
Summer Fellowship Report

On

Fossee Web Development

Submitted by

Fahad Israr

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

July 11, 2019

Acknowledgment

The success and final outcome of this project required a lot of guidance and
assistance from many people and I am extremely privileged to have got this all
along the completion of my project. All that I have done is only due to such
supervision and assistance and I would not forget to thank them.

I owe my deep gratitude to our Project Mentors: Mr.Nitish Kumar ,
Mr.Tejas Vaidya and Miss Ruchi Kumari, who took keen interest on our
project work and guided us all along, till the completion of our project work by
providing all the necessary information for developing a good system.

I respect and thank Dr. P. Sunthar, for providing me an opportunity to do the
project work in Drupal under his esteemed guidance and giving us all support
and guidance which made me complete the project duly. I am extremely thankful
to him for providing such a nice support and guidance.

I heartily thankful to other Mentors and entire Fossee Team for their guidance
and suggestions during this project work.

I would not forget to remember my co-fellows Mansimran,Bhavika,Esha and
Kalpesh for their encouragement and more over for their timely support and
friendly encouragement till the completion of our project work.

I am thankful to and fortunate enough to get constant support and cooperation
from IIT Bombay Administration which helped us in successfully completing
our project work.Also, I would like to extend our sincere esteems to all the working
staff of IIT B for their sincere effort and support.

1

Contents

1 Introduction 3

2 Preface to Drupal 4
2.1 Reasons for using Drupal . 4
2.2 The Drupal Architecture . 6
2.3 Drupal Terminology . 7

2.3.1 Modules . 7
2.3.2 Distributions . 7
2.3.3 Content Structure Glossary 8

3 Migrations 9
3.1 Migrate Modules . 9
3.2 Migrations as Extract - Transform - Load (ETL) processes 9
3.3 Migrate API plugins . 11
3.4 Executing migrations . 11

3.4.1 Importing migration YAML definitions 11
3.4.2 Checking migration status . 11
3.4.3 Executing the migration . 12
3.4.4 Rollback the migration . 12
3.4.5 Executing the migration on schedule: 12
3.4.6 Modifying the migration definition: 12

3.5 Stubs . 13
3.6 Our work with Drupal Migration: . 13

3.6.1 Our Methodology: . 13
3.6.2 Migrating Text,Entity Reference and File : 15
3.6.3 Migrating Taxonomy Term and Image: 16
3.6.4 Migrating Basic Page . 17

4 Form alter,View Creation and Exporting Modules 18
4.1 Hook Form alter . 18
4.2 View Creation . 20
4.3 Exporting Custom Modules . 21
4.4 Deploying on Github . 22

5 Headless Drupal: Progressive Web App with Drupal 24
5.1 Setting Up our Back-End with REST 24
5.2 Developing Front-End React JS . 25

2

Chapter 1

Introduction

A content management system (CMS) is a software tool that lets users add,
publish, edit, or remove content from a website, using a web browser on a
smartphone, tablet, or desktop computer. Typically, the CMS software is written
in a scripting language, and its scripts run on a computer where a database and a
web server are installed. The content and settings for the website are usually
stored in a database, and for each page request that comes to the web server, the
scripts combine information from the database and assets (JavaScript files, CSS
files, image files, etc. that are part of the CMS or have been uploaded) to build the
pages of the website.The combination of the operating system that the CMS runs
on, the scripting language it is written in, the database it stores its information in,
and the web server that runs the scripts to retrieve information and return it to
the site visitors web browser is known as the stack that the CMS runs on; the
commonly used combination of the Linux operating system, Apache web server,
MySQL database, and PHP scripting language is known as the LAMP stack.

Drupal is a flexible CMS based on the LAMP stack, with a modular design
allowing features to be added and removed by installing and uninstalling modules,
and allowing the entire look and feel of the website to be changed by installing and
uninstalling themes. The base Drupal download, known as Drupal Core, contains
the PHP scripts needed to run the basic CMS functionality, several optional
modules and themes, and many JavaScript, CSS, and image assets. Many
additional modules and themes can be downloaded from the Drupal.org website.

