
FOSSEE Fellowship 2019 Report

on

FOSSEE Optimization Toolbox

submitted by

Yash I. Kataria

B. Tech (Hons. in ICT with minors in Computational Science)

DAIICT, Gandhinagar

under guidance of

Prof. Kannan Moudgalya

5th July, 2019

Acknowledgement

The fellowship opportunity I had with FOSSEE Team was a great
chance for me to learn and experience professional software develop-
ment. Therefore, I consider myself lucky to have been provided with
such a wonderful opportunity. I am also grateful for having a chance
to meet so many skilled and talented professionals who led me through
this internship. Bearing in mind, I’d like to use this opportunity to
express my deepest gratitude and special thanks to Mr. Siddharth
Agarwal who in spite of being extraordinarily busy with her/his du-
ties, took time out to hear, guide and keep me on the correct path
and allowing me to carryout my assigned tasks at their esteemed or-
ganization during the training. I express my deepest thanks to Prof.
Kannan M. Moudgalya and Prof. Ashutosh Mahajan for taking part
in useful decisions and giving necessary advises and guidance and for
arranging all facilities to make my life easier. I choose this moment to
acknowledge his contribution gratefully.I perceive this opportunity as
a big milestone in my career development. I will strive to use gained
skills and knowledge in the best possible way, and I will continue to
work on their improvement, in order to attain desired career objectives.
I also hope to continue cooperation with all of you in the future.

1

Contents

1 Introduction 4
1.1 FOSSEE Optimization Toolbox 4
1.2 Tools and Technologies 7

1.2.1 Scilab . 7
1.2.2 Coin-Or . 8
1.2.3 Tango . 9

2 Mac OS Binaries 10
2.1 Compatibility with Mac OS 10
2.2 Changes in source code 10

2.2.1 FOSSEE Optimization Toolbox.start 10
2.2.2 Builder gateway cpp.sce 11
2.2.3 Fixed errors in some files 12

2.3 Dependencies . 12
2.3.1 GCC . 12
2.3.2 GMP . 13
2.3.3 COIN-OR Libraries 13

2.4 Features . 13
2.4.1 Support for more Optimization libraries 13
2.4.2 Shared libraries take less space 13

2.5 Problems and their solution 14
2.5.1 Hardcoded paths in shared libraries 14
2.5.2 GMP dependency 14

2

2.5.3 GCC dependency 15
2.5.4 fmincon crashes 15

3 Quadratic Constraint Quadratic Programming Solver 16
3.1 Quadratic Programming 16
3.2 Build . 17

3.2.1 Function . 17
3.2.2 Installation . 17
3.2.3 Dependencies 18
3.2.4 Generating Shared Library 18
3.2.5 Gateway . 19

3.3 Documentation . 21
3.3.1 Syntax . 21
3.3.2 Inputs . 21
3.3.3 Outputs . 22

3.4 Examples . 23

4 Toolbox Review 25

5 Conclusion 27

3

Chapter 1

Introduction

1.1 FOSSEE Optimization Toolbox

FOSSEE Optimization Toolbox (FOT) for Scilab offers several op-
timization routines including, but not limited to, linear optimization,
integer linear optimization, unconstrained optimization, bounded opti-
mization and constrained optimization. The function calls and outputs
are similar to those available in Matlab. These routines call optimiza-
tion libraries in the backend, most of which are COIN-OR libraries.
CLP is used for linear programming, CBC and SYMPHONY for in-
teger linear programming, IPOPT (with MUMPS) for nonlinear op-
timization and Bonmin for integer nonlinear optimization. There are
also routines for specific optimization problems like linear and nonlin-
ear least squares, minimax, and goal programming using these solvers.

fminsearch
(Already present in scilab) Find minimum of unconstrained multi-
variable function.

fsolve
(Already present in scilab) Solve system of nonlinear equations.

