Summer Fellowship Report

On

eSim - NGHDL

Submitted by

Rahul Paknikar
Neel Shah

Under the guidance of

Prof.Kannan M. Moudgalya
Chemical Engineering Department
IIT Bombay

July 18, 2019

Acknowledgment

It is really a pleasure to acknowledge the help and support that has gone to in making
this successful project. We express sincere gratitude to Prof. Kannan Moudgalya
and FOSSEE Team at IIT-Bombay for providing us with this opportunity to work on
this project and also having faith in our abilities. We would also like to express our
gratitude towards Prof. Madhav Desai for showing us a clear path to simulate the
process. We would like to thank our mentors Saurabh Bansode & Gloria Nandihal
and fellow interns Mallikarjun Reddy & Bharghav Katakam for helping us out with
all the problems that we faced while simulation and making our fellowship experience
an enjoyable one. Lastly we would like to thank Usha Vishwanathan and Vineeta
Gharvi mam for helping us to communicate and manage the meetings with the
professors.

Contents

1 Introduction 4
1.1 VHDL 4
1.2 GHDLo 4
1.3 NGSPICE 4

2 Installing NGHDL 5
21 GHDL 5
2.2 Ngspice e)
2.3 Others 6

3 Nghdl workflow 7
3.1 Generating Codemodel (ngspice) and DUT files 7
3.2 Ngspice - GHDL interaction 9

4 Generating Kicad library files 10

5 Limitations with Earlier Version 11

6 Declaration of Ports 12
6.1 Issue e 12
6.2 Methodology 12

7 Multiple Outputs 14
7.1 Issue 14
7.2 Methodology 14

8 Termination of VHDL Testbench 16
8.1 Issue e 16
8.2 Methodology 16

9 VHDL - Structural Style 18
9.1 Issue e 18
9.2 Methodology 18

List of Figures

6.1
6.2

7.1
7.2
7.3

8.1

Port Declaration - port_ vector_info 12
Port Declaration - Testbench Generation 13
GHDL Server - Data Preparation (Data_Send function) 14
GHDL Server - Sending Data (Data_Send function) 15
GHDL Server - Parse Buffer 15
GHDL Server - Get Ngspice PID 16

Chapter 1

Introduction

1.1 VHDL

VHDL is an acronym for Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (HDL), which is a programming language used to describe a
logic circuit by function, data flow behavior, or structure.

1.2 GHDL

GHDL is a shorthand for G Hardware Design Language (currently, G has no mean-
ing). It is a VHDL compiler that can execute (nearly) any VHDL program. GHDL
is not a synthesis tool: you cannot create a netlist with GHDL (yet).Unlike some
other simulators, GHDL is a compiler: it directly translates a VHDL file to machine
code, without using an intermediary language such as C or C++.

1.3 NGSPICE

Ngspice is a mixed-level /mixed-signal circuit simulator based on three open source
software packages: Spice3f5, Ciderlbl and Xspice:

e Xspice is an extension to Spice3 that provides code modeling support and
simulation of digital components through an embedded event driven algorithm.

Since GHDL can’t generate netlist files for ngspice simulations, the aim here is to
generate code models using xspice and simulate digital as well as mixed-mode sim-
ulation through embedded event driven algorithm, in this case socket programming
between GHDL and ngspice.

Chapter 2

Installing NGHDL

2.1 GHDL

As of July 2019, GHDL doesn’t have a package in the Ubuntu sources, or a PPA to
download GHDL from, so we need to build GHDL from source.

We need to use either *LLVM’ backend or >GCC’ backend, since we need to interface
GHDL with C here, which needs -W1 flag, which requires either LLVM or GCC
backend.

For building with LLVM backend has a few dependencies as follows-

1. make
2. gnat
3. llvm
4. clang
5. zliblg-dev
After installing there, steps for GHDL with LLVM backend is as follows, (after

downloading from source)-

./ configure —with—llvm—config
make
make install

2.2 Ngspice

Unlike GHDL, ngspice has a package in the Ubuntu sources, so it can be downloaded
directly, but here we need to build from source again as we need to do two things -

1. Add GHDL code models, so that GHDL code can be executed at runtime

2. Add a patch to handle orphan testbench processes.
Orphan testbench processes are those simulation which have run until comple-
tion and plotted, but the testbench files are still executing in an infinite loop

>

https://github.com/ghdl/ghdl
https://ghdl.readthedocs.io/en/latest/using/Foreign.html
https://ghdl.readthedocs.io/en/latest/using/Foreign.html

For adding GHDL codemodels, so that they get executed at runtime, we need to-
1. Add GHDL to GNUmakefile in the codemodels list

2. Add GHDL code models to spinit file, to include them at runtime. (Also create
the appropriate directories for GHDL)

For handling orphan testbench process, a log of testbench process id is kept in /tmp
folder, under NGHDL. .. filename, it contains process id for the currently running
testbenches, they are read and killed.