Our project focuses centrally on Distributions,Custom Modules and Migrations in
Drupal CMS.We tend to employ drupal modules to generate the desired
configurations and also contribute our work globally on Open Source via Github.

3

Chapter 2

Preface to Drupal

Drupal is a free, open-source content management system (CMS) with a large,
supportive community.The Drupal slogan is ”Come for the code, stay for the
community.” You can download the software for free and do what you like with it.
There are also tens of thousands of people around the world who come together to
improve the code, write documentation, run events, and support each other.

2.1 Reasons for using Drupal

When building a website, you have your choice of using one of the many existing
CMS packages and hosted services, developing your own CMS, or building the site
without using a CMS. Here are some of the reasons you might choose to use
Drupal:

• Building a small, simple site with static HTML pages is not difficult, and you
can get a simple site up very quickly. Setting up a site in a CMS generally
requires more time initially, but brings you the benefits of on-line editing
(easier for less experienced content maintainers), uniformity (harder to
maintain using static HTML for larger sites), and the possibility of more
complex features requiring a database.

• Some CMS software is special-purpose; for instance, there are packages and
hosted services that you can use to build a blog or a club membership
website. Drupal, in contrast, is a general-purpose CMS. If you are building a
special-purpose site, you might choose to use a special-purpose CMS;
however, if your site falls even slightly outside the intended purpose, you will
probably be better off using a general-purpose CMS rather than trying to
adapt a special-purpose CMS.

• Building your own CMS-type software can seem attractive. However, using a
general-purpose CMS like Drupal as a starting point is usually a better idea,
because the basic CMS functionality (such as user accounts and content
management) has thousands of developer hours behind it, including many
years of user testing, bug fixing, and security hardening.

4

• Some CMS software packages are expensive to purchase a license for. Some
are free or have a free version, but have restrictive licenses that do not allow
you to make modifications and extensions. You might prefer to use a package
(like Drupal) that has a less restrictive software license, and is developed by
a world-wide community.

• Flexibility:One of the major USP’s of Drupal is its ability to create and
manage a wide variety of content types, including but not limited to videos,
polls, blogs, podcasts, and statistics. Because of this feature, Drupal enables
a flexible design platform to create content-rich websites for a variety of
different markets like media or commerce. The script also includes
capabilities of design elements editing, which makes it easy to create both
simple and complicated web page configurations.

• Customizability: In addition to being flexible, Drupal is also highly
customizable. Boasting over 16,000 modules and plug-ins, Drupal allows you
to modify, adjust and implement an endless wealth of additional custom
features into your website like CRM, security, social media and SEO.

• Scalibility:Another major strength of Drupal is that its tremendously
scalable. You can exponentially grow the number of your web pages without
changing a thing. Because of this, Drupal is great at accommodating content
growth. Its also great at alternating between periods of constant traffic and
high traffic spikes, which is why it’s used by weather.com and
whitehouse.gov.

• Security:Drupal also offers unshakable security. As of 2015, the annual
Drupal security report notes that there have been no widely exploited
vulnerabilities in Drupal core for which there was no patch or upgrade
available at the time of public disclosure.” The closest known instance was an
exploit in a common XML-RPC code library that was in use in early versions
of Drupal. All vendors using the library were at risk, but no wide attack was
known to be in play. In short, the CMS is highly secure and offers regular
patches and safeguarding from exploits, making it great for enterprise clients.

• Community:Drupal is an open source CMS. Aside from being a licensing
option, open source is really a culture and an approach to technology that
revolves around the free exchange of ideas and innovation. The open source
community offers extensive public documentation, well-developed discussion
boards, chat and mailing lists, alongside an air of approachable online
culture.

• Besides,Drupal can also run on other technology stacks:

– The operating system can be Windows or Mac OS instead of Linux.

– The web server can be Nginx or IIS instead of Apache.

– The database can be PostgreSQL or SQLite instead of MySQL, or a
MySQL-compatible replacement such as MariaDB or Percona.