4

fgoalattain
Solves a multiobjective goal attainment problem.

fminbnd
Solves a nonlinear optimization problem on bounded variables.

fmincon
Solves a general nonlinear optimization problem.

fminimax
Solves a minimax optimization problem.

fminunc
Solves an unconstrained optimization problem.

fot version
Displays current versions of various libraries and latest git refer-
ence id.

intfminbnd
Solves a mixed-integer nonlinear optimization problem on bounded
variables.

intfmincon
Solves a constrained mixed-integer nonlinear optimization prob-
lem.

intfminimax
Solves a mixed-integer minimax optimization problem.

intfminunc
Solves an unconstrained mixed-integer nonlinear optimization
problem.

5

intlinprog
Solves a mixed-integer linear optimization problem in intlinprog
format with CBC.

intquadprog
Solves an integer quadratic optimization problem.

lsqlin
Solves a linear least squares optimization problem.

lsqnonlin
Solves a nonlinear least squares optimization problem.

lsqnonneg
Solves a nonnegative linear least squares optimization problem.

quadprog
Solves a quadratic optimization problem.

quadprogmat
Solves a quadratic optimization problem (with input in Matlab
format).

symphony
Solves a mixed-integer linear optimization problem.

symphonymat
Solves a mixed-integer linear optimization problem (with input
in Matlab format).

6

1.2 Tools and Technologies

1.2.1 Scilab

Scilab is a free and open-source, cross-platform numerical computa-
tional package and a high-level, numerically oriented programming
language. It can be used for signal processing, statistical analysis, im-
age enhancement, fluid dynamics simulations, numerical optimization,
and modeling, simulation of explicit and implicit dynamical systems
and (if the corresponding toolbox is installed) symbolic manipulations.
Scilab is one of the two major open-source alternatives to MATLAB,
the other one being GNU Octave.

7

https:www.scilab.org/

1.2.2 Coin-Or

Computational Infrastructure for Operations Research (COIN-OR), is
a project that aims to ”create for mathematical software what the open
literature is for mathematical theory.” The open literature (e.g., a re-
search journal) provides the operations research (OR) community with
a peer-review process and an archive. Papers in operations research
journals on mathematical theory often contain supporting numerical
results from computational studies. The software implementations,
models, and data used to produce the numerical results are typically
not published. The status quote impeded researchers needing to re-
produce computational results, make fair comparisons, and extend the
state of the art.
The COIN-OR website was launched as an experiment in 2000, in con-
junction with 17th International Symposium on Math Programming in
Atlanta, Georgia. In 2007, COIN-OR had 25 application projects,[1]
including tools for linear programming (e.g., COIN-OR CLP), non-
linear programming (e.g., IPOPT), integer programming (e.g., CBC,
Bcp and COIN-OR SYMPHONY), algebraic modeling languages (e.g.,
Coopr) and more. By 2011, this had grown to 48 projects.[2] COIN-
OR is hosted by the Institute for Operations Research and the Man-
agement Sciences, INFORMS, and run by the educational, non-profit
COIN-OR Foundation.

8

https:www.coin-or.org/

1.2.3 Tango

TANGO (Trustable Algorithms for Nonlinear General Optimization) is
a set of Fortran routines for Optimization developed at the Department
of Applied Mathematics of the State University of Campinas and at the
Department of Computer Science of the University of São Paulo, un-
der the coordination of Professor J. M. Mart́ınez. Only well-established
methods are included. The codes are easy to use and require minimum
previous knowledge. On-line support is provided.
TANGO is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation. Non-free versions of TANGO are available under
terms different from those of the General Public License. Professors J.
M. Mart́ınez (martinez@ime.unicamp.br, martinezimecc@gmail.com)
or E. G. Birgin (egbirgin@ime.usp.br, egbirgin@gmail.com) should be
contacted for more information related to such a license, future devel-
opments and/or technical support.

9

https:www.ime.usp.br/~egbirgin/tango/

Chapter 2

Mac OS Binaries

2.1 Compatibility with Mac OS

Previously, the Fossee Optimization toolbox was compatible with Linux
and Windows operating system only. For it’s compatibility with Mac
OS, builder gateway, FOSSEEOptimizationToolbox.start needs to be
updated and certain commands had to be changed as the compiler was
clang instead of gcc. In the third party folder, a dedicated Mac Folder
had to be created where all the dependencies of the functions were to
be installed.

