
Indian Institute of Technology
Bombay

Summer Fellowship Report
On

GUI for OpenModelica Chemical Process Simulator
(Based on PyQt5)

Author:
Anosh Billimoria,
(Bennett University)
Anuj Goyal,
(Chandigarh College of Engg. & Tech.)

Supervisor:
Prof. Kannan M. Moudgalya
Chemical Engineering Dpt.

IIT Bombay

July 12, 2019

Acknowledgement

We would like to take this opportunity to express our greatest gratitude to
our mentor, Mr. Pravin Kumar Dalve for guiding, supporting and helping
us in every possible way. We were extremely fortunate to have him as
our mentor as he provided insightful solutions to problems faced by us
thus contributing immensely towards the completion of this project. We
would like to thank FOSSEE Team and IIT Bombay for giving us this
opportunity and providing a platform to exhibit our skills. We would
also like to express our deepest gratitude to the faculty of our respective
universities for giving us an opportunity to be a part of this fellowship.

1

Contents

1 Introduction 3

1.1 Vision . 3

1.2 Approach . 3

2 Technology Stack 4

2.1 Python . 4

2.2 PyQt . 4

2.3 OpenModelica . 4

2.4 Git: . 5

3 Implementation 5

4 Features 7

4.1 Compound Selector . 7

4.2 Component Selector . 7

4.3 Mode Selection . 8

4.4 Message Browser . 8

4.5 Canvas . 9

4.6 Result . 9

4.7 Miscellaneous . 10

5 Simulation 10

5.1 Equation oriented mode . 10

5.2 Sequential Oriented mode . 11

2

1 Introduction

OPENMODELICA is an open-source Modelica-based modeling and simulation environ-
ment intended for industrial and academic usage. Its long-term development is supported
by a non-profit organization – the Open Source Modelica Consortium (OSMC).

Our GUI for OM chemical simulator is responsible for implementing the usage of
OMChemSim library created by FOSSEE team.

1.1 Vision

The existing process of creating chemical simulations requires the knowledge of, how to
use the openmodelica and learn the syntax of correctly writing code that implements the
library and creates flowsheet model.

Once the model is created openmodelica provides only solution in Equation Oriented
Mode only. This creates a problem in getting the final solution to converge in most
cases.

Chemical simulation of dynamic nature requires a Sequential Oriented Mode, wherein
each unit operation must be simulated in isolation with respect to the other.

After successful simulation openmodelica provides a tree structure of viewing the result
variables with not a lot of explanation of what they might be or belong to. So, having
component wise result selection screen was our goal, with well-defined titles for each
result variable

We aim to eliminate the hassle of learning a coding paradigm for chemical engineers
and layman enthusiasts who may want to simulate any process.

1.2 Approach

We have used the python language to create and system involving an object-oriented
approach to each of the components, their connections and defining properties of each of
them.

Our primary graphical view and UI was built using PyQt5 which is a python wrapper
library over the C/C++ Qt framework.

The GUI empowers user to select compounds from a wide database by searching its
name and corresponding properties. Further select the specific components required for
the flowsheet model and connections by a simple click and drag.

Parameters and modes of these components can be edited to users will. Adding and
removing of components is fluently implemented.

3

We have separate triggers for Sequential oriented and Equation oriented mode of
solving. The visual order appearing on screen is implemented as the standard order for
Sequential oriented simulation.

We have managed to separate the result variables for each component and display them
to the user.
A messages window reflects every action made by the user as a feedback for successful
action.

2 Technology Stack

The technologies that we used for the development of the GUI Software.Following are the
technology stack we have use:

2.1 Python

Python is an interpreted, high-level, general-purpose programming language. Created
by Guido van Rossum and first released in 1991, Python’s design philosophy emphasizes
code readability with its notable use of significant whitespace.

2.2 PyQt

PyQt is a Python binding of the cross-platform GUI toolkit Qt, implemented as a
Python plug-in. PyQt is free software developed by the British firm Riverbank
Computing.

We used Latest version of PyQt i.e PyQt5. PyQt5 is a comprehensive set of Python
bindings for Qt v5. It is implemented as more than 35 extension modules and enables
Python to be used as an alternative application development language to C++ on all
supported platforms including iOS and Android.

2.3 OpenModelica

OpenModelica is a free and open source environment based on the Modelica modeling
language for modeling, simulating, optimizing and analyzing complex dynamic systems.
This software is actively developed by Open Source Modelica Consortium, a non-profit,
non-governmental organization.

We used the om compiler for doing calculations and generating desired output. This is
also a pre-requisite to our GUI application.

