
Summer Fellowship Report

On

Development of Ubuntu installer, Debian Package
and PPA

Submitted by

Himanshu Singh

Under the guidance of

Prof. Siddhartha Ghosh

Civil Engineering Department

IIT Bombay
&

Mentors - Danish Ansari, Ajmal Babu MS

FOSSEE, Osdag

IIT Bombay

July 11, 2019

Acknowledgment

I would like to thank the FOSSEE project from IIT

Bombay for giving me an opportunity to do internship with

Osdag. The internship opportunity was a great chance for me

to learn and develop myself professionally. It helped me to en-

hance my knowledge in creating Ubuntu installer, Debian pack-

ages, PPA and in general software development. I feel grateful

to have met so many wonderful people and professionals who

guided me through this internship period.

I would like to specially acknowledge Prof. Siddhartha

Ghosh with my deepest gratitude who in spite of being busy

with his duties, took time out to hear, guide and keep me on

the correct path and allowing me to carry out my project at

their esteemed research lab (SSRR lab).

I would also like to acknowledge the members of the

Osdag team; Danish Ansari (Project Research Assistant), Aj-

mal Babu MS (Project Research Engineer) and Sourabh Das

(Project Research Associate) for their careful and precious

guidance which was extremely valuable for my both theoretical

and practical study.

I consider this opportunity as a big milestone in my

career development. I shall strive to use the acquired skills

and knowledge in the best possible way, and I will continue

to work on its improvement, in order to attain desired career

objectives.

1

Contents

1 Introduction to Osdag 3

1.1 What is Osdag ? 4

1.2 Who can use ? 6

2 Development work on Linux Ubuntu 7

2.1 Ubuntu installer for Osdag 8

2.2 Creating Debian package 9

2.2.1 Advantages of having Debian packages . 9

2.2.2 Programs needed for the development . . 10

2.2.3 Required files under the debian directory 11

2.2.4 Building the package 14

2.2.5 After building package 15

2.3 Creating PPA for Ubuntu 16

3 Conclusion 20

2

Chapter 1

Introduction to Osdag

Osdag internship is provided under the FOSSEE project. FOS-

SEE project promotes the use of FOSS (Free and Open Source

Software) tools to improve quality of education in our country.

FOSSEE encourages the use of FOSS tools through various

activities to provide an alternative to proprietry softwares. It

encourages people from industry and academia to use FOSS

and help in development either by providing their valuable

feedbacks or directly contributing to the projects.

The FOSSEE project is a part of the National Mis-

sion on Education through Infrastructure and Communication

Technology(ICT), Ministry of Human Resources and Develop-

ment, Government of India.

Osdag is one such open source software which comes un-

der the FOSSEE project. Osdag internship is provided through

FOSSEE project. Any UG/PG/PhD holder can apply for this

internship. And the selection will be based on a screening task.

3

https://fossee.in/

1.1 What is Osdag ?

Osdag is a cross-platform free and open-source software for

the design of steel structures, following the Indian standard IS

800:2007. It allows the users to design steel connections, mem-

bers and systems using a graphical user interface. The interac-

tive GUI provides a 3D visualisation of the designed component

and creates images for construction/fabrication drawings.

It is used for solving steel structures problems and to see

how the connection will look after practical implementation.

There are different modules available in Osdag with various

connectivities.

Osdag provides various features such as:

• An interactive window displaying a 3D CAD model, which

provides a clear visualisation of the designed component.

• Creation of 3D CAD models that can be imported to

generic CAD softwares.

• User-friendly input and output docs, with text-validated

fields grouped according to the design flow.

4

• A text window for message display, that also suggests nec-

essary changes if a trial design is found unsafe.

• Creation of a professional design report showing all nec-

essary checks, design calculations as per IS 800:2007, and

standard views of the designed component.

5

• Creation of 2D vector (and raster) images that can be used

in a design report or class assignment.

• Selection of design preferences, considering different con-

struction and detailing aspects, using a design preference

toolbox.

