
Summer Fellowship Report

On

Python Web-Program for Koha Barcode and Spine Label

Submitted by

Rahul Paknikar

Under the guidance of

Dr. Manju Naika

Chief Library Officer, Central Library

IIT Bombay

July 12, 2019



Acknowledgment
It is really a pleasure to acknowledge the help and support that has gone to

in making this successful project. I express sincere gratitude to Prof. Kannan
Moudgalya and FOSSEE Team at IIT-Bombay for providing me with this opportu-
nity to work on this project and also having faith in my abilities. I would like to
thank my project mentors Dr. Manju Naika, Mr. Pravin Ghorpade at Central Li-
brary and project head Dr. Bella Tony, for being instrumental in helping me achieve
the desired outcome and in understanding the objective of the work. I would like to
mention special thanks to the open source community to provide me with the nec-
essary tools and knowledge base required to complete this project. I shall mention
special thanks to the staff of Central Library for making my working environment
comfortable and providing me all the facilities required to carry out this project.

1



Contents

1 Introduction 4

2 Limitations with Existing System 5

3 Methodology 6

4 Features 7

5 Requirements and Installation 8
5.1 Server Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Setup for Client-Processing . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Running the Server 13
6.1 Apache - The Deployment Server . . . . . . . . . . . . . . . . . . . . 13
6.2 Django WSGI - The Development Server . . . . . . . . . . . . . . . . 13

7 User Access 14
7.1 Accessing Home Page . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2 Staff Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.4 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Admin Access 18
8.1 Accessing Admin Page . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2 Admin Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3 Admin Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.4 Accessing Documentation . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Printing the Labels 20
9.1 Barcode Label Printing . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2 Spine Label Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.3 Setting the Print Spooler . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Custom Fonts 23
10.1 Serving Font-Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.2 Encoding of Font-Files . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.3 Waiting for Server Response . . . . . . . . . . . . . . . . . . . . . . . 24

2



List of Figures

5.1 DataTable Plugin - Table Rendering . . . . . . . . . . . . . . . . . . 10
5.2 JsBarcode Library - Encoded Barcode Image Generation . . . . . . . 11
5.3 pdfMake Library - PDF Generation . . . . . . . . . . . . . . . . . . . 12

7.1 Browser with given Server IP . . . . . . . . . . . . . . . . . . . . . . 14
7.2 Home Page - Staff Login . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Barcode Search (Authenticated Users only) . . . . . . . . . . . . . . . 15
7.4 Data Selection and Verification . . . . . . . . . . . . . . . . . . . . . 16

8.1 Admin Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2 Admin Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.3 Accessing Documentation . . . . . . . . . . . . . . . . . . . . . . . . 19

9.1 Barcode Label PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2 Spine Label PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.3 Print Spooler - Page Size Setup . . . . . . . . . . . . . . . . . . . . . 22
9.4 Print Spooler - Graphics Setup . . . . . . . . . . . . . . . . . . . . . 22

10.1 Serving of Font Files at Server-Side . . . . . . . . . . . . . . . . . . . 23
10.2 Ajax - Asynchronous Call to Server . . . . . . . . . . . . . . . . . . . 24
10.3 Await - Wait for Promise Object (Server Response) . . . . . . . . . . 24

3



Chapter 1

Introduction

The existing system at the Central Library, IIT-Bombay relies on a Desktop-based
software for printing of the Barcode Labels and Spine Labels for the Books, Records
and Thesis. The printing software is made available along with a printer which is
proprietary in nature and designed specifically for that printer. The data for the
printing of Barcode and Spine Labels are provided through the Koha Database of
the Central Library.

The process of setting up the print of these Labels is very cumbersome as it
involves many tasks to be performed. The tasks include connecting to the database
and making data available in an Excel sheet. This Excel sheet then needs to be
linked with that proprietary software, manual adjustment of data layout on the la-
bel has to be done (if required), setting of font style and then printing those labels.

The primary objective of this project is to design a solution in such a way that it
will be independent of Operating Systems and any printer interface. Other objectives
involve making the solution portable and accessible from any location, not confined
to a physical location, within the Intranet of the Central Library and to reduce
the number of manual task to be performed with this process. Hence to provide a
solution to above requirements, a Browser-Based approach is used i.e. a Website.

