
FOSSEE Fellowship 2019 Report

on

FOSSEE Optimization Toolbox

submitted by

Adarsh T. Shah

B.E.(Computer Engineering)

LDCE, Ahmedabad

under guidance of

Prof. Kannan Moudgalya

5th July, 2019

Acknowledgement

The fellowship opportunity I had with FOSSEE Team was a great
chance for me to learn and experience professional software develop-
ment. Therefore, I consider myself lucky to have been provided with
such a wonderful opportunity. I am also grateful for having a chance
to meet so many skilled and talented professionals who led me through
this internship. Bearing in mind, I’d like to use this opportunity to
express my deepest gratitude and special thanks to Mr. Siddharth
Agarwal who in spite of being extraordinarily busy with her/his du-
ties, took time out to hear, guide and keep me on the correct path
and allowing me to carryout my assigned tasks at their esteemed or-
ganization during the training. I express my deepest thanks to Prof.
Kannan M. Moudgalya and Prof. Ashutosh Mahajan for taking part
in useful decisions and giving necessary advises and guidance and for
arranging all facilities to make my life easier. I choose this moment to
acknowledge his contribution gratefully.I perceive this opportunity as
a big milestone in my career development. I will strive to use gained
skills and knowledge in the best possible way, and I will continue to
work on their improvement, in order to attain desired career objectives.
I also hope to continue cooperation with all of you in the future.

1

Contents

1 Introduction 4
1.1 FOSSEE Optimization Toolbox 4
1.2 Tools and Technologies 7

1.2.1 Scilab . 7
1.2.2 Coin-Or . 8
1.2.3 Tango . 9

2 QuadprogCLP 10
2.1 Linear Constrained Quadratic Problem 10
2.2 Build . 10

2.2.1 Function . 10
2.2.2 Installation . 11
2.2.3 Dependencies 11
2.2.4 Gateway . 12

2.3 Documentation . 13
2.3.1 Syntax . 13
2.3.2 Inputs . 14
2.3.3 Outputs . 14

2.4 Examples . 15

3 Qcqp 17
3.1 Quadratic Programming 17
3.2 Build . 18

2

3.2.1 Function . 18
3.2.2 Installation . 18
3.2.3 Dependencies 19
3.2.4 Generating Shared Library 19
3.2.5 Gateway . 20

3.3 Documentation . 22
3.3.1 Syntax . 22
3.3.2 Inputs . 22
3.3.3 Outputs . 23

3.4 Examples . 24

4 Toolbox Review 26

5 Conclusion 28

3

Chapter 1

Introduction

1.1 FOSSEE Optimization Toolbox

FOSSEE Optimization Toolbox (FOT) for Scilab offers several op-
timization routines including, but not limited to, linear optimization,
integer linear optimization, unconstrained optimization, bounded opti-
mization and constrained optimization. The function calls and outputs
are similar to those available in Matlab. These routines call optimiza-
tion libraries in the backend, most of which are COIN-OR libraries.
CLP is used for linear programming, CBC and SYMPHONY for in-
teger linear programming, IPOPT (with MUMPS) for nonlinear op-
timization and Bonmin for integer nonlinear optimization. There are
also routines for specific optimization problems like linear and nonlin-
ear least squares, minimax, and goal programming using these solvers.

fminsearch
(Already present in scilab) Find minimum of unconstrained multi-
variable function.

fsolve
(Already present in scilab) Solve system of nonlinear equations.

4

fgoalattain
Solves a multiobjective goal attainment problem.

fminbnd
Solves a nonlinear optimization problem on bounded variables.

fmincon
Solves a general nonlinear optimization problem.

fminimax
Solves a minimax optimization problem.

fminunc
Solves an unconstrained optimization problem.

fot version
Displays current versions of various libraries and latest git refer-
ence id.

intfminbnd
Solves a mixed-integer nonlinear optimization problem on bounded
variables.

intfmincon
Solves a constrained mixed-integer nonlinear optimization prob-
lem.

intfminimax
Solves a mixed-integer minimax optimization problem.

intfminunc
Solves an unconstrained mixed-integer nonlinear optimization
problem.