The patch can be found here

Before building Nspice the above 2 patches have to be applied, then it needs to
be installed at the appropriate location

2.3 Others

Other dependency are installed when you install eSim. They include python and
pyqt4. Also make sure to create symlink if they aren’t created for Ngspice, GHDL
or Nghdl.

Final modified installation script can be found here.

https://github.com/FOSSEE/nghdl/blob/master/src/outitf.c
https://www.shellhacks.com/symlink-create-symbolic-link-linux/
https://github.com/nilshah98/nghdl/blob/2019Fellows/install-nghdl.sh

Chapter 3

Nghdl workflow

There are primarily two steps to simulating your vhdl code using nghdl

1. Executing nghdl generates codemodel and DUT files for ngspice

2. Executing ngspice to exchange messages between GHDL and ngspice
This 1s where the socket programming part comes into picture

3.1 Generating Codemodel (ngspice) and DUT
files

When ngspice executes your netlist files, it parses the models used and searches for
the same in its libraries. If we want to use our own library, we can add those using
codemodels which are supported by xspice.

In this case, the codemodel files are generated by nghdl. Nghdl has a few steps
as follows-

1. Create model directory
Directory is created with name of the model to be generated at-
/ngspice-nghdl/src/xspice/icm/ghdl. This directory shall contain all the
files generated for the particular model

2. Adding model in modpath
The name of the model that is created is added at modpath.lst, can be found at
/ngspice-nghdl/src/xspice/icm/ghdl this contains the list of all the ghdl
models. When make is getting executed for ngspice, the modpath.lst is read
and then respective models are generated to codemodel files.

3. Generating model files
The vhdl file is parsed for it’s input and output ports and accordingly models
are generated, this is done by /nghdl/src/model_generation.py. The files
that are generated are -

e connection_info.txt

e cfunc.mod

e ifspec.ifs

e modelName_tb.vhdl
e start_server.sh

e sock_pkg_create.sh

4. Generate codemodel files
Finally make and make install are called for ngspice, which goes through all
the the codemodels (ghdl) as well, and then goes through their modpath.1lst
as well, and accordingly executes all the models mentioned, generates cfunc.c
and links them under ghdl.cm in our case
Also, here the cfunc.mod file is converted to cfunc.c file format by actually
passing the data provided by ngspice, which is stored in mif _private, the
strcutre for this data can be found at-
/ngspice-nghdl/src/include/ngspice/mifcmdat.h file.

mif private consists of all the data ngspice sends, the live data as well as
the limits, such as stop time for simulation, current time, current input loads,
among others.

This is the first part of nghdl, which generates the codemodel files as well as the
DUT files that contain testbench file for the model mentioned.

In case nghdl gets stuck while generating the codemodel files, make sure that
you delete all the files corresponding to the model from /ngspice-nghdl, since
when next time make and make install are executed they will go through the
modpath.lst and all the models are generated, even the ones that didn’t work.
So, remove the models that didn’t work incase nghdl stops working, the models are
places primarily at-

1. /ngspice-ghdl/src/xspice/icm/ghdl
2. /ngspice-ghdl/src/xspice/icm/ghdl/modpath.lst

3. /ngspice-ghdl/release/src/xspice/icm/ghdl

3.2 Ngspice - GHDL interaction

When the ngspice simulation is called for digital or mixed model circuits, the fol-
lowing steps taking place-

1. cfunc.c file located at the release folder-
/ngspice-nghdl/release/src/xspice/icm/ghdl/modelName is called, this is the
client side

2. Parameters are passed from ngspice to this file, using mif private structure,
and accordingly parameters such as socketid, time-limit, load, among others
are set

3. Once the parameters are set, the start_server.sh file is called from
/ngspice-nghdl/src/xspice/icm/ghdl/modelName/DUTghdl, and the por-
tid parameter is passed