1.2 Who can use ?

Osdag is generally created for industry professionals but it also

keep students in mind. As Osdag is funded by MHRD, Osdag

team tries to manipulate software in such a way that it can be

used by the students during their academics and to give them

a better insight look in the subject.

Basically Osdag can be used by anyone starting from

novice to professionals. It’s simple and sober user interface

makes it flexible and attractive than the other softwares. Also

there are video tutorials to get started. The video tutorials of

Osdag can be accessed here.

6

https://osdag.fossee.in/resources/videos

Chapter 2

Development work on Linux Ubuntu

As Osdag is a Free and Open Source Software it is necessary

to have it available for the linux platform. On our mission to

promote FOSS among the general people it is a good idea to

create an application for Ubuntu Linux as it is one of the most

used linux distribution.

Another important reason to develop an application

for Ubuntu is Great and Supportive Community -

The Ubuntu Community is a community that welcomes new

Ubuntu users and developers. They know that sharing apps

with them requires hard work, passion and dedication so they

are there to support you. We dont need marketing to promote

our apps, the community will do it for us. If the app is special

to Ubuntu users and helps them to complete their tasks they

will give love back to us by reviewing your app and rating it

on the Ubuntu Software Center.

We already had Linux installer with bash scripts, it just

needed to be updated (updating package versions and adding

the newer ones). The task was to create a Debian package

to Osdag so as to submit to Debian repository, and can be

ultimately made available to ubuntu store so that it can be

installed using the command

sudo apt-get install osdag

7

To provide users with the latest feature before the completion

of Ubuntu six month update cycle we need to create PPA for

Osdag so a user can add that PPA and install it from there.

2.1 Ubuntu installer for Osdag

Ubuntu installer for Osdag contains two bash scripts.

1. 1-install-Miniconda2-latest-Linux-x86 64.sh

2. 2-install-osdag.sh

The first script is to install the Miniconda2, on the sys-

tem if it does not have it already installed. This bash script is

available on the anaconda website to install the latest version

of Miniconda.

All the dependencies are installed from the dependen-

cies folder using the command ’conda install’. conda is the

python package manager for Anaconda python, becomes avail-

able when Miniconda is installed.

The second bash script creates a configuration file for

Osadg, desktop launcher and installs the dependencies from

dependencies folder so as to avoid any conflict with a change

in the version of packages.

8

https://docs.conda.io/en/latest/miniconda.html

The main task was to update the packages to the latest

version (downloading and storing them in dependencies folder),

updating bash script accordingly. Several new packages were

added namely pycairo and openpyxl.

Some of the packages dropped support for the python2

and the latest version of some packages was not working prop-

erly with our source code, those were not updated.

2.2 Creating Debian package

Debian is divided into three distributions: stable, testing and

unstable. Whenever a new package is added, or an existing

package is updated, it goes into unstable. Once it has been

in unstable for ten days without revealing serious bugs, it au-

tomatically moves into testing. When the release manager

decides it’s time for a new release, he declares the testing dis-

tribution as frozen. This means that no new packages can be

added, and no existing ones may be updated.

2.2.1 Advantages of having Debian packages

1. Debian is one of the primary Linux distributors along with

fedora, RedHat, Opensuse. Ubuntu operating system is

9

a free and open-source Linux distribution based on the

Debian.

2. Creating a Debian package means a very wide reach for the

software used and reviewed by a large number of people,

makes it better.

3. It is easier to create a package for other Linux distributions

such as for Redhat RPM with making minimal changes.

4. Debian have a huge community of dedicated open source

contributors and have more than 3000 permanent develop-

ers, which provide a chance to attract contributor to our

project.

5. Adding you package to Debian repository is one of the best

ways to get our package added to Ubuntu repository and

It updates its repository regularly from Debian repository.

Once the package is added to the Ubuntu apt repository

it will provide Easier installation with sudo apt-get com-

mand.