5

2.2 The Drupal Architecture

Figure 2.1: The Drupal Architecture

The architecture of Drupal contains the following layers and entities:

• Users: These are the users on the Drupal community. The user sends a
request to a server using Drupal CMS and web browsers, search engines, etc.
acts like clients.

• Administrator: Administrator can provide access permission to authorized
users and will be able to block unauthorized access. Administrative account
will be having all privileges for managing content and administering the site.

• PHP: Drupal uses PHP in order to work with an application which is
created by a user. It takes the help of web server to fetch data from the
database. PHP memory requirements depend on the modules which are used
in your site. Drupal 6 requires at least 16MB, Drupal 7 requires 32MB and
Drupal 8 requires 64MB.

• Web Server: Web server is a server where the user interacts and processes
requests via HTTP (Hyper Text Transfer Protocol) and serves files that form
web pages to web users. The communication between the user and the server
takes place using HTTP. You can use different types of web servers such as
Apache, IIS, Nginx, Lighttpd, etc.

• Database: Database stores the user information, content and other
required data of the site. It is used to store the administrative information to
manage the Drupal site. Drupal uses the database to extract the data and
enables to store, modify and update the database.

6

2.3 Drupal Terminology

2.3.1 Modules

A module is a set of PHP, JavaScript, and/or CSS files that extends site features
and adds functionality. You can turn the features and functionality on by
installing the module, and you can turn it off by uninstalling the module; before
uninstalling, you may need to remove data and configuration related to the feature
or functionality. Each module that is installed adds to the time needed to generate
pages on your site, so it is a good idea to uninstall modules that are not needed.
The core download provides modules for functionality such as:

• Managing user accounts (the core User module)

• Managing basic content (the core Node module) and fields (the core Field
and Field UI

• modules; there are also core modules providing field types)

• Managing navigation menus (the core Menu UI module)

• Making lists, grids, and blocks from existing content (the core Views and
Views UI modules)

A Drupal site can have three kinds of modules:

• Core modules that ship with Drupal and are approved by the core
developers and the community.

• Contributed modules written by the Drupal community and shared under
the same GNU Public License (GPL) as Drupal.

• Custom modules created by the developer often for a particular use case
specific to the site they’re working on.

2.3.2 Distributions

Distributions are full copies of Drupal that include Drupal Core, along with
additional software such as themes, modules, libraries, and installation profiles.
There are two main types of Drupal distributions:

• Full-featured distributions: complete solutions for specialized use cases.

• Other distributions: quick-start tools, starting points for developers and site
builders.

7

2.3.3 Content Structure Glossary

• Content types: content types are one of the main building blocks within a
Drupal site; as the name suggests, content types hold content. However,
different content types can hold different kinds of content; an event can hold
information that is specific to a time, where a discussion can be used for
people to talk. Most sites have multiple different content types, and the
name of a content type will ideally give information about how it is used.
Node: within Drupal, a node is a piece of content. All data stored via a
content type is a node.

• Taxonomy: Drupal’s taxonomy system is used to categorize information. It
is a general term that is used to describe how things are categorized.
Vocabulary: a vocabulary is a specific, high level subject area. Each
vocabulary consists of multiple terms (see below). For example, an example
of two vocabularies used in a news site could be ”Subject” and ”Region”.

• Term: a term is an individual topic within a vocabulary. For example, the
terms ”Texas” and ”The rest of the United States” could be in the ”Region”
vocabulary. Menus: collections of links; these links can be displayed as a list,
as drop-down items, with graphics, etc, depending on how they are styled by
the theme.

• Blocks: Blocks contain and display a variety of information on a Drupal
site. They can be created in a variety of ways, and provide a range of options
for displaying and theming content.

• Entity: an entity is a piece of data within a Drupal site. Nodes, users,
comments, and taxonomy are all entities; additionally, with custom code you
can create new entity types if/when needed. You can also add fields to
entities, which allows for things like detailed user profiles, or more
sophisticated comment forms.

• Fields: fields are used to store and display structured information. For
example, on a user profile, you would want to create a ”First” and ”Last”
name field to store normalized data; or, you would break an address down
into individual fields to store the components of an address. There are also
different types of fields; for example, things as varied as email addresses and
pictures can be stored within fields, and this allows us to make some
assumptions about the information stored in the field.