2.2 Changes in source code

2.2.1 FOSSEE Optimization Toolbox.start

FOSSEE Optimization Toolbox.start runs when loader.sce is executed.
This script links all the dynamic libraries required by the functions.
When it detects Operating System as Darwin i.e. Mac OS, it links
the .dylib files mentioned in the code. Here is the code snippet for the
following:

10

2.2.2 Builder gateway cpp.sce

Builder gateway cpp.sce compiles all the cpp codes and includes and
links header files and library files respectively. When it detects OS as
Darwin, it compiles the cpp codes and includes all the header files and
links all the libraries. Following is the code snippet used to achieve it.

11

2.2.3 Fixed errors in some files

There were certain cpp files which were throwing errors while compiled
with clang. Fixed those minor errors. Following is the example of it:

2.3 Dependencies

2.3.1 GCC

In order to use Fossee Optimization Toolbox, certain dependencies are
required. One of them is GCC, Fossee Optimization Toolbox requires
gfortran in order to load. Hence, GCC is required so libgfortran can
be linked with the toolbox. In Mac OS, users can install it using
Homebrew. After installing Homebrew, users can run this command
in terminal:

brew i n s t a l l gcc

12

2.3.2 GMP

The toolbox has GMP as a dependency. The full form of GMP is
GNU Multiple Precision Arithmetic Library. The toolbox requires
libgmp.10.dylib from the gmp package in order to load and execute
the functions. libgmp.10.dylib is provided by Scilab, but the version
required by the other libraries is incompatible with that provided by
Scilab. Hence, libgmp.10.dylib comes pre-installed with our toolbox.

2.3.3 COIN-OR Libraries

FOSSEE Optimization Toolbox uses shared libraries. For different OS,
the extension for shared library it is .so for linux, .dylib for Mac OS,
.dll for windows. Hence, for different OS, the source code of library
needs to be compiled, so as to generate header files and shared libraries
for OS that it has been compiled on. The source code was installed
by using coinbrew and the library and header files were generated by
following the instructions given in coinbrew.

2.4 Features

2.4.1 Support for more Optimization libraries

The shared libraries and header files included in third party folder
for MacOS have support for not just the required files but it also has
additional shared library and header files for libraries like Couenne,
Bcp, CppAD etc. In future, if any additional library is required, we
can directly include and use it instead of compiling and installing it.

2.4.2 Shared libraries take less space

The shared libraries in the Mac Folder takes very less space compared
to shared libraries in Windows and Linux folder inspite of having sup-

13

port for more shared libraries. In Mac, the size is 21.1 MB whereas
for windows and linux it is 31 and 36 MB respectively. Hence, shared
libraries in Mac are more compact than linux and windows.

2.5 Problems and their solution

2.5.1 Hardcoded paths in shared libraries

While installing shared libraries through coinbrew, the dependencies
in these shared library had hardcoded paths so when using on machine
other than the local one, it was not able to locate the dependencies.
Also, Coinbrew had no option for giving relative path to the depen-
dencies in .dylib files. Hence, all the path to the dependencies were
to be changed manually to relative path. For setting relative path,
loader path was used which searches in the directory of the depen-
dency calling library. Relative path was set using install name tool
command. After this, any user could install the toolbox and could
start using it after installing all the dependencies.

2.5.2 GMP dependency

The toolbox used libgmp.10.dylib present in the gmp package, it came
pre-installed in Scilab but the version was 13.0 and all the library had
libgmp.10.dylib(version 14.0) as a dependency. Hence, the libgmp.10.dylib
needed to be changed in the Scilab folder but Scilab might have files
which depended on the previous version of libgmp.10.dylib. Hence, it
was included in the thirdparty folder and all the libraries having it as
a dependency, their path were changed to relative as discussed in the
above section.