5

intlinprog
Solves a mixed-integer linear optimization problem in intlinprog
format with CBC.

intquadprog
Solves an integer quadratic optimization problem.

lsqlin
Solves a linear least squares optimization problem.

lsqnonlin
Solves a nonlinear least squares optimization problem.

lsqnonneg
Solves a nonnegative linear least squares optimization problem.

quadprog
Solves a quadratic optimization problem.

qcqp
Solves a quadratic optimization problem (with input in Matlab
format).

symphony
Solves a mixed-integer linear optimization problem.

symphonymat
Solves a mixed-integer linear optimization problem (with input
in Matlab format).

6

1.2 Tools and Technologies

1.2.1 Scilab

Scilab is a free and open-source, cross-platform numerical computa-
tional package and a high-level, numerically oriented programming
language. It can be used for signal processing, statistical analysis, im-
age enhancement, fluid dynamics simulations, numerical optimization,
and modeling, simulation of explicit and implicit dynamical systems
and (if the corresponding toolbox is installed) symbolic manipulations.
Scilab is one of the two major open-source alternatives to MATLAB,
the other one being GNU Octave.

7

https:www.scilab.org/

1.2.2 Coin-Or

Computational Infrastructure for Operations Research (COIN-OR), is
a project that aims to ”create for mathematical software what the open
literature is for mathematical theory.” The open literature (e.g., a re-
search journal) provides the operations research (OR) community with
a peer-review process and an archive. Papers in operations research
journals on mathematical theory often contain supporting numerical
results from computational studies. The software implementations,
models, and data used to produce the numerical results are typically
not published. The status quote impeded researchers needing to re-
produce computational results, make fair comparisons, and extend the
state of the art.
The COIN-OR website was launched as an experiment in 2000, in con-
junction with 17th International Symposium on Math Programming in
Atlanta, Georgia. In 2007, COIN-OR had 25 application projects,[1]
including tools for linear programming (e.g., COIN-OR CLP), non-
linear programming (e.g., IPOPT), integer programming (e.g., CBC,
Bcp and COIN-OR SYMPHONY), algebraic modeling languages (e.g.,
Coopr) and more. By 2011, this had grown to 48 projects.[2] COIN-
OR is hosted by the Institute for Operations Research and the Man-
agement Sciences, INFORMS, and run by the educational, non-profit
COIN-OR Foundation.

8

https:www.coin-or.org/

1.2.3 Tango

TANGO (Trustable Algorithms for Nonlinear General Optimization) is
a set of Fortran routines for Optimization developed at the Department
of Applied Mathematics of the State University of Campinas and at the
Department of Computer Science of the University of São Paulo, un-
der the coordination of Professor J. M. Mart́ınez. Only well-established
methods are included. The codes are easy to use and require minimum
previous knowledge. On-line support is provided.
TANGO is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation. Non-free versions of TANGO are available under
terms different from those of the General Public License. Professors J.
M. Mart́ınez (martinez@ime.unicamp.br, martinezimecc@gmail.com)
or E. G. Birgin (egbirgin@ime.usp.br, egbirgin@gmail.com) should be
contacted for more information related to such a license, future devel-
opments and/or technical support.

9

https:www.ime.usp.br/~egbirgin/tango/

Chapter 2

QuadprogCLP

2.1 Linear Constrained Quadratic Prob-
lem

Linear Constrained Quadratic Programming is a technique for the op-
timization of a quadratic objective function, subject to linear equality
and linear inequality constraints.
Quadratic programs with linear constraints are problems that can be
expressed in canonical form as

Minimize
1

2
xTHx + kTx

subject to Ax ≤ b

and x ≥ 0

2.2 Build

2.2.1 Function

The function of quadprogCLP macro is to solve Quadratic Contrained
Linear Problem. This was achieved by interfacing Coin-or’s CLP li-
brary to FOT.