4



Chapter 2

Limitations with Existing System

• The existing software is confined to a physical location where the printer is
placed and connected to a Desktop.

• The software needs to be installed separately on each computer and also the
Excel sheets need to be linked on every computer where the printer will be
associated for printing purposes.

• The softwares used are proprietary in nature and are not open-sourced.

• It is designed specifically to be compatible ONLY with their own printers and
hence if printer is changed, then the software will fail.

• The current softwares used and the entire process of printing the labels are
OS specific i.e. will work for Microsoft Windows Operating System.

5



Chapter 3

Methodology

The method to overcome above limitations is to make the entire solution Browser-
Based which can be accessed via the Intranet of Central Library. It involves the
deployment of Client-Server-Database Architecture where the Client will be the
Browser. This solution involves following tasks to be performed for printing those
labels:

• Search the Koha Database for the Barcode number. There are two options
provided for the searching task:

– A Single Barcode Search

– A Range of Barcode Searches

• Select the data to be printed and verify it (if required).

• Print the data based on the requirement of user. There are two options pro-
vided for the requirement:

– Barcode Label Printing

– Spine Label Printing

• Verify the Settings of the Printer Interface. It involves two steps:

– Setup of the page size (for Godex Printer : 91 mm x 18 mm).

– Setup of the Graphics option (for Godex Printer : None).

Note that this step is not within the scope of this project. However,
it has been included to warn the user of the Printer Interface issues
that can arise due to which the desired printing action won’t be
performed.

6



Chapter 4

Features

• This solution is not confined to a physical location and is portable making it
independent of printer connection.

• It does not require any installations to be made separately on every computer
where the printer will be associated.

• This solution is Free/Libre and Open-Sourced, Flexible and Customisable.

• Its design is independent of printer interface and any other proprietary soft-
wares i.e. is generic in nature and can work with any Barcode printers.

• This solution and its design of the task to print those labels are Operating
System independent.

• Its architecture has been deployed entirely offline. Hence, it will function
correctly even in the absence of Internet connectivity without any considerable
bandwidth delay and consumption.

7



Chapter 5

Requirements and Installation

This system involves following technologies for its implementation:

• Frontend

– HTML

– CSS - Bootstrap Framework

– JavaScript - JQuery Library

– Ajax

• Backend

– Python version 3

– Django Web Framework

• Servers

– Apache 2.0 Server with WSGI Interface

– Django WSGI Server (Optional)

5.1 Server Setup

The Apache modules and the underlying Python tool will be installed globally i.e.
using ”root” permission; wherein the Django-WSGI Interface and entire Django
App will be served by Apache in a Virtual Environment. Following are the setup
on Linux (Ubuntu) based Operating System:

• Recommended Python version ≥ 3.5. Install Python first.

• Python-MySQL Connectors:

Open terminal and run the command as:

$ sudo apt-get install python3-dev
$ sudo apt-get install libmysqlclient-dev

8



• Apache-WSGI Server Setup:

Open terminal and run the command as:

$ sudo apt-get update
$ sudo apt-get install apache2
$ sudo apt-get install libapache2-mod-wsgi-py3

• PIP installation for Python:

Open terminal and run the command as:

$ sudo apt-get install python3-pip

(Note that from here on pip points to the reference of Python3)

• Installing Python Packages:

Following packages are required which can be installed through the pip.