4. The above step, analyzes the .vhdl files and finally, elaborates and interfaces
ghdlserver.o and modelName tb file, and lastly executes the modelName tb

5. modelName_tb file contains the calls to the ghdlserver file, namely-
e Vhpi_Initialize
Initialises server, setup the socket, bind it, and start listening to it
Vhpi_Send
Vhpi_Listen
Vhpi_Get_Port_Value
e Vhpi_Set_Port_Value

Vhpt commands are used for interaction of vhdl code with C code

6. This testbench file, initialize, listens and sends data to and from ghdlserver.c
file using the Vhpi commands

7. On the client side (cfunc.c) meanwhile, time is checked for each event, and
then accordingly data is loaded from mif private and sent to server, and
when time is over, END signal is sent by the client, which closes the connection.

Chapter 4

Generating Kicad library files

Kicad components are just boxes with no inner logic and can be generating with just
the port info and no other logic required, and will be same for same number of ports.

e createKicadLibrary.py file creates kicad library components by using the
template defined in Appconfig.py under kicad lib_template

e The generated kicad components are stored at eSim Kicad.lib in the home
directory.

e Also, -e flag is required to activate creating kicad libraries, if you are running
nghdl from the terminal. ie-
sudo nghdl -e, this will produce the library component as well, just
sudo nghdl won’t generate library component.

10

Chapter 5

Limitations with Earlier Version

If there are more than one input/output in the declaration, then we need to
declare using std logic, but can’t declare signal.
Example: ”in std_logic;” but cannot declare ”in std_logic(3 downto 0),”.

NGHDL works with only one output and cannot implement any device with
two and more outputs (Socket Programming).

The declaration of all the ports in VHDL should be std_logic_vector only.

The declaration of every input and output port should be done in a new VHDL
statement separately.

The VHDL Testbench never terminates for all the instances of Ngspice except
the first one (Infinite Loop Issue).

The GHDL compilation fails for Arithmetic operations to a vector in VHDL.

The names of input and output ports in VHDL code should not be same for
different VHDL examples.

It is not possible to use Structural Style of VHDL.

11

Chapter 6

Declaration of Ports

6.1 Issue

The declaration of ports in VHDL were restricted to only ’std_logic_vector’. 1t is
possible to use ’std_logic’ for port declarations in GHDL without any elaboration
error. However, when "std_logic’ ports are simulated through Ngspice, the simulation
fails giving errors.

6.2 Methodology

This issue is traced down to the Testbench file that is auto-generated for the corre-
sponding VHDL code. The file 'model_generation.py’ in the ’src¢’ folder of NGHDL
is responsible for generating this Testbench. This file, however, has been coded to
work with only ’std_logic_vector’.

re.search("out",item
re.search("std lo
temp-re.compile(
re.search("std

temp-=re.compile(r

"Please check your vhdl code Tor datatype of output port”
sys.exit()

"Please check the in/out direction of your port"
sys.exit()

Lhs=temp.split(item) [0

rhs=temp.split(item)[]

bit info=re.compile(r"\s*downto\s*", 1 re.I).split(rhs)[0]
bit info:
port_info.append(lhs+":"+str(int(bit info)+int(1l)})
port vector info.append(1)

ﬁort_info.append{lhs - riint(l)))
port_vector info.append(0

Figure 6.1: Port Declaration - port_ vector_info

Thus, we need to modify the code to adjust the ’std_logic’ ports. While scanning
for ports in the VHDL file, a list of flags called ’port_vector_info’ is maintained as

12

item 1 -input port:
port vector info[port vector count]:
components.append(item.split(':")[0]+": in std logic vector("+str(int(item.split(':')[1])-int(1))

éomponents.appendtitem.splitt s')0]+": in std logic;\m\t\t\t\t"
port_vector count

item 11-output port[: 1]:
port vector info[port vector count]:
components. append(item.split(':')[8]+": out std logic vector("+str{int(item.split(':')[1])-int(1)

components.append(item.split(':"){0]+": out std logic;\n\t\t\t\t"
port vector count

port vector info[port vector count]:
components.append(output_port[-1].split(':")[0]+": out std logic vector("+str(int(output port[-1].spl

:l:omponents.appendioutput_port[1].split(':')[0]+": out std logic\n\t\t\t\t")

components. append(");\n")
components.append(™\tend component;\n\n")