• Bundle: a bundle is an entity and all its fields.

• Core: Drupal core contains the central codebase of Drupal. Each component
of core has a dedicated maintainer; in general, core is the base upon which
everything else gets built. Within versions (6.x, 7.x, 8.x, etc) the structure of
core will remain relatively unchanged.

8

Chapter 3

Migrations

Migration is the process of import/export of Drupal data such as node, user or
taxonomy term The Migrate API provides services for migrating data from a
source system to Drupal 8.

3.1 Migrate Modules

• Drupal 8 core Migrate module implements the general-purpose framework.

• Drupal 8 core Migrate Drupal module builds on that foundation to provide
an upgrade path from Drupal 6 and Drupal 7 to Drupal 8.

• Drupal 8 core Migrate Drupal UI module provides a browser user interface
for Migrate Drupal.

• Migrations can be executed with different tools :Executing migrations from
non-Drupal sources require contributed modules that work together with the
core Migrate API.

3.2 Migrations as Extract - Transform - Load

(ETL) processes

In computing, extract, transform, load (ETL) is the general procedure of copying
data from one or more sources into a destination system which represents the data
differently from the source(s) or in a different context than the source(s). The ETL
process became a popular concept in the 1970s and is often used in data
warehousing[1].
Data extraction involves extracting data from homogeneous or heterogeneous
sources; data transformation processes data by data cleansing and transforming
them into a proper storage format/structure for the purposes of querying and
analysis; finally, data loading describes the insertion of data into the final target
database such as an operational data store, a data mart, data lake or a data
warehouse.[2][3]

9

A properly designed ETL system extracts data from the source systems, enforces
data quality and consistency standards, conforms data so that separate sources can
be used together, and finally delivers data in a presentation-ready format so that
application developers can build applications and end users can make decisions.[4]
Since the data extraction takes time, it is common to execute the three phases in
parallel. While the data is being extracted, another transformation process
executes while processing the data already received and prepares it for loading
while the data loading begins without waiting for the completion of the previous
phases.
ETL systems commonly integrate data from multiple applications (systems),
typically developed and supported by different vendors or hosted on separate
computer hardware. The separate systems containing the original data are
frequently managed and operated by different employees. For example, a cost
accounting system may combine data from payroll, sales, and purchasing.
Migration in Drupal is an Extract, Transform, Load (ETL) process.

Figure 3.1: Migration in Drupal

• Extract phase is called Source

• Transform phase is called Process

• Load phase is called Destination

It is important to understand that the term load in ETL means to load data into
the storage, while in a typical Drupal context the term load refers to loading data
from storage.
In the source phase, a set of data, called the row, is retrieved from the data source.
The data can be migrated from a database, loaded from a file (for example CSV,
JSON or XML) or fetched from a web service (for example RSS or REST). The
row is sent to the process phase where it is transformed as needed or marked to be
skipped. After processing, the transformed row is passed to the destination phase
where it is loaded (saved) into the target Drupal site.

10

3.3 Migrate API plugins

Migration plugins specify individual ETL migrations, such as node, user or
taxonomy term migration.

Migration plugins are defined in YAML format.

• Source plugins extract the data from the source.

• Process plugins transform the data.

• Destination plugins save the data to Drupal 8.

3.4 Executing migrations

3.4.1 Importing migration YAML definitions

The contributed Migrate Plus module allows migration plugins to be implemented
as configuration entities, allowing them to flexibly be loaded, modified, and saved.

• Make sure that core Migrate and contributed Migrate Plus modules are
enabled.

• Navigate to admin/config/development/configuration/single/import of your
Drupal 8 site.

• Select ’Migration’ as the configuration type.

• Paste your migration definition YAML to the configuration import form and
click ’Import’.