– virtualenv

– django (Version ≥ 2.2)

– mysqlclient

– django-mysql

– django-decorator-include (Version ≥ 2.1)

– Sphinx (Version ≥ 2.1.1)

– recommonmark (Version ≥ 0.5.0)

– django-docs (Version ≥ 0.3.1)

5.2 Setup for Client-Processing

Client-Side Processing involves Rendering of Koha data in a table, Barcode creation
and PDF generation. Though these processes are done at Client-Side, the under-
lying plugins and library are served by the Server as static files to the Client. The
description of each library is as follows:

• DataTable Plugin (Version ≥ 1.10.18) :

This plugin provides several APIs that facilitate the interaction of the Client
with the Koha Data being searched. The implementation requires:

– CSS

∗ jquery.dataTables.min.css

∗ buttons.dataTables.min.css

∗ select.dataTables.min.css

9



– JavaScript

∗ jquery.dataTables.min.js

∗ dataTables.select.min.js

∗ dataTables.buttons.min.js

∗ buttons.print.min.js

Figure 5.1: DataTable Plugin - Table Rendering

Figure 5.1 shows the implementation of the DataTable Plugin by creating a
JavaScript function named as ’renderTable()’. It requires the HTML table ID

10



on which the CSS styling and data rendering will take place. The buttons
include the custom options as per the requirements of the design.

• JsBarcode Library :

This library converts the text into a Barcode image. As per Barcode standards
and the encoding used at the Central Library of IIT-Bombay, the implemen-
tation requires ’code39’ standard as follows:

– JavaScript

∗ JsBarcode.code39.min.js

Figure 5.2: JsBarcode Library - Encoded Barcode Image Generation

Figure 5.2 shows the implementation of JsBarcode Library by creating a
JavaScript function named as ’genBarcode()’. The output of JsBarcode is
an image which requires HTML canvas for the drawing of that Barcode im-
age. However, the image format is not acceptable by pdfMake Library and
hence needs to be converted to a Base64 encoding.

11



• pdfMake Library

This library is at the core of this solution. It takes the data from the DataTable
Plugin, the encoded image from the JsBarcode and generates the PDF. The
implementation requires:

– JavaScript

∗ pdfmake.min.js

∗ vfs fonts.js

Figure 5.3: pdfMake Library - PDF Generation

Figure 5.3 shows the implementation of the pdfMake Library by creating a
JavaScript function named as ’print()’. pdfMake requires the Document Definition
in which the page size, page margins, pdf contents and default styling are provided.
This function is async in nature and uses await which will be discussed in Fonts
Chapter.

12



Chapter 6

Running the Server

The advantage of deploying Django on Apache Server is that you get two Servers
to work with. Thus if one of the server is not working, then other server can be
used as temporary replacement. This solution involves two Servers to work with as
mentioned below.

6.1 Apache - The Deployment Server

This is the main and primary server on which this solution is deployed. To start the
server, open the terminal and run the command as:

$ sudo service apache2 start

To stop the server, open the terminal and run the command as:

$ sudo service apache2 stop

6.2 Django WSGI - The Development Server

This is a secondary and backup server on which this solution is developed. Note
that the term ’backup’ indicates that this server is to be used in case when the
Apache Server fails/crashes. It doesn’t keep any kind of backup of the server files
nor does it maintain the Server OS state. It is a light-weight server and thus cannot
handle huge request and traffic. Hence it is to be used as Development Server and
in extreme case, as Deployment Server. To start the server, go to the location where
the root of the Django App is located. Now open the terminal and run the command
as:

$ python manage.py runserver <server ip>:<server port>

Note that ’python’ points to the reference of Python3. To stop this server, press
Ctrl+C in the current shell of the running terminal.

13



Chapter 7

User Access

Use your favourite Browser which supports built-in Print Spooler and PDF
Viewer. Though the recommended browser is Mozilla FireFox. Kindly enable
the Cookies and Pop-ups for working of this website in your Browser.

7.1 Accessing Home Page

To access the Home Page, just type the IP address of the Apache Server in the
Browser tab as shown in Figure 7.1.

Figure 7.1: Browser with given Server IP

You should be redirected to an interface to Staff Login as shown in Figure 7.2.

14



7.2 Staff Login

Figure 7.2: Home Page - Staff Login

Login with the credentials provided to you to start working this solution. You
should get an interface where you can start searching in the Koha Database.

7.3 Search

As shown in Figure 7.3, user is provided with 2 choices:

• A Single Barcode Search

• A Range of Barcode Searches

Figure 7.3: Barcode Search (Authenticated Users only)

15



All the fields of the Barcode inputs are validated with a Regex of the pattern
[A-Z]*[0-9]+ indicating that the Barcodes may start with Alphabets and must
end with digits.