4

2.4 Git:

Git is a distributed version-control system for tracking changes in source code during
software development. It is designed for coordinating work among programmers, but it
can be used to track changes in any set of files. Its goals include speed, data integrity,
and support for distributed, non-linear workflows.
We Used Github for the Git Version Control System.

3 Implementation

We can model our application in the following manner.

Front End: Using the power of Graphic widgets from PyQt5 we have created separate
handlers for lines, component icons, and sockets.
Any interaction of the icons with the user is an input taken seriously and must be
collected.

5

Interactions may include:

• Add new component (Material Streams or Unit Operations

• Removing a component

• Editing parameters according to mode selected

• Making the connections between each component

• Compound selection

Flowsheet Handler: A single class connecting the user inputs and necessary backend
functionality. This handler brings the user input to of each component representation to
its specific object instances. For sending it over to the writing of the (.mo) script file
which will ultimately run on the Openmodelica compiler installed on the system.

Back End: This involves all the classes whose object instances have been feed with
user input and flowsheet design details. Every component is responsible for writing its
definition in these files and the corresponding equations demanded by the
Openmodelica syntax.

6

4 Features

Following are the main features of The GUI application:

4.1 Compound Selector

Compound Selector is a dialog Box in which user can select the required compounds.
Compounds can be searched in autocomplete search box. After selecting the
compounds user can view all the details of selected compounds like the molecular
formulae, molecular weight etc. Also, user can remove the required compounds in the
case not needed.

4.2 Component Selector

Component Selector is a dockWidget with a scrollable area. In this user can click on the
button of the required component like Mixer ,Matsm ,Splitter etc. The respective
component will be instantiated and shown on the canvas as soon as user selects the
component. Component selector is the one which handles all the thing of respective
components.

7

4.3 Mode Selection

Some of the Unit Operations have different modes for the input parameters. So, we
have set default mostly used modes for components but the user can change the modes
according to needs. User can change the mode at the same place of where he/she has to
input the parameters. So, that its convenient for user to change the modes.

4.4 Message Browser

Message Browser is another dockwidget window placed at the bottom. The main function
of this message browser to give the feedback to the user what is done. It gives the feedback
to the user with time of operations. It prints out the operations that the user has done
like instantiation of the new components or connection of one component to another etc.
It also gives the time taken in simulation and other things like that.

8

4.5 Canvas

Canvas is the area where user can draw the required flowsheet. User can connect
multiple components with each other by connecting the nodes on the different
components with a line. The canvas can be zoomed in or Out using buttons on the
toolbar.This is the area where the flowsheet designer will spend most of his time.

4.6 Result

Results are displayed in the Dockwidget which is viewed on the left side. Results widget
will have a dropdown where user can select from the list of components, he has used
and select for which the component he needs the result. User will be able to view the
result that Dockwidget. We used this approach as for reference user can easily view the
design he has mode on the flowsheet.

9

4.7 Miscellaneous

• Menu Bar

• Tool Bar

5 Simulation

5.1 Equation oriented mode

Once all user input for each component is received and every connection is duly made
user will click on the simulation button for equation oriented solution. In doing so a
flowsheet with the extension of (.mo) is created within the directory structure. At the
same time a file with extension (.mos) is also created which holds all necessary commands
for the Open modelica compiler installed on the system. We instruct the compiler to load
the following dependencies in order. Modelica, package.mo and flowsheet.mo then a
command for simulate.

OM provides the output in various formats such as (.mat),(.plt) and .(.csv). We
continue our program flow with the (.csv) file and print results onto the screen with
clear formatting of each variable and it’s full name.

10

5.2 Sequential Oriented mode

Once the simulation of Equation oriented is completed. The user can choose to re-simulate
the same flowsheet design in sequential oriented mode. Although any can be simulated
first.

Under this process, python selects only the first unit operation from the flowsheet and
creates an openmodelica script with extension (.mo) and simulates this similar to
Equation oriented approach.

The output of this flowsheet is saved in the connecting material stream of the flowsheet
design, as the program progresses to the next unit operation in the pipeline it makes
sure that the order is maintained and instantiates the starting values from prior
simulation only. After successful simulation of all the unit operations, the results are
shown on screen formatted according to the components used.

11

	Introduction
	Vision
	Approach

	Technology Stack
	Python
	PyQt
	OpenModelica
	Git:

	Implementation
	Features
	Compound Selector
	Component Selector
	Mode Selection
	Message Browser
	Canvas
	Result
	Miscellaneous

	Simulation
	Equation oriented mode
	Sequential Oriented mode