3.4.2 Checking migration status

The contributed Migrate Tools provides drush migrate-status Drush command that
you can execute on the command line of our server. If you don’t see the migration:

• verify that you have enabled your custom module (if you are using a custom
module that provides Migrate API source / process / destination plugins)

• verify that your custom source / process / destination plugins are located in
src/Plugin/migrate/source, src/Plugin/migrate/process,
src/Plugin/migrate/destination directories

• if you are using an SQL source plugin, verify that you have defined the
source database connection in your settings.php or settings.local.php and
that the database connection parameters are correct.

11

3.4.3 Executing the migration

• Using Drush and Migrate Tools:

The contributed Migrate Tools provides ’migrate-import’ and
’migrate-rollback’ Drush commands. The command below migrates 10 rows
from a migration with id ’games’ so that you can verify the results on your
Drupal 8 site. If you wish to migrate all rows from the source, leave out the
’limit’ argument.

$ drush migrate -import games --limit =10

• Using Drush and Migrate Manifest:

The contributed Migrate Manifest module allows you to run a group of
migrations in a reproducible manner and in the correct order based on the
migration.

3.4.4 Rollback the migration

After you have executed the migration, verify the result on your Drupal 8 site. If
you find out that you need to modify the migration a bit, you can roll back the
migration with the ’migrate-rollback’ Drush command. Also this Drush command
is provided by the contributed Migrate Tools module.

• Using Drush

$ drush migrate -rollback games

3.4.5 Executing the migration on schedule:

The contributed module Migrate Scheduler provides a way to execute the
migrations on a configurable schedule. It also provides an option to execute the
migrations with an –update flag.

3.4.6 Modifying the migration definition:

There are different ways how the already imported YAML format migration
definitions can be updated.

• Method 1:

– First export the current version of the migration definition at
admin/config/development/configuration/single/export

– Copy the migration definition to a text editor and modify it as needed

– Import the modified migration definition at
admin/config/development/configuration/single/import

– After configuration refresh; refresh the migration record via its
originating configuration.

$ drush migrate -status

12

• Method 2:

– It is possible to modify the configuration using the Drupal Console
command line tool:
$ drupal config:edit migrate_plus.migration.games

– You will need to run drush cr to rebuild the cache before the import is
executed again.
$ drush cr

– After configuration refresh; refresh the migration record via its
originating configuration.
$ drush migrate -status

3.5 Stubs

Taxonomy terms are an example of a data structure where an entity can have a
reference to a parent. When a term is being migrated, it is possible that its parent
term has not yet been migrated. Migrate API addresses this ’chicken or the egg’
dilemma by creating a stub term for the parent so that the child term can
establish a reference to it. When the parent term is eventually being migrated,
Migrate API updates the previously created stub with the actual content.

3.6 Our work with Drupal Migration:

Analysing our College Websites ,we tend to chalk out a methodology to realise the
same using Drupal. For that we identified Content Types,Taxonomies and Basic
Pages.Following that we created the identified content types and then we would
add content to our Distribution using Migration.So we created a Configuration as
a yml file for Content to be imported.Finally we created Modules that could be
reused by one else.So we exported our Generated Modules,Tested them and
Uploaded on GIthub.We made an open Source Contribution for Drupal.

We wrote configurations for importing various content entities like multiple image,
entity reference,taxonomy term,files,paragraphs and many more.

3.6.1 Our Methodology:

• Download and enable following modules: Migrate Source CSV , Migrate
Plus, Migrate Tools.

• Create csv file with the intended data to be imported.

• The contributed Migrate Plus module allows migration plugins to be
implemented as configuration entities, allowing them to flexibly be loaded,
modified, and saved. Navigate to Administration - Configuration -
Development - Synchronize
(admin/config/development/configuration/single/import)

13

• select Migration as the Configuration type.

• Insert the YAML format migration definition.