2.2.2 Programs needed for the development

1. debhelper - A collection of programs that can be used

in a debian/rules file to automate common tasks related

to building Debian packages. Programs are included to

install various files into the package, compress files, fix file

permissions, integrate your package with the Debian menu

system, debconf, doc-base, etc. Most Debian packages use

debhelper as part of their build process.

2. dh-make - dh-make is necessary to create the skeleton

of our package, and it will use some of the debhelper tools

10

for creating packages. They are not essential for this pur-

pose, but are highly recommended for new maintainers. It

makes the whole process very much easier to start and to

control afterwards.

3. fakeroot - this utility lets you emulate being root, which

is necessary for some parts of the build process.

4. devscripts - The devscripts package provides a collection

of scripts which may be of use to Debian developers and

others wishing to build Debian packages.

5. gnupg - a tool that enables you to digitally sign packages.

This is especially important if you want to distribute pack-

ages to other people, and you will certainly be doing that

when your work gets included in the Debian distribution.

6. python setuptools - Setuptools is a package devel-

opment process library designed to facilitate packaging

Python projects by enhancing the Python standard library

distutils. It includes: Python package and module defini-

tions Distribution package metadata Test hooks Project

installation Platform-specific details

Other required tools are already installed with Ubuntu OS

so no need to install them separately.

2.2.3 Required files under the debian directory

1. control - This file contains various values which dpkg,

dselect, apt-get, apt-cache, aptitude, and other package

management tools will use to manage the package.

Architecture: any - The generated binary package is an

architecture-dependent one usually in a compiled language.

11

Architecture: all - The generated binary package is an

architecture-independent one usually consisting of text,

images, or scripts in an interpreted language.

2. Build-Depends - One very important thing to get right

is the Build-Depends line in the source package stanza.

dh python2 will correctly fill in the installation dependen-

cies (via python:Depends.

Add following build dependencies: debhelper (>= 11)

dh-python

python-all

python-setuptools

If source code supports Python 2, we need to add this line

in the source package stanza:

X-Python-Version: >= 2.7

3. copyright - This file contains the name of files, License

type (such as MPL-1.1 or GPL-2 or LGPL-2.1), developer

name etc. example:

Files: src/js/editline/*

Copyright: 1993, John Doe

1993, Joe Average

License: MPL-1.1

4. changelog - This is a required file, which has a special

format described in Debian Policy Manual ”debian/changelog”.

This format is used by dpkg and other programs to obtain

the version number, revision, distribution, and urgency of

the package. If any bug has been fixed then bug fix number

and developer name should also be added into it.

12

5. rules - The contents of this file depend on whatever build

system one chooses, here we choose python2.

6. preinst - It is a script containing a list of tasks to be per-

formed before installation of a package such as installing

debian packages, displaying messages, interaction with the

user (messages like ’this installation requires 200MB disk

space, do you install yes/no?’).

7. postinst - This script shows messages after installation

such as successful installation of failure with possible rea-

sons etc.

8. compat The compat file defines the debhelper compati-

bility level. Currently, we should set it to the debhelper

v10. We may use compat level v9 in certain circumstances

for compatibility with older systems.

13

2.2.4 Building the package

After creating the above files following steps needs to be fol-

lowed

• Issue the following command in the source directory: This

will do everything to make full binary and source packages

for us. It will:

clean the source tree (debian/rules clean)

build the source package (dpkg-source -b)

build the program (debian/rules build)

build binary packages (fakeroot debian/rules binary)

make the .dsc file

make the .changes file, using dpkg-genchanges

• Above command will create osdag 0.1.tar.gz, osdag 0.1 all.deb,

osdag 0.1.dsc and osdag 0.1 amd64.changes files in top level

directory.

If the build result is satisfactory, sign the .dsc and .changes

files with our private GPG key using the debsign com-

mand. We need to enter the secret pass phrase, twice.

• debuild- We can automate the build activity around ex-

ecuting the dpkg-buildpackage command package further

with the debuild command.

• The debuild command executes the lintian command to

make a static check after building the Debian package.

The lintian command can be customized with the following

in the /.devscripts file:

14

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-us -uc -I -i"

DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"

• debuild -us -uc This command will build the package and

other files without signing the package with GPG key.