10

Clp (Coin-or linear programming) is an open-source linear program-
ming solver written in C++. It is primarily meant to be used as
a callable library, but a basic, stand-alone executable version is also
available. It is designed to find solutions of mathematical optimization
problems of the form

Minimize : cTx

such that : rowlower ≤ Ax ≤ rowupper

collower ≤ x ≤ colupper

2.2.2 Installation

The Clp source code is obtained either via subversion or in form of
nightly generated tarballs. The recommended method is to use sub-
version because it makes it easier to obtain updates. The following
commands may be used to obtain and build Clp from the source code
using subversion:

1. svn co https:projects.coin-or.org/svn/Clp
/stable/1.16 coin-Clp

2. cd coin-Clp

3. ./configure -C

4. make

5. make test

6. make install

2.2.3 Dependencies

The CLP library requires following packages in order to perform its
function.They are already included in Fossee Optimization Toolbox.

11

1. BuildTools

2. Blas

3. Lapack

4. Metis

5. Mumps

6. Glpk

7. Sample

8. CoinUtils

9. Osi

2.2.4 Gateway

The gateway is sci quadprogCLP.cpp that solves QCLP problem using
CLP. There are three main classes used to implement the required
function.

• CoinPackedMatrix

• CoinPackedVector

• CLPSimplex

CoinPackedMatrix stores H of the quadratic objective function and A
of linear constraints. CoinPackedVector stores k of objective function,
upper and lower bounds of x and constraints b. COIN DBL MAX is the
maximum value that an element of Coin’s data structure can hold and
thus represents infinity in the gateway. ClpSimplex loads the QCLP
problem using loadProblem(constraints,lb,ub,C,row lb,row ub)

12

and loadQuadraticObjective(*matrix). It then solves prob-
lem using initialSolve().
The optimum value of x is obtained by getColSolution(). The
optimum value of objective function is obtained by getObjvalue().
Various status values are obtained by

• isProvenOptimal()

• isProvenPrimalInfeasible()

• isProvenDualInfeasible()

• isIterationLimitReached()

• isAbandoned()

• isPrimalObjectiveReached()

• isDualObjectiveReached()

The number of iterations is obtained using getIterationsCount().
The validations regarding correct dimensions of matrices are done in
sci quadprogCLP.cpp. The default value of lower bound is 0 and up-
per bound is infinity. quadprogCLP.sci is the macro that handles
assigning default values to undefined terms in the problem.

2.3 Documentation

2.3.1 Syntax

xopt = quadprogCLP(H,f,A,b)
xopt = quadprogCLP(H,f,A,b,Aeq,beq)
xopt = quadprogCLP(H,f,A,b,Aeq,beq,lb,ub)
[xopt,fopt,exitflag,output,lamda] = quadprogCLP(...)

13

2.3.2 Inputs

H : a symmetric matrix of double, represents coefficients of quadratic
in the quadratic problem.

f : a vector of double, represents coefficients of linear in the quadratic
problem

A : a matrix of double, represents the linear coefficients in the
inequality constraints Ax ≤ b.

b : a vector of double, represents the linear coefficients in the in-
equality constraints Ax≤ b.

Aeq : a matrix of double, represents the linear coefficients in the
equality constraints Aeqx = beq.

beq : a vector of double, represents the linear coefficients in the equal-
ity constraints Aeqx = beq.

lb : a vector of double, contains lower bounds of the variables. The
default value is 0.

ub : a vector of double, contains upper bounds of the variables. The
default value is infinity.

2.3.3 Outputs

xopt : a vector of double, the computed solution of the optimization
problem.

fopt : a double, the value of the function at x.

exitflag : The exit status. See below for details.

iterations : Total number of iterations performed.

14

output : The structure consist of statistics about the optimization.

lambda : The structure consist of the Lagrange multipliers at the solution
of problem.