• The contributed Migrate Tools provides ’migrate-import’ Drush command
that you can execute on the command line of Drupal server:

$ drush migrate -import article_csv_import

14

Enlisting all our migration definitions wouldn’t be feasible.So here are few of them:

3.6.2 Migrating Text,Entity Reference and File :

langcode: en

status: true

dependencies: { }

id: ’FACULTY MIGRATIONS ’

class: null

field_plugin_method: null

cck_plugin_method: null

migration_tags: null

migration_group: null

label: ’Custom Content migration from CSV faculty ’

source:

plugin: csv

path: /var/www/html/project/docroot/faculty.csv

header_row_count: 1

keys:

- id

constants:

file_source: /var/www/html/project/docroot/fac_images

file_dest: ’public :// fac_images/’

process:

type:

plugin: default_value

default_value: fac_page

source_path:

-

plugin: skip_on_empty

method: process

source: phuto

-

plugin: concat

delimiter: /

source:

- constants/file_source

- phuto

title: title

field_email_new: email

field_full_name: name

field_faculty_photo:

plugin: file_import

source: ’@source_path ’

destination: constants/file_dest

field_department:

-

plugin: entity_lookup

entity_type: node

bundle: department

source: entity_ref

destination:

plugin: ’entity:node ’

migration_dependencies:

required: { }

optional: { }

15

3.6.3 Migrating Taxonomy Term and Image:

langcode: en

status: true

dependencies: { }

id: hostel_mess

class: null

field_plugin_method: null

cck_plugin_method: null

migration_tags: null

migration_group: null

label: ’Custom Content migration from CSV for Hostel and Mess ’

source:

plugin: csv

path: /var/www/html/project/docroot/article.csv

header_row_count: 1

keys:

- id

constants:

file_source: /var/www/html/project/docroot/fac_images

file_dest: ’public :// fac_images/’

process:

type:

plugin: default_value

default_value: article

source_path:

-

plugin: skip_on_empty

method: process

source: phuto

-

plugin: concat

delimiter: /

source:

- constants/file_source

- phuto

title: title

body: body

field_article_link: link

field_image:

plugin: file_import

source: ’@source_path ’

destination: constants/file_dest

field_tags:

-

plugin: entity_lookup

entity_type: taxonomy_term

bundle: tags

source: tags

destination:

plugin: ’entity:node ’

migration_dependencies:

required: { }

optional: { }

16

3.6.4 Migrating Basic Page

langcode: en

status: true

dependencies: { }

id: basic_pages

class: null

field_plugin_method: null

cck_plugin_method: null

migration_tags: null

migration_group: null

label: ’Custom Content migration from CSV Trail ’

source:

plugin: csv

path: /var/www/html/project/docroot/basic_page.csv

header_row_count: 1

keys:

- id

process:

type:

plugin: default_value

default_value: page

title: title

body: body

destination:

plugin: ’entity:node ’

migration_dependencies:

required: { }

optional: { }

Also the generated YAML Configuration files have been included with our modules
to help easy migration of files.

17

Chapter 4

Form alter,View Creation and
Exporting Modules

4.1 Hook Form alter

Perform alterations before a form is rendered.
One popular use of this hook is to add form elements to the node form. When

altering a node form, the node entity can be retrieved by invoking

$form_state ->getFormObject()->getEntity ().

Implementations are responsible for adding cache contexts-tags- max-age as
needed. The call order is as follows: all existing form alter functions are called
for module A, then all for module B, etc., followed by all for any base theme(s), and
finally for the theme itself. The module order is determined by system weight, then
by module name.

Within each module, form alter hooks are called in the following order: first,
hook form alter second, hook form BASE FORM ID alter third, hook form
FORM ID alter. So, for each module, the more general hooks are called first
followed by the more specific.
Parameters:

• form: Nested array of form elements that comprise the form.

• form state: The current state of the form.

• form id: String representing the name of the form itself. Typically this is
the name of the function that generated the form.

File:

core/lib/Drupal/Core/Form/form.api.php , line 201

18

Code:

function hook_form_alter (&$form , \Drupal\Core\Form\FormStateInterface $form_state , $form_id) {

if (isset($form[’type ’]) && $form[’type ’][’#value ’] . ’_node_settings ’ == $form_id)

{

$upload_enabled_types = \Drupal :: config(’mymodule.settings ’)

->get(’upload_enabled_types ’);

$form[’workflow ’][’upload_ ’ . $form[’type ’][’#value ’]] = array(

’#type ’ => ’radios ’,

’#title ’ => t(’Attachments ’),

’#default_value ’ => in_array($form[’type ’][’#value ’], $upload_enabled_types) ? 1 : 0,

’#options ’ => array(

t(’Disabled ’),

t(’Enabled ’),

),

);

// Add a custom submit handler to save the array of types back to the config file.