2.2.5 After building package

After building the Debian package it can be directly distributed

by distribute.deb file. Alternatively, it can be added to Debian,

few steps need to be taken for this.

1. The DFSG - An important part of Debian is the DFSG,

short for Debian Free Software Guidelines. It is a set of

guidelines about the license of a package, and a pack-

age goes into different sections of Debian depending on

whether its license is DFSG-compatible or not. If it is, it

15

goes into the Debian main section; if it isn’t, it goes into

the non-free section; if it is DFSG-compatible but depends

on other packages in the non-free section, it goes into con-

trib.

A package is basically DFSG-compatible if its source code

is available, and if everybody is allowed to modify and dis-

tribute it; examples of compatible licenses are the GNU

General Public License, the BSD License and the Artistic

License.

2. Filing an ITP - Before starting packaging, we should

file an ITP (Intent To Package). That is a special bug

report saying that we want to package some product. So

the other developers know that we’re working on it and

will not start working on it, too. One can easily file an

ITP using the reportbug tool and specifying wnpp as the

package.

3. Getting a Sponsor and Uploading - Without being

an accepted Debian Developer one cannot upload to the

Debian archive directly. We have to package our product

and to ask for a sponsor on the debian-mentors mailing list.

A sponsor is a (generally) seasoned Debian developer who

will check our packages and give hints and support until

he thinks they are ready to be accepted into Debian. Then

he will upload them and they will be added to Debian.

2.3 Creating PPA for Ubuntu

A Personal Package Archive (PPA) is a special software repos-

itory for uploading source packages to be built and published

as an APT repository by Launchpad.

16

Part of the appeal of Ubuntu is its six-month release cycle.

Every six months a new version of the free operating system is

released into the wild, complete with updates for all of the soft-

ware. This is great but can be a trifle disappointing from time

to time. For example, if a new version of software comes out

but users have to wait until the next version of Ubuntu comes

out to try it. PPA provides a way to use the latest version

of the software as soon as they are released by the developers

without waiting for it to be included with Ubuntu six-month

update by adding the PPA repository.

$ sudo add-apt-repository ppa:package_name

$ sudo apt-get update

$ sudo apt-get install package_name

Creating gpg key

GPG is the Gnu Privacy Guard and it is an implementation of

OpenPGP (Open Pretty Good Privacy). It is an encryption

technique that was originally developed for use in e-mail ex-

changes that is now used in a number of different applications

such as code signing for Linux code repositories and source code

repositories like github. OpenPGP is a hybrid of the two-key

cryptography approach where the message to be exchanged

(called plaintext) is first compressed and then a session key is

created as a one-time use secret key. The compressed plaintext

is then encrypted with the session key.

We need gpg key to sign the Ubuntu code of conduct to

activate our PPA on Launchpad.

1. Open Passwords and Encryption Keys. You can search it

by the name seahorse in Ubuntu Applications.

17

2. Select the My Personal Keys tab, select your key and open

the property window by pressing Space Bar or double-

clicking with your pointer. Select the Details tab of the

property window.

3. Select the Fingerprint text (the ten blocks of numbers and

letter). Copy the text by pressing the Ctrl+c keys to-

gether. Command line tool can be installed by running

the command: sudo apt-get install gnupg

4. Open a terminal and enter:

gpg --fingerprint

GPG will display a message similar to:

pub rsa2048 2019-06-25 [SC]

E538 D358 C4FC 4928 E55E 701F 70C5 C579 B0B5 AC17

uid [ultimate] Himanshu Singh

<himanshu16mr13@gmail.com>

sub rsa2048 2019-06-25 [E]

Registering gpg key

1. Highlight and copy public part of fingerprint ie. B0B5AC17

In terminal run following command:

gpg --keyserver keyserver.ubuntu.com --send-keys B0B5AC17

2. Check whether your keys are available on Ubuntu Key

server

gpg --keyserver hkp://keyserver.ubuntu.com --search-key

himanshu16mr13@gmail.com

18

It will return a key having last 8 characters same as our

public key.

