
Summer Fellowship Report

On

Script Creation System for Spoken Tutorials

Submitted by

Selvamani Kannan
Nishant Ranjan
Manan Poddar
Shubham Garg

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

July 25, 2019



Acknowledgment

We, the summer interns of the fossee - Script Creation Process for Spoken
Tutorials are overwhelmed in all humbleness and gratefulness to acknowledge our
deep gratitude to all those who have helped us put our ideas to perfection and have
assigned tasks well above the level of simplicity and into something concrete and
unique. We wholeheartedly thanks Prof. Kannan M. Moudgalya for having
faith in us, selecting us to be a part of his valuable project and for constantly
motivating us to do better. We thanks Mr. Nagesh Karmali for providing us
the opportunity to work on this project. We are also very thankful to our mentors
for their valuable suggestions. They were and are always there to show us the right
track when needed help. With help of their brilliant guidance and encouragement,
we all were able to complete our tasks properly and were up to the mark in all
the tasks assigned. During the process, we got a chance to see the stronger side
of our technical and nontechnical aspects and also strengthen our concepts. Last
but not the least, we sincerely thank all our other colleagues working in different
projects under Prof. Kannan M. Moudgalya for helping us evolve better with
their critical advice.

1



Declaration

We declare that this written submission represents our ideas in our own words
and whenever others’ ideas or words have been included, We adequately cited and
referenced the original sources. We declare that We have properly and accurately
acknowledged all sources used in the production of this thesis.

We also declare that We have adhered to all principles of academic honesty and
integrity and have not misrepresented or fabricated or falsified any idea/data/fac-
t/source in our submission. We understand that any violation of the above will be
a cause for disciplinary action by the Institute and can also evoke penal action from
the sources which have not been properly cited or from whom proper permission
has not been taken when needed.

Selvamani Kannan
Nishant Ranjan
Manan Poddar
Shubham Garg

2



Contents

1 Introduction 5
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Project Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Project Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Project Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Project Overview 7
2.1 Django for backend & Angular 7 for frontend . . . . . . . . . . . . . . 7

3 Front-end 8
3.1 Authentication Using JWT tokens . . . . . . . . . . . . . . . . . . . . 8
3.2 The Home UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Direct Entry in the system . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Upload File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 User can copy and paste the table directly on the system . . . 12

3.3 View UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Scripts Details Table . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Edit UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Module/libraries Used for Developing Frontend/Backend 19

5 Backend 20
5.1 Analyze & Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Rest API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 API We Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 FOSS category List API: . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Tutorials Details List API: . . . . . . . . . . . . . . . . . . . 22
5.3.3 Script Details List API: . . . . . . . . . . . . . . . . . . . . . 23
5.3.4 Script Details API: . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.5 Comments API: . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.6 Reversions List API: . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.7 Reversions Revert API: . . . . . . . . . . . . . . . . . . . . . . 26

3



List of Figures

3.1 Script Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Space for writing scripts . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Table of script in doc/odt . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Upload file or paste content . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Table of script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Add comment here . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Revisions with date & time . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Diff is shown with revert opt . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Edit script here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4



Chapter 1

Introduction

1.1 Problem Statement

Development of a platform for the Spoken-tutorial.org , for automating the process
of script creation for the tutorials. In the current system, the manual process is fol-
lowed. The workflow of the system is described as follows. The script is divided into
the individual scene having a 2-column format containing Visual Cue and Narra-
tion. In each scene, Visual Cue is written as a series of events leading to actions, and
Narration refers to the textual voice-over given by the speaker for its corresponding
events in the visual cue

1.2 Project Objective

The objective of the project is to add modules to the existing website name Script-
manager so that one can create the scripts on the website directly or upload a file
containing the scripts and can modify them afterwards. Revisions history should be
maintained after each edit and can be reverted to the previous version. A reviewer
should be able to review and comment on particular cue-narration pair regarding
doubts/questions/suggestions on that script

1.3 Project Outcome

The creator will be able to create the script. The script will comprise of slides,
each divided into 2 columns. There would be a facility to add, remove, and reorder
the slides. Once the creator creates the script, he/she can send it for review. The
existing publishing workflow will be followed in the review process.

5



1.4 Project Requirements

We are using the following tools during development

• Django (v1.11) - used for developing the back-end of the platform.

• Angular 7 (v7.0) - used for front-end development.

• MySQL - the database used for storing the data.

6



Chapter 2

Project Overview

In the current system, for creating Scripts and get it reviewed, the users are al-
lowed to use services like Google Docs and Gmail only, which is pretty cumbersome
and inefficient. We have replaced them by developing a platform which essentially
provides features similar to Google Docs and also has facilities to get it reviewed
without mailing, by simply automating the process.

2.1 Django for backend & Angular 7 for frontend

Since the existing system already uses Django as a server-side framework and
MySQL as the database, we also used the same for maintaining compatibility with
the existing system. Although we have used Angular to develop the frontend using
Django templates (which is used in the existing system) would imply to write all
the javascript on our own which isn’t required when these frameworks are already
present. With the help of them, It becomes really easy to develop and maintain the
code.
Since the existing system is using Django platform as a server-side and MySQL as
a database, so we use the same for compatibility with the existing system. Add we
use Angular in this to develop Front-end using Django Templets. These templates
make our work easy to develop and maintain the code

7



Chapter 3

Front-end

3.1 Authentication Using JWT tokens

The existing system handles the login and registration part. To use our system, the
user should be already logged in as we need the details of foss category and languages
being assigned to him. Therefore, we have used JWT tokens to authenticate the
user with the application server by sending this token with each API calls we make.
We make an API call as soon as the user comes to our system to get this token
from the application server and we are storing it in the local storage, So after that,
every API call goes with this token and that’s how the authentication is happening.
After 3 seconds the token automatically gets refreshed to ensure the security of the
system.