$form[’actions ’][’submit ’][’#submit ’][] = ’mymodule_upload_enabled_types_submit ’;

}

}

We used hook form later to modify the content addition form and Modify basic site
settings viz. Site name,Email etc.

19

4.2 View Creation

After Creation of Content Types we created Views for each content type.

A view is a listing of content on a website. The core Views module handles the
display of views, and the core Views UI module allows you to create and edit them
in the administrative interface. When you define views, you are interested in taking
data from your website and displaying it to the user.

The ways data can be output using views:

• Table with sortable fields

• Grid layouts

• Teasers or pictures that link to articles

• Blocks

• JSON output

• RSS feeds

• Calendars

• On-screen slideshows

We created Views for all the identified content types.For each of the views a link was
included in the Main Navigation.The Navigation had several collapsible items.They
would expand on hover.Menu were organized as menu and sub menu as present in
the college website. The next Page displays a glimpse of the Home Page with all
the Menu.

Figure 4.1: Home Page with Navigation Menu

20

4.3 Exporting Custom Modules

• To generate custom modules we need to first install Drupal console:

$ cd ~

$ curl https :// drupalconsole.com/installer -L -o drupal.phar

$ mv drupal.phar /usr/local/bin/drupal

$ chmod +x /usr/local/bin/drupal

$ drupal self -update

• To generate module:

$ drupal generate:module

• To export module we use:

$drupal config:export:content:type content_type_name --module =" module_name"

*All names are machine names

• Then add required dependencies to the obtained modules in their config folder.

• Also add dependecy in info.yml files.

• Test modules on another system by installing them.

$ drush en [module_name]

21

4.4 Deploying on Github

After Creating Modules Push them on Github.

• Firstly,Create a new Repository on Github.

• Next,Click on clone and copy the address.

• Navigate to local directory where you have Custom Modules.

• Initiatize Empty git here.

$ git init

Add Origin

$ git remote add origin https :// github.com/user_name/repository_name

• Push our Modules:

$ git add .

$ git commit -m"commit_message_optional"

$ git push origin master

• Add Documentation to our Repository about:.

– Installing our Modules

– Testing our Modules

– Contributing to the Modules

Find my git repo at:
https://github.com/fahad-israr/contributed-drupal-module

The next figure shows my Modules Readme file after deployment.

22

https://github.com/fahad-israr/contributed-drupal-module

Figure 4.2: Readme.md file of My Modules after Deployment on Github

23

Chapter 5

Headless Drupal: Progressive Web
App with Drupal

Headless Drupal is basically a Drupal without Front End.You can use your own
frontend framework with the Backend api from Drupal.The systems are entirely
separate and communicate via HTTP example REST.

5.1 Setting Up our Back-End with REST

• Firstly,go to Modules of your Drupal UI.Then go to Extend.

• Now Enable All Web Services

– RESTful Web Service

– Serialization

• Install and Enable REST UI Module

• Create a Content type and Add content to them and then create a View for
it.

• Go to /admin/config/services/rest.

• Select content type and set format json, auth cookie in the GET method. In
this case, we are only going to download data, so the GET method will be
perfectly fine.

• Go to view you created in above steps and just add ’? format=json’ to the ad-
dress.For Example my final address was http://localhost/drupalmod2/festivals? format=json

• Go to address and you will see JSON object.If that appears then we are almost
done with Backend.