The exitflag allows to know the status of the optimization which is
given back by Clp.

exitflag=0 : Optimal Solution Found

exitflag=1 : Primal Infeasible

exitflag=2 : Dual Infeasible

exitflag=3 : Maximum Number of iterations exceeded

exitflag=4 : Solution Abandoned

exitflag=5 : Primal Objective Limit reached

exitflag=6 : Dual Objective Limit reached

2.4 Examples

Ref : example 14 :
Minimize : −8 ∗ x1

2 − 16 ∗ x2
2 + x1 + 4 ∗ x2

such that :

x1 + x2 ≤ 5

x1 ≤ 3

x1 ≥ 0

x2 ≥ 0
Solution
H = [20; 08];
f = [−8;−16];

15

https:www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf

A = [11; 10];
b = [5; 3];
lb = [0; 0];
ub = [inf; inf];
[xopt, fopt, exitflag, output, lambda] = quadprogCLP(H,f,A,b,[],[],lb,ub)

Solving Linear Programming Problem
min −x0 − x1

subject to

x0 + 2 ∗ x1 ≤ 3

2 ∗ x0 + x1 ≤ 3
Solution
f = [−1;−1];
A = [1, 2; 2, 1];
b = [3; 3];
[xopt, fopt] = quadprogCLP([],f,A,b);

16

Chapter 3

Qcqp

3.1 Quadratic Programming

In mathematical optimization, a quadratic-ally constrained quadratic
program (QCQP) is an optimization problem in which both the objec-
tive function and the constraints are quadratic functions. It has the
form

minimize xTP0x + qT0 x

subject to xTPix + qTi x + ri ≤ 0 for i = 1, . . . ,m,

Aeq = beq
Ax ≤ b,

where P0, . . . ,Pm are n-by-n matrices and x Rn is the optimization
variable. If P0, . . . ,Pm are all positive semi-definite, then the problem
is convex. If these matrices are neither positive nor negative semi-
definite, the problem is non-convex. If P1, . . . , Pm are all zero, then the
constraints are in fact linear and the problem is a quadratic program.

17

3.2 Build

3.2.1 Function

The function of qcqp macro is to solve quadratic-ally constrained quadratic
problem. This was achieved by interfacing Tango’s ALGENCAN li-
brary to FOT.
ALGENCAN: Fortran code for general nonlinear programming that
does not use matrix manipulations at all and, so, is able to solve ex-
tremely large problems with moderate computer time. The general
algorithm is of Augmented Lagrangian type and the sub problems are
solved using GENCAN. GENCAN (included in ALGENCAN) is a For-
tran code for minimizing a smooth function with a potentially large
number of variables and box-constraints. ALGENCAN has interfaces
with AMPL, C/C++, CUTEr, Matlab, Python, Octave and R (statis-
tical computing).

3.2.2 Installation

1. Go to folder $ALGENCAN and type
make
It will generate the Algencan library file named ’libalgencan.a’
within folder $ALGENCAN/lib/.

2. Go to the folder where your main file and problem subroutines
are. If you did not code them yet, you may copy the Fortran 90
file toyprob.f90, located at $ALGENCAN/examples/f90/ into
your folder.

3. Compile (the example file) typing:
gfortran -O3 toyprob.f90 -L$ALGENCAN/lib -lalgencan
-o algencan

18

4. Run typing and see the output in the screen.
./algencan

3.2.3 Dependencies

The following shared libraries are required by Algencan to perform its
function.

• libgfortran

• libalgencan

The libgfortran library depends on multiple GCC libraries. Hence,
GCC must be installed in the system. The above libraries are added
newly in the Thirdparty folder of FOT.

3.2.4 Generating Shared Library

The installation of ALGENCAN builds static archive algencan library
by default.By making following changes in the Makefile of ALGEN-
CAN, and performing the installation again, we get shared library
libalgencan.so in the lib folder.

