay(100);
}
if(dig >= 10)
dig -= 10;

32

6.3.2 Connections

[B code » startsimulation i a q
4 & | AduinoUNOR3T Project Info &

1 int outs[10][7] = { r Project Tite

2 {LLL,1,1,103, //0]

3 {0,1,1,0,0,0,0}, //1 . Counted

4 {1,1,0,1,1,0,1}, //2 ;

5 {L1,1,1,00,1}, //3 escriptic

6 {e,1,1,6,0,1,1}, //4 Push Button With Seven

7 {1,0,1,1,0,1,1}, //5 Segment. i

8 {1,0,1,1,,1,1}, //6 .

9 {1,1,1,0,0,00), //7

10 (LLLLLLT Y, U8

u {L1,1,0,0,,1} //9

2 %

13

14 void setup(){

15 pinMode(2,0UTPUT);

16 pinMode(3,0UTPUT);

17 pinMode(4,0UTPUT); ‘—£

18 pinMode(5,0UTPUT); . At

19 pinMode(6,0UTPUT) ; ' °

20 pinMode(7,0UTPUT);

21 pinMode(8,0UTPUT) ;

22 pinMode (12, INPUT) ;

23

24 int dig = 0;

25 void loop(){

26 if(digitalRead(12) == HIGH){

5 Tt gl

28 =0;i¢7;4+1){

29 digitaliirite(pin,outs[dig][i]);

30 ++pin;

31 3

32 ++dig;

33 delay(100);

34 }

35 if(dig >= 10)

36 dig -= 10; bl

Figure 6.5: Counter Connection

6.3.3 Output

THGITAL (PWM=

ANALOG IN .

2232

Figure 6.6: Counter Output

33

6.4 Buzzer With User Input

In this example we will read user input and beep the Buzzer according to it.

6.4.1 Code

void setup(){
pinMode (LED_BUILTIN, OUTPUT);
pinMode (8, OUTPUT);
pinMode (7, INPUT);

}

void loop(){
if (digitalRead(7) == HIGH){
digitalWrite (LED_BUILTIN, HIGH);
digitalWrite(8, HIGH);
Yelsed{
digitalWrite (LED_BUILTIN, LOW);
digitalWrite(8, LOW);

6.4.2 Connections

@cme) Start Simulation P oa Q

L & AdunoUNOR3T v

Project Info @

void setup(){ e
pinMode(LED_BUILTIN, OUTPUT);
pintode(8, OUTPUT);

1 oject Title
2

3 Push Button Example

4 pintlode(7, INPUT);

5

6

7

8

Descriptio
This is an Example of
Push button/Tactile

}

void loop(){
if(digitalRead(7) == HIGH){

9 digitalWrite(LED_BUILTIN, HIGH);
d te(8, HIGH);

1 Yelse{

12 digitalWrite(LED_BUILTIN, LOW);
13 digitalirite(s, LOW);

14)

5 X

Figure 6.7: Buzzer Connections

34

6.4.3

Output

y/

Figure

6.8: Buzzer Output

35

6.5 Motion Detection

In this example we will use PIR Sensor and Buzzer.

6.5.1 Code

void setup(){
pinMode (12, OUTPUT);
pinMode (13, QOUTPUT);
pinMode (7, INPUT);

void loop(){
if(digitalRead(7) == HIGH){
digitalWrite (13, HIGH);
digitalWrite(12, HIGH);
elsed{
digitalWrite(13, LOW);
digitalWrite(12, LOW);

6.5.2 Connections

L @ AdunoUNOR3T v Project Info *
1 void setup(){ A Project Tie
2 pintode(12, OUTPUT);
3 pinMode(13, OUTPUT); PIR Sensor
a pinMode(7, INPUT); .
E } Descrip
6 Detect Motion using PIR
7 void loop(){ Sensor. %
8 $f(digitalRead(7) == HIGH){ —
9 digitallirite(13, HIGH)
10 dig: HIGH)
1 Jelse{
12 digitallirite(13, LOW);
13 digitallirite(12, LOW);
14 }
5) o

.0, 0

Figure 6.9: PIR Sensor Connections

36

6.5.3 Output

Figure 6.10: PIR Sensor Output

37

6.6 Temperature Sensor

In this example we will use temperature sensor.

