
Summer Fellowship Report

On

YAKSH: Testing Automation

Submitted by

Vivek Kumar

Under the guidance of

Prof. Prabhu Ramachandran

Deparatment of Aerospace Engineering

IIT Bombay

July 8, 2019

Acknowledgment

I, Vivek Kumar, a FOSSEE intern of the YAKSH Project is
overwhelmed in all humbleness and gratefulness to acknowledge my
deep gratitude to all those who have helped me accomplish the tasks
assigned to me.
I am highly indebted to my project mentor Mr. Ankit R. Javalkar
for his continous support, supervision, motivation and guidance
throughout the tenure of my project in spite of his hectic schedule
who truly remained driving spirit in my project and his experience
gave me the light in handling this project and helped me in clarifying
the abstract concepts, requiring knowledge and perception, handling
critical situations and in understanding the objective of my work.

With Regards,

Vivek Kumar
(GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, DELHI)

1

Contents

1 Introduction 3

2 Moderator and Student mode on Yaksh 4
2.1 Moderator Mode . 4
2.2 Student Mode . 6

3 About Selenium 7
3.1 Selenium 1 (aka. Selenium RC or Remote Control) 7
3.2 Selenium 2 (aka. Selenium WebDriver) 7

4 Flow of Testing 8
4.1 Flow of moderator functions testing 8
4.2 Flow of student functions testing . 9

5 Using Selenium WebDriver for browser automation 10

2

Chapter 1

Introduction

Yaksh is an Online Test Interface for Conducting online programming
quiz. It supports various programming languages like :- C, C++,
Python and simple Bash.
User can solve any questions by using these languages. Yaksh uses
test cases to test the the implementations of the students. It also sup-
ports simple multiple choice questions and file uploads so that user
can easily submit his code.
Not only you can practice the questions even you can also conduct
a programming quiz that supports various languages. There is a
separate moderator section for this where a moderator can create
questions,quizzes and courses. Yaksh provides various programming
courses created by moderators to be enrolled by the students.

3

Chapter 2

Moderator and Student mode on
Yaksh

2.1 Moderator Mode

On logging in moderators see the following dashboard.

4

Following functions are available for moderator:

• Courses

– Setting up a new course

– Design a Course

• Quizzes

– Creating a Quiz

– Creating a Exercise

– Designing Question Paper

– Editing a Quiz/Exercise

– Editing a QuestionPaper

• Questions

– Setting up questions

• Lessons and Modules

– Setting up a Lesson

– Setting up a Module

– Design a Module

5

2.2 Student Mode

On logging in students see the following dashboard.

Following functions are available for students:

• Enrolling in a quiz/course

• Taking a quiz

6

Chapter 3

About Selenium

Selenium is a set of different software tools each with a different ap-
proach to supporting test automation. Most Selenium QA Engineers
focus on the one or two tools that most meet the needs of their project,
however learning all the tools will give you many different options for
approaching different test automation problems. The entire suite of
tools results in a rich set of testing functions specifically geared to the
needs of testing of web applications of all types. These operations are
highly flexible, allowing many options for locating UI elements and
comparing expected test results against actual application behavior.
One of Seleniums key features is the support for executing ones tests
on multiple browser platforms.
Selenium is composed of multiple software tools. Each has a specific
role.

3.1 Selenium 1 (aka. Selenium RC or Remote

Control)

Selenium RC was the main Selenium project for a long time, before
the WebDriver/Selenium merge brought up Selenium 2, the newest
and more powerful tool.
Now Selenium 1 is deprecated and is not actively supported (mostly
in maintenance mode).

3.2 Selenium 2 (aka. Selenium WebDriver)

Selenium 2 is the future direction of the project and the newest addi-
tion to the Selenium toolkit. This brand new automation tool provides
all sorts of awesome features, including a more cohesive and object
oriented API as well as an answer to the limitations of the old im-
plementation. I have used selenium 2 in my task for automation the
testing of platform Yaksh. We will look in more detail about selenium
2 in upcoming chapters.

7

Chapter 4

Flow of Testing

4.1 Flow of moderator functions testing

8

4.2 Flow of student functions testing

9

Chapter 5

Using Selenium WebDriver for
browser automation

I have used Selenium 2 (aka. Selenium WebDriver) for automating
the testing of the Yaksh as the flow mentioned in section 4.1 and 4.2.

The selenium.webdriver module provides all the WebDriver implemen-
tations. Currently supported WebDriver implementations are Firefox,
Chrome, IE and Remote.

1 from selenium import webdriver

Next, we have to create an instance of webdriver. I have used instance
of Firefox WebDriver in my code.

1 driver = webdriver.Firefox ()

The driver.get method will navigate to a page given by the URL.
WebDriver will wait until the page has fully loaded (that is, the on-
load event has fired) before returning control to your test or script.
Its worth noting that if your page uses a lot of AJAX on load then
WebDriver may not know when it has completely loaded.

1 driver.get(’/exam/login/’)

10

For automating a task with selenium on a web page for example
clicking a button we have find that button on the web page and then
click on it using selenium webdriver methods.
There are various strategies to locate elements in a page. You can
use the most appropriate one for your case. Selenium provides the
following methods to locate elements in a page:

• find_element_by_id

• find_element_by_name

• find_element_by_xpath

• find_element_by_link_text

• find_element_by_partial_link_text

• find_element_by_tag_name

• find_element_by_class_name

• find_element_by_css_selector

For example here’s a code snippet for automating logging in to Yaksh:
1 def login(self , username , password):

2 # get the username , password and submit form elements

3 username_elem = self.driver.find_element_by_id("id_username")

4 password_elem = self.driver.find_element_by_id("id_password")

5 submit_login_elem = self.driver.find_element_by_css_selector(

6 ’button.btn’)

7

8 # Type in the username , password and submit form

9 username_elem.send_keys(username)

10 password_elem.send_keys(password)

11 submit_login_elem.click ()

Sometimes we can get element not found error in spite of element
being present on the page. Most of the time this type of error happens
because of slow loading of page. We can overcome this issue by using
WebDriverWait method, with the help of this function we can make
selenium driver to wait until the presence of required element on a
web page. Here’s an example of its usage:

1 WebDriverWait(self.driver , 5).until(

2 EC.presence_of_element_located ((By.ID , "home"))

3).click ()

11

Reference

• https://www.seleniumhq.org/docs/

• https://selenium-python.readthedocs.io/

12