7.4 Data Selection

Figure 7.4: Data Selection and Verification

16



As shown in Figure 7.4, the result of Barcode search is displayed on a table using
DataTable API. Here, the user has many options as listed:

• Pagination of Data - User can see more data on next pages as well as can set
the maximum data on each page in gaps of [10, 25, 50, 100].

• Select All

• Deselect All

• Copy Selected Rows (Press Ctrl+C )

• Delete Table - It deletes all the displayed contents of the table and not of the
Koha Database.

• Delete Selected Rows

• Print Barcode Label

• Print Spine Label

• Search option in the table

17



Chapter 8

Admin Access

8.1 Accessing Admin Page

To access the Admin Page, type the IP address of the Apache Server followed by
admin in the Browser tab. For example, if your server IP address is 10.99.100.81,
then type in your Browser tab as:

10.99.100.81/admin/

You should be directed to an interface to Admin Login Page as shown in Figure 8.1.

8.2 Admin Login

Figure 8.1: Admin Login

Login with the Admin credentials to manage the website and access the docu-
mentation as shown in Figure 8.1. You should get an interface where admin actions
can be performed.

18



8.3 Admin Actions

Figure 8.2: Admin Actions

As shown in Figure 8.2, a variety of Admin actions are provided, right from
creating user accounts, making user groups, documentation, access to site, making
rules for access to Koha Database and so on.

8.4 Accessing Documentation

Figure 8.3: Accessing Documentation

Click on the link of Documentation located at upper right corner in the Admin
Action page. You should be directed to the detailed and official documentation of
this solution as shown in Figure 8.3.

19



Chapter 9

Printing the Labels

To print the data shown in the table, there are two options provided in the interface
as shown in Figure 7.4 :

• Print Barcode

• Print Spine

9.1 Barcode Label Printing

To print the Barcode labels, click on the ’Print Barcode’ button. A Pop-up will
appear, thus opening a PDF in new tab of the Browser window containing the
Barcode data adjusted automatically with the set font-styles.

Figure 9.1: Barcode Label PDF

20



Figure 9.1 shows this interface of generated PDF. Note that only the selected
rows of the table will be chosen for printing. If no row is selected, then all the rows
in the table will be chosen for printing by-default.

9.2 Spine Label Printing

To print the Spine labels, click on the ’Print Spine’ button. A Pop-up will appear,
thus opening a PDF in new tab of the Browser window containing the Spine data
adjusted automatically with the set font-styles.

Figure 9.2: Spine Label PDF

Figure 9.2 shows this interface of generated PDF. Note that only the selected
rows of the table will be chosen for printing. If no row is selected, then all the rows
in the table will be chosen for printing by-default.

9.3 Setting the Print Spooler

To print the above PDFs generated in above sections, click on the Print button in
the right-hand corner of the PDF Viewer. A dialog box will appear where certain
settings need to be before printing the PDFs. Select the printer to be used for
printing the labels.

Figure 9.3 shows the interface when clicked on ’Properties...’ buttion in the
spooler to change the page size which is acceptable by the printer. Change the page
size as width : 91 mm and height : 18 mm for the Godex Printer and click on ’OK’
button.

21



Figure 9.3: Print Spooler - Page Size Setup

Now go to the Graphics tab in Print Spooler as shown in Figure 9.4. Set the
Dithering option to None, click on ’OK’ button and then go ahead with the print
of the PDF.

Figure 9.4: Print Spooler - Graphics Setup

Note that this section is not within the scope of this project and totally
depends on the spooling interface. However, it has been included to warn
the user of the Printer Interface issues that can arise due to which the
desired printing action won't be performed.

22



Chapter 10

Custom Fonts

10.1 Serving Font-Files

To add a custom font and styling of your own choice, place the ”*.ttf” font files
under the ”static/fonts” folder of the Barcode App at the Server so that they can
be served by Apache/WSGI Server as shown in Figure 10.1.