• Inside $ALGENCAN/MAKEFILE

1. AR := gcc

2. FFLAGS := -O3 -fPIC

3. CFLAGS := -O3 -fPIC -pedantic -Wall -Wextra
-march=native -lgfortran

• Inside $ALGENCAN/sources/algencan/MAKEFILE

1. lib: $(ALGENCAN)
$(AR) $(CFLAGS) $(ALGENCAN) $(HSL) -o libal-
gencan.so -shared

19

2. clean:
rm -f *.o
rm -f *.mod
rm -f $(LIB)/libalgencan.so

3.2.5 Gateway

The gateway is sci qcqp.cpp which implements quadratic-ally constrained
quadratic problem using ALGENCAN. The interface of ALGENCAN
is c algencan that takes references to problem’s and result’s struc-
ture as parameters.
void c algencan(void *myevalf, void *myevalg, void *mye-
valh, void *myevalc, void *myevaljac, void *myevalhc,
void *myevalfc, void *myevalgjac, void *myevalgjacp,
void *myevalhl, void *myevalhlp, int jcnnzmax, int
hnnzmax,double *epsfeas, double *epsopt, double *ef-
stin, double *eostin, double *efacc, double *eoacc,
char *outputfnm, char *specfnm, int nvparam,char **vparam,
int n, double *x, double *l, double *u, int m, dou-
ble *lambda, Bool *equatn, Bool *linear, Bool *coded, Bool
checkder, double *f, double *cnorm, double *snorm,
double *nlpsupn,int *inform);
It takes 11 function pointers to describe problem. A new structure is
created to describe the problem in the gateway:
struct prob
{
//initial point : x
double * x;
//Objective function : x’Hx+f’x
double ** H;
double * f;
//No of variables

20

int n;

//Linear inequality constraint Ax ≤ b
double ** A; // m x n
double * b; // m x 1
//No of Linear inequality Constraints
int m;

//Linear equality constraint Aeqx = b
double ** Aeq;
double * beq;
//No of Linear equality constraint
int p;

//Quadratic inequality constraint x’Qx + c’x ≤ r
double *** Q;
double ** c;
double *r;
//No of Quadratic Constraint
int q;

//Lower and Upper bounds
double * lb;
double * ub;

};

The following functions are implemented using the above structure
and given to c alagencan function.

• myevalf() : calculates value of objective function for given x.

• myevalg() : calculates value of objective function’s gradient
for given x.

21

• myevalh() : calculates value of objective function’s hessian for
given x.

• myevalc() : calculates value of constraint function gradient for
given x.

• myevaljac() : calculates value of constraint function’s gradi-
ent for given x.

• myevalhc() : calculates value of constraint function’s hessian
for given x.

3.3 Documentation

3.3.1 Syntax

xopt = qcqp(x,H,f)
xopt = qcqp(x,H,f,Q,c,r,A,b)
xopt = qcqp(x,H,f,Q,c,r,A,b,Aeq,beq)
xopt = qcqp(x,H,f,Q,c,r,A,b,Aeq,beq,lb, ub)
[xopt,fopt,lambda,exitflag] = qcqp(...)

3.3.2 Inputs

x : a matrix of double, represents initial point.

H : a symmetric matrix of double, represents coefficients of quadratic
in the quadratic problem.

f : a vector of double, represents coefficients of linear in the quadratic
problem

Q : a n x n.q matrix of double, represents coefficients of quadratic
terms in the quadratic constraints. x’.Q.x + c’.x ≤ r

22

c : a q x n matrix of double, represents coefficients of linear terms
in the quadratic problem. x’.Q.x + c’.x ≤ r

r : a vector of double, represents the linear constants in the in-
equality constraints x’.Q.x + c’.x ≤ r.

A : a matrix of double, represents the linear coefficients in the
inequality constraints Ax≤ b.

b : a vector of double, represents the linear terms in the inequality
constraints Ax≤ b.

Aeq : a matrix of double, represents the linear coefficients in the
equality constraints Aeqx = beq.

beq : a vector of double, represents the linear terms in the equality
constraints Aeqx = beq.

lb : a vector of double, contains lower bounds of the variables. The
default value is 0.

ub : a vector of double, contains upper bounds of the variables. The
default value is inf.