14

2.5.3 GCC dependency

The toolbox uses libgfortran.5.dylib present in the gcc package. As
the libgfortran.5.dyib has certain dependencies and also they could
not be changed by using install name tool command. Hence, it had
to be installed by the user. A limitation to it is that users will have
to install it using brew. Any other tool like Macports will not work.
Hence, users will need to install Homebrew, and then install gcc by
using brew command.

2.5.4 fmincon crashes

When using fmincon function in Mac OS, fmincon crashes giving error
as Illegal instruction 4 which occurs when a pointer is uninitialized
or gets corrupted. After initializing all the pointers, the error still oc-
curred. Hence, the error occurred due to corruption of a pointer. After
debugging, the error was found in the code for evaluation of hessian,
still the root cause is not found out. But an alternative solution to
it is using the inbuilt hessian approximation provided by Ipopt but it
gives a large deviation when the input is very large.

15

Chapter 3

Quadratic Constraint
Quadratic Programming
Solver

3.1 Quadratic Programming

In mathematical optimization, a quadratic-ally constrained quadratic
program (QCQP) is an optimization problem in which both the objec-
tive function and the constraints are quadratic functions. It has the
form

minimize 1
2x

TP0x + qT0 x

subject to 1
2x

TPix + qTi x + ri ≤ 0 for i = 1, . . . ,m,

Ax = b,

where P0, . . .

,Pm are n-by-n matrices and x Rn is the optimization variable. If
P0, . . . ,Pm are all positive semi-definite, then the problem is convex.
If these matrices are neither positive nor negative semi-definite, the
problem is non-convex. If P1, . . . , Pm are all zero, then the constraints
are in fact linear and the problem is a quadratic program.

16

3.2 Build

3.2.1 Function

The function of qcqp macro is to solve quadratic-ally constrained quadratic
problem. This was achieved by interfacing Tango’s ALGENCAN li-
brary to FOT.
ALGENCAN: Fortran code for general nonlinear programming that
does not use matrix manipulations at all and, so, is able to solve ex-
tremely large problems with moderate computer time. The general
algorithm is of Augmented Lagrangian type and the sub problems are
solved using GENCAN. GENCAN (included in ALGENCAN) is a For-
tran code for minimizing a smooth function with a potentially large
number of variables and box-constraints. ALGENCAN has interfaces
with AMPL, C/C++, CUTEr, Matlab, Python, Octave and R (statis-
tical computing).

3.2.2 Installation

1. Go to folder $ALGENCAN and type
make
It will generate the Algencan library file named ’libalgencan.a’
within folder $ALGENCAN/lib/.

2. Go to the folder where your main file and problem subroutines
are. If you did not code them yet, you may copy the Fortran 90
file toyprob.f90, located at $ALGENCAN/examples/f90/ into
your folder.

3. Compile (the example file) typing:
gfortran -O3 toyprob.f90 -L$ALGENCAN/lib -lalgencan
-o algencan

17

4. Run typing and see the output in the screen.
./algencan

3.2.3 Dependencies

The following shared libraries are required by Algencan to perform its
function.

• libgfortran

• libalgencan

The libgfortran library depends on multiple GCC libraries. Hence,
GCC must be installed in the system. The above libraries are added
newly in the Thirdparty folder of FOT.

3.2.4 Generating Shared Library

The installation of ALGENCAN builds static archive algencan library
by default.By making following changes in the Makefile of ALGEN-
CAN, and performing the installation again, we get shared library
libalgencan.so in the lib folder.