51 [1

signals.append("\tsignal clk s : std logic := '0';

item in input port:
port vector info[port vector count]:
signals.append("\tsignal "+item.split(':')[0]+": std logic vector("+str(int(item.split(':")[1])-1f

signals.append("\tsignal "-item.split(':')[0]+": std logic;\n"
port_vector count

Figure 6.2: Port Declaration - Testbench Generation

shown in Figure 5.1; wherein a value of 1 indicates that the port is ’std_logic_vector’
and a value of 0 indicates 'std_logic’. An integer variable ’port_vector_count’ is used
to keep track of the input and output ports while generating the Testbench file as
shown in Figure 5.2. As a result, the input and output ports can now be declared
as:

e Only Non-Vectors (’std_logic’)
e Only Vectors (’std_logic_vector’)

e A combination of Vectors and Non Vectors (’std_logic_vector’ and ’std_logic’)

13

Chapter 7

Multiple Outputs

7.1 Issue

NGHDL works with only one output and cannot implement any device with two
and more outputs (Socket Programming).

7.2 Methodology

After running several simulations, it was observed that the client (Ngspice) always
waited for the first output from the server (GHDL-Vhpi). However, after receiving
this first output, the communication between client and server became asynchronous
in nature. Thus, the client would receive any further outputs after Ngspice execution
or the server would get terminated even before sending any further outputs.

sockid)

semicolon
—t_ retries
ret;

Ffound

d=—out port num; dJd4++)

{sTTr«

L
Tound=

{ Ffowumnd)

=N s -—=kew)) :
SxcolLon,]
s —=wal , = {(s—-—=wal)):
Sesemicol |

adadadi

Figure 7.1: GHDL Server - Data Preparation (Data_Send function)

Hence, instead of sending data one by one from server to client, all the computed
output ports are packed in a buffer ’out’ as shown in Figure 6.1. All of these port

14

values are then send to the client as shown in Figure in 6.2. This output, being the
very first one, is received by the client synchronously and all the ports are received
in this single output.

(wrt_retries

free(out);

et(sockid) ;

nd aborted to CLT:%d buff

free(out) ;

Sleep
gea) ;
wrt_retries++;
hy
((send(sockid, out, strlen(out), 8)) ==

(LOG_ERR, "Failure sending to CLT:%d er:%s", sockid, out);
J -

Figure 7.2: GHDL Server - Sending Data (Data_Send function)

Due to this logic, the buffer size needs to be increased and thus ’out’ buffer is set
to 2048 bytes and maximum limit of 64 output ports have been allowed for NGHDL
as shown in Figure 6.3.

arse buf (i char* receive_buffTer)
rcwvnum;

INFO, "RCVD RCWNMN:%d Trom CLT:%d buffer
sock_id, receive_ buffer);

*token;
*ptrl=receive_ buftfTer;
*wvar;

*wvalue ;

rtok r{(ptrl, ".,"., &rest))

r{token, ":", &wvalue))

_struct*)malloc((struct my struct));

A0y

sTR{users,

(struct my_struct)):

s);

Figure 7.3: GHDL Server - Parse Buffer

15

Chapter 8

Termination of VHDL Testbench

8.1 Issue

If an instance of Ngspice is already running/simulating, then the VHDL Testbench
in any further created instances of Ngspice will never terminate (Infinite Loop Issue).

8.2 Methodology

Every time a Ngspice instance is created, an associated Testbench and GHDL Server
is started. To terminate them, Ngspice sends an END Signal to the Server.

> pid{void)

r_entry;
d bufflio24a];

* mnptr;
valid nwum

- entry-=>d name, &nptr, 10);
) && (tmp == LONG MAX || tmp == LONG MIMN))

perror{"s

(dir entry-=>d name =—— nptr)

(tmp)

"S5, rd_
(rd_buff, N

pidli+—+1]

1+
¥
(fp) fc (fp);

(pid[i-211);

Figure 8.1: GHDL Server - Get Ngspice PID

16

Inorder to do that, Ngspice needs the Process ID (PID) of that GHDL Server
wherein this PID is known from a file made by the GHDL Server itself. The server
first iterates through the /proc/ directory of the root location in Linux based OS.
It then scans all the process directories having the name Ngspice and breaks the
iteration immediately on match.