3.3.3 Outputs

xopt : a vector of double, the computed solution of the optimization
problem.

fopt : a double, the value of the function at x.

lambda : a vector of double, final estimation of the Lagrange multipliers

exitflag : a double, this output parameter tells what happened in this
subroutine, according to the following conventions.

23

The exitflag allows to know the status of the optimization which is
given back by Algencan.

exitflag=0 : Optimal Solution Found

exitflag=1 : Maximum Number of Output Iterations Exceeded. Output
may not be optimal

exitflag=2 : Maximum Number of Total number of Inner Iterations Ex-
ceeded. Output may not be optimal

exitflag=3 : Maximum Number of Total number of Functional Evaluations
Exceeded. Output may not be optimal

exitflag=4 : The algorithm stopped by “lack of feasibility progress”, i.e.,
the current point is infeasible

3.4 Examples

//Reference : http://www.minlplib.org/nvs10.html
Minimize : 7 ∗ i12 + 6 ∗ i22 − 35 ∗ i1 − 80.4 ∗ i2
subject to

−9 ∗ i12 − 10 ∗ i1 ∗ i2 − 8 ∗ i22 ≥ −583

−6 ∗ i12 − 8 ∗ i1 ∗ i2 − 6 ∗ i22 ≥ −441

0 ≤ i1 ≤ 200

0 ≤ i2 ≤ 200
Solution
H = [70; 06];
f = [−35;−80.4];
Q = [[95; 58]; [34; 43]];
c = [00; 00];
r = [583; 441];
x = [1; 1];

24

http://www.minlplib.org/nvs10.html

lb = [0; 0];
ub = [200; 200];
[xopt, fopt] = qcqp(x,H,f,Q,c,r,[],[],[],[],lb,ub);

25

Chapter 4

Toolbox Review

The documentation of functions were not consistent with the code
and it’s description. Some of the functions didn’t have documenta-
tion. Hence, documentation of many functions were reviewed, new
documentations were created and the required changes were made to
it’s documentation. The functions which were reviewed are given as
follows:

fminbnd
Minor Corrections were done in the description and replaced
faulty examples with new ones.

qcqp
Created entire documentation from scratch with examples.

quadprogCLP
Created entire documentation from scratch with examples.

quadprog
Minor Corrections were done in the description and replaced
faulty examples with new ones.

quadprogmat

26

Minor Corrections were done in the description and replaced
faulty examples with new ones.

fmincon
No Corrections.

27

Chapter 5

Conclusion

During the fellowship, I was exposed to open source software and cul-
ture. I had a very steep learning curve during the whole tenure of
our fellowship. Right from zero experience to understanding various
concepts and making something productive and deploy able from it, I
progressed a lot and understood what it means to be an IT professional
and software engineer. I learnt about APIs, building interface through
them, and also developed more proficiency in C++. Also, I learnt
about the difficulties when building a cross-platform software, how to
study problem statement and develop efficient solution, how to inter-
face multiple libraries, how to handle errors and eventually solve them.
Apart from technical things, I learnt about time management, Criti-
cal and Analytical thinking and Goal Management. Problems faced
during our fellowship will help me face challenges in a working envi-
ronment. At the end, I would like to thank and appreciate everyone
who made my fellowship a superb learning and memorable experience.

28

	Introduction
	FOSSEE Optimization Toolbox
	Tools and Technologies
	Scilab
	Coin-Or
	Tango

	QuadprogCLP
	Linear Constrained Quadratic Problem
	Build
	Function
	Installation
	Dependencies
	Gateway

	Documentation
	Syntax
	Inputs
	Outputs

	Examples

	Qcqp
	Quadratic Programming
	Build
	Function
	Installation
	Dependencies
	Generating Shared Library
	Gateway

	Documentation
	Syntax
	Inputs
	Outputs

	Examples

	Toolbox Review
	Conclusion