• Inside $ALGENCAN/MAKEFILE

1. AR := gcc

2. FFLAGS := -O3 -fPIC

3. CFLAGS := -O3 -fPIC -pedantic -Wall -Wextra
-march=native -lgfortran

• Inside $ALGENCAN/sources/algencan/MAKEFILE

1. lib: $(ALGENCAN)
$(AR) $(CFLAGS) $(ALGENCAN) $(HSL) -o libal-
gencan.so -shared

18

2. clean:
rm -f *.o
rm -f *.mod
rm -f $(LIB)/libalgencan.so

3.2.5 Gateway

The gateway is sci qcqp.cpp which implements quadratic-ally constrained
quadratic problem using ALGENCAN. The interface of ALGENCAN
is c algencan that takes references to problem’s and result’s struc-
ture as parameters.
void c algencan(void *myevalf, void *myevalg, void *mye-
valh, void *myevalc, void *myevaljac, void *myevalhc,
void *myevalfc, void *myevalgjac, void *myevalgjacp,
void *myevalhl, void *myevalhlp, int jcnnzmax, int
hnnzmax,double *epsfeas, double *epsopt, double *ef-
stin, double *eostin, double *efacc, double *eoacc,
char *outputfnm, char *specfnm, int nvparam,char **vparam,
int n, double *x, double *l, double *u, int m, dou-
ble *lambda, Bool *equatn, Bool *linear, Bool *coded, Bool
checkder, double *f, double *cnorm, double *snorm,
double *nlpsupn,int *inform);
It takes 11 function pointers to describe problem. A new structure is
created to describe the problem in the gateway:
struct prob
{
//initial point : x
double * x;
//Objective function : x’Hx+f’x
double ** H;
double * f;
//No of variables

19

int n;

//Linear inequality constraint Ax ≤ b
double ** A; // m x n
double * b; // m x 1
//No of Linear inequality Constraints
int m;

//Linear equality constraint Aeqx = b
double ** Aeq;
double * beq;
//No of Linear equality constraint
int p;

//Quadratic inequality constraint x’Qx + c’x ≤ r
double *** Q;
double ** c;
double *r;
//No of Quadratic Constraint
int q;

//Lower and Upper bounds
double * lb;
double * ub;

};

The following functions are implemented using the above structure
and given to c alagencan function.

• myevalf() : calculates value of objective function for given x.

• myevalg() : calculates value of objective function’s gradient
for given x.

20

• myevalh() : calculates value of objective function’s hessian for
given x.

• myevalc() : calculates value of constraint function gradient for
given x.

• myevaljac() : calculates value of constraint function’s gradi-
ent for given x.

• myevalhc() : calculates value of constraint function’s hessian
for given x.

3.3 Documentation

3.3.1 Syntax

xopt = qcqp(x,H,f)
xopt = qcqp(x,H,f,Q,c,r,A,b)
xopt = qcqp(x,H,f,Q,c,r,A,b,Aeq,beq)
xopt = qcqp(x,H,f,Q,c,r,A,b,Aeq,beq,lb, ub)
[xopt,fopt,lambda,exitflag] = qcqp(...)

3.3.2 Inputs

x : a matrix of double, represents initial point.

H : a symmetric matrix of double, represents coefficients of quadratic
in the quadratic problem.

f : a vector of double, represents coefficients of linear in the quadratic
problem

Q : a n x n.q matrix of double, represents coefficients of quadratic
terms in the quadratic constraints. x’.Q.x + c’.x ≤ r

21

c : a q x n matrix of double, represents coefficients of linear terms
in the quadratic problem. x’.Q.x + c’.x ≤ r

r : a vector of double, represents the linear constants in the in-
equality constraints x’.Q.x + c’.x ≤ r.

A : a matrix of double, represents the linear coefficients in the
inequality constraints Ax≤ b.

b : a vector of double, represents the linear terms in the inequality
constraints Ax≤ b.

Aeq : a matrix of double, represents the linear coefficients in the
equality constraints Aeqx = beq.

beq : a vector of double, represents the linear terms in the equality
constraints Aeqx = beq.

lb : a vector of double, contains lower bounds of the variables. The
default value is 0.

ub : a vector of double, contains upper bounds of the variables. The
default value is inf.

3.3.3 Outputs

xopt : a vector of double, the computed solution of the optimization
problem.

fopt : a double, the value of the function at x.

lambda : a vector of double, final estimation of the Lagrange multipliers

exitflag : a double, this output parameter tells what happened in this
subroutine, according to the following conventions.