3. Register your key at Ubuntu Launchpad website. Next,

after matching key with Ubuntu keyserver Launchpad will

send email to you at registered mail id with instructions

on finishing the process. Hence a PPA will created on

Launcpad.

Uploading a package to a PPA

From terminal issue the following command from debian pack-

aging directory

dput ppa:your-lp-id/ppa <source.changes>

If the package is built successfully, an email notification will be

sent.

19

Chapter 3

Conclusion

On the whole, this internship was a useful experience. I have

gained new knowledge, skills and met many new people. I

achieved several learning goals, and have moved a step further

in achieving other. I got insight into professional practice. In-

ternship has proved to be satisfactory and it has allowed as an

opportunity to get an exposure of the practical implementa-

tion of theoretical fundamentals.

Here during the internship period I developed my skills

in following softwares/tools :

1. Osdag

2. Basics of Python

3. Latex

4. Git and Git hub

5. Tools for communication

Throughout the internship, I found that several things

are important:

• Critical and Analytical Thinking

20

To organize our tasks and assignment, we need to analyse

our problems and assignment, and to formulate a good

solution to the problem. We would have to set contingency

plan for the solution, so that we are well prepared for the

unforeseeable situations.

• Time Management

As overall project staff and programmer are always racing

against tight time line and packed schedule, a proper time

management will minimize facing overdue deadlines. An

effective time management allows us to do our assignment

efficiently and meet our schedules. Scheduling avoids time

wastage and allows us to plan ahead, and gaining more as

a result.

• Goal Management

It is better to sub-divide the goals to a few achievable

tasks, so that we will be gaining more confidence by ac-

complishing those tasks.

• Colleague Interactions

In working environment, teamwork plays a vital role in

contributing to a strong organization. Teamwork is also

essential in reaching the goals of the organization as an

entity. Thus, communicating and sharing is much needed

in the working environment. Therefore, we should be re-

specting each other in work, and working together as a

team, instead of working alone. This is because working

together as a team is easier in reaching our targets, rather

than operating individually.

• Tools for communication

21

Most of the open-source community uses the following

tools for communicating, asking questions and announce-

ments etc. While seeking solutions to some of the problems

I learned to use these tools.

IRC - Internet Relay Chat (IRC) is an application layer

protocol that facilitates communication in the form of text.

The chat process works on a client/server networking model.

IRC clients are computer programs that users can install

on their system or web-based applications running either

locally in the browser or on a 3rd party server. It is like

instant messaging but is much older than the platforms we

currently use. I used Freenode which is an IRC network

used to discuss peer-directed projects.

An IRC client is the vehicle that connects you to the global

network of IRC servers. A variety of applications are avail-

able, so, whether you are on Windows, Linux, macOS. I

used Hexchat for this purpose.

Mailing-list - A mailing list is a collection of names

and addresses used by an individual or an organization

to send material to multiple recipients. The term is often

extended to include the people subscribed to such a list, so

the group of subscribers is referred to as ”the mailing list”,

or simply ”the list”. Mailing lists preceded web forums and

can provide similar functionalities.

I learned the difference between top-posting and bottom

posting, and why the latter is preferred in the open-source

community.

Forums - An Internet forum, or message board, is an

online discussion site where people can hold conversations

in the form of posted messages. They differ from chat

22

rooms in that messages are often longer than one line of

text, and are at least temporarily archived. I used to ask

ubuntu, Launchpad forum, Unix stack exchange, learned

about asking questions, providing detailed response etc.

I would like to once again appreciate everyone who has

made my internship training a superb experience.

23

	Introduction to Osdag
	What is Osdag ?
	Who can use ?

	Development work on Linux Ubuntu
	Ubuntu installer for Osdag
	Creating Debian package
	Advantages of having Debian packages
	Programs needed for the development
	Required files under the debian directory
	Building the package
	After building package

	Creating PPA for Ubuntu

	Conclusion