6.6.1 Code

void setup()

{
Serial.begin(9600) ;

}

void loop() {

int reading = analogRead(AOQ);
float voltage = reading * 5.0;
voltage /= 1023.0;

float temperatureC = (voltage - 0.5) * 100;
Serial.print (temperatureC) ;
Serial.println(" degrees C");

delay(1000) ;

}

6.6.2 Connections

@ Code. D Start Simulation i oa Q
@ AduinoUNOR31 v
L & Aan ”) Project Info @

1 void setup() > o g
2
3 Serial.begin(9600); Temperature Sensor
4 3
5 Descriptior
6 void loop() { This is an Example of

i Temperature Sensor ,

7 int reading = analogRead(A0);
8 | float voltage = reading * 5.0;
9 | voltage /= 1023.0

11 float temperatureC = (voltage - 0.5) * 100;
12 Serial.print(temperatureC);

13 Serial.println(" degrees C");

14 delay(1000);

Figure 6.11: Temprature Sensor Connection

6.7 Output

38

CEgED c

DIGITAL (PWhE=)

T OO0

d = .o .
rx Bl Aduino

42.38 degrees C
42.38 degrees C
42.38 degrees C
42.38 degrees C
42.38 degrees C
42 .38 degrees C
42 .38 degrees C
42 .38 degrees C

Figure 6.12: Temprature Sensor Output

6.8 Measuring Distance

In this example we will use ultrasonic sensor.

6.8.1 Code

const int pingPin = 7; // Trigger Pin of Ultrasonic Sensor
const int echoPin = 6; // Echo Pin of Ultrasonic Sensor

void setup() {

pinMode (pingPin, OUTPUT);

pinMode (echoPin, INPUT);

Serial.begin(9600); // Starting Serial Terminal
}

void loop() {
long duration, inches, cm;
digitalWrite(pingPin, LOW);
delayMicroseconds(2);
digitalWrite(pingPin, HIGH);
delayMicroseconds(10);
digitalWrite(pingPin, LOW);
duration = pulseIn(echoPin, HIGH);
cm = duration / 29 / 2;

39

Serial.print(cm);
Serial.print("cm");
Serial.println();
delay(1000);

6.8.2 Connections

B code » Start Simulation i oa a
L @ AduinoUNOR31 v Project nfo &

1 const int pingPin = 7; // Trigger Pin of Ultrason i Project Titl

2 const int echoPin = 6; // Echo Pin of Ultrasonic

3 Ultrasonic Sensor

4 void setup() {

5 pinMode(pingPin, OUTPUT);

6 pinMode(echoPin, INPUT); This is an Example of

7 Serial.begin(9600); // Starting Serial Termina 1 Ultrasonic sensor. P

8} S

9

16 void loop() {

1 long duration, inches, cm;

12 digitaliirite(pingPin, LOW);

13 delayMicroseconds (2);

1 digitallirite(pingPin, HIGH);

15 delayMicroseconds(10); r Arduino

16 digitalWrite(pingPin, LOW);

17 duration = pulseIn(echoPin, HIGH);

18 em = duration / 29 / 2;

19 Serial.print(em);

20 Serial.print("cn");

2 Serdal.println();

2 delay(1000);

EEI |

Figure 6.13: Ultrasonic Sensor Connection

40

6.8.3 Output

Figure 6.14: Ultrasonic Sensor Output

41

6.9 Detecting Smoke

In this example we will use the Gas Sensor(MQ2).

6.9.1 Code

void setup(){
Serial.begin(9600) ;
}

void loop(){
Serial.println(analogRead(A0));
delay(1000) ;

6.9.2 Connection

a Code) Start Simulation i oa a
L & AduinoUNOR3T v Project nfo *

1 veid setup(){ — [Project Title

i ! Serial.begin(9600); MQ2 Example

4 &

5 void loop(){ Penrot

6 Serial.println(analogRead(A®)); This is an Example of

7 delay(1000); MQ2. 4
8)

Figure 6.15: Gas Sensor Connection

42

6.9.3 Output

Figure 6.16: Gas Sensor Output

43

6.10 Relay Example

In this example we will use a relay module which can be used to switch on/off light

bulb, fan or other appliance.

6.10.1 Code

void setup(){
pinMode (LED_BUILTIN, QUTPUT);
}

void loop(){
digitalWrite (LED_BUILTIN, HIGH);
delay(1000) ;
digitalWrite (LED_BUILTIN, LOW);
delay(1000) ;

6.10.2 Connections

B Code. D Start Simulation

L @ AduinoUNOR31 v
void setup(){ =T
pinMode (LED_BUILTIN, OUTPUT);

¥

1
2
3
4
5 void loop(){

6 digitalWrite(LED_BUILTIN, HIGH);
7 delay(1000);

8 digitallirite(LED_BUILTIN, LOW);
9 delay(1000);

o}

Project Info &
Relay Example
Descri

This is an Example of
Relay. 4

Figure 6.17: Relay Connection

44

6.10.3 Output

Figure 6.18: Relay Output

45

6.11 Motors

In this example we will simulate electric motors.

6.11.1 Connections

Code D Start Simulation

Circuit Components

General

Controllers

Output

Input

Sources

Drivers

Miscellaneous

=

Figure 6.19: Motor Connection

6.11.2 Output

4500RPM

13500RPM 13500RPM

Figure 6.20: Motor Output

46

P]ectlf 3
ect Tile

M(

Descriptior
This is an
Motors.