22

The exitflag allows to know the status of the optimization which is
given back by Algencan.

exitflag=0 : Optimal Solution Found

exitflag=1 : Maximum Number of Output Iterations Exceeded. Output
may not be optimal

exitflag=2 : Maximum Number of Total number of Inner Iterations Ex-
ceeded. Output may not be optimal

exitflag=3 : Maximum Number of Total number of Functional Evaluations
Exceeded. Output may not be optimal

exitflag=4 : The algorithm stopped by “lack of feasibility progress”, i.e.,
the current point is infeasible

3.4 Examples

//Reference : http://www.minlplib.org/nvs10.html
Minimize : 7 ∗ i1

2 + 6 ∗ i2
2 − 35 ∗ i1 − 80.4 ∗ i2

subject to

−9 ∗ i1
2 − 10 ∗ i1 ∗ i2 − 8 ∗ i2

2 ≥ −583

−6 ∗ i1
2 − 8 ∗ i1 ∗ i2 − 6 ∗ i2

2 ≥ −441

0 ≤ i1 ≤ 200

0 ≤ i2 ≤ 200
Solution
H = [70; 06];
f = [−35;−80.4];
Q = [[95; 58]; [34; 43]];
c = [00; 00];
r = [583; 441];
x = [1; 1];

23

http://www.minlplib.org/nvs10.html

lb = [0; 0];
ub = [200; 200];
[xopt, fopt] = qcqp(x,H,f,Q,c,r,[],[],[],[],lb,ub);

24

Chapter 4

Toolbox Review

The documentation of functions were not consistent with the code
and it’s description. Hence, documentation of many functions were
reviewed and the required changes were made to it’s documentation.
The functions which were reviewed are given as follows:

fgoalattain
Solves a multiobjective goal attainment problem.

fot version
Displays current versions of various libraries and latest git refer-
ence id.

linprog
Solves a linear programming problem.

intlinprog
Solves a mixed-integer linear optimization problem in intlinprog
format with CBC.

lsqlin
Solves a linear least squares optimization problem.

25

lsqnonlin
Solves a nonlinear least squares optimization problem.

lsqnonneg
Solves a nonnegative linear least squares optimization problem.

symphony
Solves a mixed-integer linear optimization problem.

symphonymat
Solves a mixed-integer linear optimization problem (with input
in Matlab format).

26

Chapter 5

Conclusion

During the fellowship, I was exposed to open source software and cul-
ture. I had a very steep learning curve during the whole tenure of
our fellowship. Right from zero experience to understanding various
concepts and making something productive and deploy able from it,
I progressed a lot and understood what it means to be an IT profes-
sional and software engineer. I learnt about APIs, building interface
through them, and also developed more proficiency in C++. Also, I
learnt about the difficulties when building a cross-platform software,
how your code gets impacted when your OS changes?, how to modify
it?, how to handle errors and eventually solve them. Apart from tech-
nical things, I learnt about time management, Critical and Analytical
thinking and Goal Management. Problems faced during our fellowship
will help me face challenges in a working environment. At the end, I
would like to thank and appreciate everyone who made my fellowship
a superb learning and memorable experience.

27

	Introduction
	FOSSEE Optimization Toolbox
	Tools and Technologies
	Scilab
	Coin-Or
	Tango

	Mac OS Binaries
	Compatibility with Mac OS
	Changes in source code
	FOSSEE_Optimization_Toolbox.start
	Builder_gateway_cpp.sce
	Fixed errors in some files

	Dependencies
	GCC
	GMP
	COIN-OR Libraries

	Features
	Support for more Optimization libraries
	Shared libraries take less space

	Problems and their solution
	Hardcoded paths in shared libraries
	GMP dependency
	GCC dependency
	fmincon crashes

	Quadratic Constraint Quadratic Programming Solver
	Quadratic Programming
	Build
	Function
	Installation
	Dependencies
	Generating Shared Library
	Gateway

	Documentation
	Syntax
	Inputs
	Outputs

	Examples

	Toolbox Review
	Conclusion