Figure 10.1: Serving of Font Files at Server-Side

10.2 Encoding of Font-Files

The pdfMake Library requires Base64 encoding of the font-files as it does not
work directly with the ”*.ttf” font-files. As seen in Figure 10.2, an Ajax Post
call is made to the server with the url field defining the Django view to be used for
encoding the font-file specified by the data field.

It can be seen that the success response from the server is being wrapped by the
Promise object which includes the encoded string. This is because an Ajax call is
asynchronous in nature and hence the response from the server can be received
after entire execution of the logic flow. This may break the regular working flow of
this solution. Hence, a Promise object allows to wrap the asynchronous response
from the server in a synchronous manner and can be used by other parts of the logic
flow through it.

23



Figure 10.2: Ajax - Asynchronous Call to Server

10.3 Waiting for Server Response

As discussed in previous section, to make the regular working flow synchronous,
a Promise object is created. However, this Promise object can be used by those
functions which are async in nature. Figure 5.3 has already been discussed about
the print function. As seen from that figure, it has been declared as async function
of JavaScript.

Figure 10.3: Await - Wait for Promise Object (Server Response)

Figure 10.3 elaborates print function where this function waits for that Promise
object by using await. and assigns them to the pdfMake vfs array. Again, a
pdfMake.fonts need to be declared for all the fonts to be used in PDF, including the
default Roboto Font. Finally, set the defaultStyle parameter in docDefinition
with the choice of the font keyword.

24



Reference
• Python Installation

– http://ubuntuhandbook.org/index.php/2017/07/install-python-3-6-1-in-
ubuntu-16-04-lts/

• Django App on Apache Server

– https://www.digitalocean.com/community/tutorials/how-to-serve-django-
applications-with-apache-and-mod wsgi-on-ubuntu-16-04

• Django-Apache Web-Server Setup

– https://www.youtube.com/watch?v=VNBpdT0N8hw

• Read More on WSGI Server

– https://wsgi.readthedocs.io/en/latest/

– https://en.wikipedia.org/wiki/Web Server Gateway Interface

• Django Installation

– https://docs.djangoproject.com/en/2.2/topics/install/

• Django Custom Decorators

– https://pypi.org/project/django-decorator-include/

• Django-Sphinx Documentation

– http://www.sphinx-doc.org/en/master/

• Recommonmark

– https://github.com/rtfd/recommonmark

• Django-Docs

– https://pypi.org/project/django-docs/

• DataTable Plugin

– https://datatables.net/

• JsBarcode Library

– https://lindell.me/JsBarcode/

• pdfMake Library

– https://pdfmake.github.io/docs/

25

http://ubuntuhandbook.org/index.php/2017/07/install-python-3-6-1-in-ubuntu-16-04-lts/
http://ubuntuhandbook.org/index.php/2017/07/install-python-3-6-1-in-ubuntu-16-04-lts/
https://www.digitalocean.com/community/tutorials/how-to-serve-django-applications-with-apache-and-mod_wsgi-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-serve-django-applications-with-apache-and-mod_wsgi-on-ubuntu-16-04
https://www.youtube.com/watch?v=VNBpdT0N8hw
https://wsgi.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://docs.djangoproject.com/en/2.2/topics/install/
https://pypi.org/project/django-decorator-include/
http://www.sphinx-doc.org/en/master/
https://github.com/rtfd/recommonmark
https://pypi.org/project/django-docs/
https://datatables.net/
https://lindell.me/JsBarcode/
https://pdfmake.github.io/docs/

	Introduction
	Limitations with Existing System
	Methodology
	Features
	Requirements and Installation
	Server Setup
	Setup for Client-Processing

	Running the Server
	Apache - The Deployment Server
	Django WSGI - The Development Server

	User Access
	Accessing Home Page
	Staff Login
	Search
	Data Selection

	Admin Access
	Accessing Admin Page
	Admin Login
	Admin Actions
	Accessing Documentation

	Printing the Labels
	Barcode Label Printing
	Spine Label Printing
	Setting the Print Spooler

	Custom Fonts
	Serving Font-Files
	Encoding of Font-Files
	Waiting for Server Response