However, since the server breaks immediately on first match of process Ngspice,
it creates that file with the PID of the first instance of Ngspice whose content in-
cludes that server’s own PID. Thus, when the current instance of Ngspice tries to
open that corresponding file with its own PID, it doesn’t find it as the name of that
file is based on the first instance of Ngspice and therefore, goes into Infinite Loop.

Figure 7.1 shows a workaround to solve this issue. An array of PIDs is created
which will store all the PIDs of Ngspice seen so far. Now, instead of breaking the
logic on first match of Ngspice, let the search continue to find all other instances
of the Ngspice. If it matches, then add its PID to that array. When the search is
finished, then return the last PID inserted in that array. The significance of last PID
inserted is that Process IDs are alloted to the processes in increasing order on
Linux based Operating Systems. So the process with higher PIDs will come later in
the search results and the highest PID of Ngspice instance will be inserted at last
indicating that it is the most recent one.

17

Chapter 9

VHDL - Structural Style

9.1 Issue

The use of structural style in VHDL without any entity declaration and architecture
of the components used by the main entity would give elaboration error in GHDL
indicating that the component instances are not bounded.

9.2 Methodology

The structure of any VHDL code using structural style should be similar to that of

the following example on Full Adder:

library ieee;
use ieee.std_logic_1164.all;

entity full_adder_structural
port(a: in std_logic;

b: in std_logic;
cin: in std_logic;
sum: out std_logic;
carry: out std_logic);

end full_adder_structural;

library ieee;
use ieee.std_logic_ 1164 .all;

entity andgate is
port(a: in std_logic;
b: in std_logic;
z: out std_logic);
end andgate;

architecture el of andgate is
begin

z <= a and b;
end el;

library ieee;
use ieee.std_logic_ 1164 .all;

entity xorgate is
port(a: in std_logic;
b: in std_logic;
z: out std_logic);
end xorgate;

architecture e2 of xorgate is
begin

7z <= a xor b;

end e2;

library ieee;
use ieee.std_logic_1164.all;

entity orgate is
port(a: in std_logic;
b: in std_logic;
z: out std_logic);
end orgate;

architecture e3 of orgate is
begin

z <= a or b;

end e3;

architecture structural of full_adder_structural

component andgate
port(a: in std_logic;
b: in std_logic;
z: out std_logic);
end component;

component xorgate
port(a: in std_logic;
b: in std_logic;
z: out std_logic);
end component ;

19

1s

component orgate
port(a: in std_logic;
b: in std_logic;
z: out std_logic);
end component;

signal cl,c2,c3: std_logic;

begin

ul : xorgate port map(a,b,cl);

u2 : xorgate port map(cl,cin , sum);
u3 : andgate port map(cl,cin,c2);
ud : andgate port map(a,b,c3);

ub5 : orgate port map(c2,c3,carry);

end structural;

In above example, the main entity i.e. full adder_structural should be de-
clared at the top of the file because model_generation.py will generate a model
only for the first entity in the VHDL file. Each subsequent entity must again use the
ieee library and have their respective architectures defined. The architecture of the
main entity, that will be using other entities as its components, should be defined
at last so that it can find those entities which have been defined earlier. Note that
the component names and the corresponding entity names should be same.

20

Reference

e Commits by Neel :
https://github.com/nilshah98/nghdl/commits/2019Fellows

e Commits by Rahul :
https://github.com/rahulpl13/nghdl/commits/2019Fellows

e Creating Symlink in Linux :
https://www.shellhacks.com/symlink-create-symbolic-link-1linux/

e GHDL Source :
https://github.com/ghdl/ghdl

21

https://github.com/nilshah98/nghdl/commits/2019Fellows
https://github.com/rahulp13/nghdl/commits/2019Fellows
https://www.shellhacks.com/symlink-create-symbolic-link-linux/
https://github.com/ghdl/ghdl

	Introduction
	VHDL
	GHDL
	NGSPICE

	Installing NGHDL
	GHDL
	Ngspice
	Others

	Nghdl workflow
	Generating Codemodel (ngspice) and DUT files
	Ngspice - GHDL interaction

	Generating Kicad library files
	Limitations with Earlier Version
	Declaration of Ports
	Issue
	Methodology

	Multiple Outputs
	Issue
	Methodology

	Termination of VHDL Testbench
	Issue
	Methodology

	VHDL - Structural Style
	Issue
	Methodology