Example of

6.12 Servo Motor

In this example we will rotate Servo Motor from 0 to 180 degree back and forth.

6.12.1 Code

#include <Servo.h>
Servo myservo;
int pos = 0;

void setup() {
myservo.attach(3);

}

void loop() {
for (pos = 0; pos <= 180; pos += 1) {
myservo.write(pos);
delay(15);
}
for (pos = 180; pos >= 0; pos -= 1) {
myservo.write(pos) ;
delay(15);

47

6.12.2 Connections

-:-!—--

Figure 6.21: Servo Motor Connection

6.12.3 Output

R0 40

Figure 6.22: Servo Motor Output

48

6.13 RGB LED

Interfacing RGB LED with arduino.

6.13.1 Code

void setup(){
pinMode (11, OUTPUT);
pinMode (9, OUTPUT);
pinMode (7, OUTPUT);
+

void loop(){
for(int i=1;i<=7;++i){
digitalWrite(11, i&1);
digitalWrite(9, (i>>1)&1);
digitalWrite(7, (i>>2)&1);
delay(1000) ;

6.13.2 Connections

Figure 6.23: RGB LED Connection

49

6.13.3 Output

Figure 6.24: RGB LED Output

20

Chapter 7

Limitations And Future Scopes

7.1

Issues

Issues exisiting in our system is mentioned in Github Issues. You can also contribute
to our project by solving few issues or creating issue into the following link
https://github.com/frg-fossee/eSim-Cloud/issues?q=is%3Aopen+isj3Aissue+
label’3AArduino+label’3Abug

7.2 Limitations

e We cannot communicate between two microcontrollers.

Simulating more than 10 microcontroller simultaneously can crash browser as
it require more memory.

For Simulating microcontroller we need an accuracy of microseconds however
browser can only provide accuracy of millisecond.

7.3 Future Scope

Adding Block Programming like Scratch.

Embedded Circuit in different website.

Adding Digital Circuit components like AND gate etc.

Adding More Sensors and Drivers.

Adding More programming language like LUA Python etc.

Adding More Microcontrollers like ESP8266,Arduino Nano etc.
Desktop and Smartphone Compatibility.

Multiple user working on same Circuit in Real Time. Like Google Docs

Interactive Book Containing Examples and resource for Learning Arduino.

51

https://github.com/frg-fossee/eSim-Cloud/issues?q=is%3Aopen+is%3Aissue+label%3AArduino+label%3Abug
https://github.com/frg-fossee/eSim-Cloud/issues?q=is%3Aopen+is%3Aissue+label%3AArduino+label%3Abug

Bibliography

[1] https:
[2] https:
[3] https:
[4] https:
[5] https:
[6] https:
[7] https:
[8] https:

[9] https:

//dmitrybaranovskiy.github.io/raphael/.
//inkscape.org/.
//microsoft.github.io/monaco-editor/.
//github.com/arduino/arduino-cli.
//www.celeryproject.org/.
//www.mysql.com/.

//www.mongodb. com/.
//github.com/wokwi/avr8js

//canvg.github.io/canvg/.

52

https://dmitrybaranovskiy.github.io/raphael/
https://inkscape.org/
https://microsoft.github.io/monaco-editor/
https://github.com/arduino/arduino-cli
https://www.celeryproject.org/
https://www.mysql.com/
https://www.mongodb.com/
https://github.com/wokwi/avr8js
https://canvg.github.io/canvg/

	Introduction
	Project Requirements

	Front-end
	Front UI
	Gallery UI
	Dashboard UI
	Simualtion UI
	Component Section
	Code Editor
	Workspace
	Other Features

	View Project

	Backend
	Compilation
	Celery
	Database
	API Endpoints
	POST /arduino/compile
	GET /arduino/compile/status
	POST /save
	GET /save/arduino/list
	GET /save/search
	GET /save/{SaveID}
	POST /save/{SaveID}
	DELETE /save/{SaveID}
	POST /save/{SaveID}/sharing/on
	POST /save/{SaveID}/sharing/on

	Working
	Simulation
	Saving

	Creating an Custom Component
	Steps
	Future Improvements

	Examples
	Blink Example
	Code
	Connection
	Output

	Seven Segment
	Code
	Connections
	Output

	Counter
	Code
	Connections
	Output

	Buzzer With User Input
	Code
	Connections
	Output

	Motion Detection
	Code
	Connections
	Output

	Temperature Sensor
	Code
	Connections

	Output
	Measuring Distance
	Code
	Connections
	Output

	Detecting Smoke
	Code
	Connection
	Output

	Relay Example
	Code
	Connections
	Output

	Motors
	Connections
	Output

	Servo Motor
	Code
	Connections
	Output

	RGB LED
	Code
	Connections
	Output

	Limitations And Future Scopes
	Issues
	Limitations
	Future Scope