• Enable CORS:You wont be able to access until you set up CORS.To do that
your project root directory then site/default/default.services.yml

• Modify Cors.config as :

24

http://localhost/drupalmod2/festivals?_format=json

cors.config:

enabled: true

Specify allowed headers , like ’x-allowed -header ’.

allowedHeaders: [’x-csrf -token ’,’authorization ’,’content -type ’,’accept ’,’origin ’,’x-requested -with ’, ’access -control -allow -origin ’,’x-allowed -header ’,’*’]

Specify allowed request methods , specify [’*’] to allow all possible ones.

allowedMethods: [’*’]

Configure requests allowed from specific origins.

allowedOrigins: [’http :// localhost/’,’http :// localhost :3000’,’http :// localhost :3001’,’http :// localhost :3002’,’*’]

Sets the Access -Control -Expose -Headers header.

exposedHeaders: true

Sets the Access -Control -Max -Age header.

maxAge: false

Sets the Access -Control -Allow -Credentials header.

supportsCredentials: true

• Save the file as services.yml

• We have created the end point for Drupal. Lets Create our front End.

5.2 Developing Front-End React JS

React Js is A Popular Open source JavaScript library for building user interfaces
developed by Facebook. It is declarative, efficient, and flexible.

• To get Started we first install NODE JS:

$ sudo apt -get install -y nodejs

• Now install create-react-app:

$ npm install -g create -react -app

• Now create a react app :

$ create -react -app Headless_Drupal

• Now go into the folder by: cd Headless Drupal

• Run the following Command to start dev server:

$ npm start

• Now Edit App.js file:

25

import React from ’react ’;

import logo from ’./logo.svg ’;

import ’./App.css ’;

export default class App extends React.Component {

constructor(props) {

super(props);

this.state = {

festivals: null ,

fetched:false ,

};

}

fetchFestivals =()= >{

fetch(’http :// localhost/drupalmod2/festivals?_format=json ’, {

method: ’get ’,

headers: {’Content -Type ’: ’application/json ’}

}). then(response=>response.json ()). then(data=>{if(data)this.setState ({ fetched:true ,festivals:data })})

}

componentDidMount =()=>{

this.fetchFestivals ();

}

render (){

console.log(this.state.festivals)

return (

<div className ="App">

<h1 style ={{ fontSize :’50px ’}}>A PWA with Headless Drupal </h1 >

<h1>Festivals </h1>

{this.state.fetched &&this.state.festivals &&this.state.festivals.map((item)=>{

return(<div key={item.nid [0]. value} className=’festival ’>

<h2 >{item.title [0]. value}</h2 >

{item.body [0]. value.substring (3,(item.body [0]. value.length -12))}

</div >)

})}

</div >

)

}

}

• Note that you need to change the address according to your own address.

• Here we’ve simply developed a Single Page PWA with contents from BackEnd.

• The upcoming Image shows the app in action with console printing all the
content Received from Drupal End Point.

26

Figure 5.1: PWA in Action

View the Sorce on Github at: https://github.com/fahad-israr/PWA-with-Drupal-
and-React-Js

The front End and Back End are in Separate Directories.Follow Appropriate in-
structions from Readme.md file to set up the App on your Local System.

27

https://github.com/fahad-israr/PWA-with-Drupal-and-React-Js
https://github.com/fahad-israr/PWA-with-Drupal-and-React-Js

Reference

• Drupal.org https://www.drupal.org/

• Drupalize.me https://drupalize.me/

• Acquia Docs https://docs.acquia.com

• BeFused https://befused.com/drupal

28

https://www.drupal.org/
https://drupalize.me/
https://docs.acquia.com
https://befused.com/drupal

	Introduction
	Preface to Drupal
	Reasons for using Drupal
	The Drupal Architecture
	Drupal Terminology
	Modules
	Distributions
	Content Structure Glossary

	Migrations
	Migrate Modules
	Migrations as Extract - Transform - Load (ETL) processes
	Migrate API plugins
	Executing migrations
	Importing migration YAML definitions
	Checking migration status
	Executing the migration
	Rollback the migration
	Executing the migration on schedule:
	Modifying the migration definition:

	Stubs
	Our work with Drupal Migration:
	Our Methodology:
	Migrating Text,Entity Reference and File :
	Migrating Taxonomy Term and Image:
	Migrating Basic Page

	Form alter,View Creation and Exporting Modules
	Hook Form alter
	View Creation
	Exporting Custom Modules
	Deploying on Github

	Headless Drupal: Progressive Web App with Drupal
	Setting Up our Back-End with REST
	Developing Front-End React JS