8



3.2 The Home UI

The Home UI is a dashboard for displaying the tutorials list based on foss category
and language selected by the user.

Only the foss category and language which has been assigned to the particular
user is shown in the drop-down menu. After selecting them, all the tutorials of that
particular category is shown.

User can now either create scripts for a particular tutorial or edit/view a previ-
ously created scripts for a tutorial.

Figure 3.1: Script Dashboard

9



For Creating Scripts, three features are provided to the users :

• Direct Entry in the system.

• Upload docs/odt files.

• Copy and paste the whole table.

3.2.1 Direct Entry in the system

Figure 3.2: Space for writing scripts

Here user can directly enter visual cue and narration for each slide and as each
tutorial contains multiple slides, therefore, the system provides the facility to the
user, to add and delete the rows dynamically and save it after all the changes made.

10



3.2.2 Upload File

User can Upload the whole doc/odt files containing tables which in turn contains
data of visual cue and narration. In this way, user can work “offline” as well.

Figure 3.3: Table of script in doc/odt

11



3.2.3 User can copy and paste the table directly on the sys-
tem

Figure 3.4: Upload file or paste content

Feature 3.3.2 and 3.3.3 provide user, the facility to work offline as well.

12



3.3 View UI

After creating the scripts manually or uploading them directly to the system, user
will be redirected to the view page. There are three main components on this page:

• Script Details Table

• Comments

• Revisions

13



3.3.1 Scripts Details Table

Figure 3.5: Table of script

This table occupies two-thirds of the page and contains three columns Serial
No, Visual Cue and Narration.

• If the script is created manually on the system then data from each slide (i.e.,
each cue narration pair) will be inserted into a table row

• If the script is uploaded as a file or copy-pasted onto the system then the data
will be parsed from the file and then inserted into the table row.

When hovered over the particular row of the table, it will show two buttons Com-
ment and Revision

14



3.3.2 Comments

Figure 3.6: Add comment here

This will show all the comments for a particular slide and highlight that row in
the table. Comments can be created by the reviewers and the user who created the
script, both.

15



3.3.3 Revisions

Figure 3.7: Revisions with date & time

This will show all the edit history made to the particular slide. Clicking on the
revision will show that particular version of the slide, with the difference between
the current version and the previous version. User has the facility to revert back to
previous version at any point.

16



Figure 3.8: Diff is shown with revert opt

17



3.4 Edit UI

Edit mode can be accessed from the navigation button on the top-right corner of
the View Mode and can be toggled back from the same button.

Figure 3.9: Edit script here

This mode will show all the slides cue and narration data in an editor which can
be used to edit that slide. It has an autosave feature so everything will be saved
after making an edit and moving out of focus from the editor. More slides can also
be added to the script in the edit mode.

18



Chapter 4

Module/libraries Used for
Developing Frontend/Backend

1. Bulma as SASS/CSS library

2. ngx-text-diff for implementing a feature similar to ‘git diff

3. Libreoffice for converting doc/odt files to HTML

19



Chapter 5

Backend

The backend is written in django. Inside spoken tutorial project, a new mod-
ule script manager is created. All the back end API are written in django-rest-
framework. By calling the end points in the different method, the C.U.R.D (Cre-
ate, Update, Read, Delete ) is performed in the appropriate django models.

5.1 Analyze & Approach

Before starting, we analyzed the existing models and understand the flow of the
system. In most of the cases, we used their models to fetch data. When required
new models are created for scripts details, comments and reversions.

5.2 Rest API

• /api-token-auth/
It takes the user credentials in POST request and it returns the JWT(JSON
Web Token). This API doesnt require any authentication. Expect this API
all the API has to be called with a valid JWT token in the header.

• /api/foss/
This API only accept GET request and the user should be authenticated. It
returns all foss category and its languages assigned to the current user. This
data is retrieved from Contributor Role model.

• /scripts/api/foss/{fid}/language/{lid}/tutorials/
This API only accept GET request and the user should be authenticated. It
takes foss-id and language-id as a query parameter and it returns the tutorials
for the given foss category and language. This data is retrieved from Tutorial
Detail model.

• /scripts/api/tutorial/{tid}/scripts/
This accepts GET, POST,PATCH, DELETE request and the user should be
authenticated. This API handles the entire script data in slide level also.

20



GET

It returns the scripts details for the given particular tutorial id. If any script is
created for the given tutorial id then for that script id, script details will be returned.
That is if any instance is present in the Script model for given tutorial id and if any
instance present in Script Details model for script instance id then that script
details data will be returned.

POST

It takes an array of script details data. At first this checks if any Script instance
is created for the tutorial id. If not new instance will be created. Then with that
script id and received data will create a new instance in the Script Details table.
Here when inserting larger no of data i.e iterating through each dictionary and
inserting will be costly. So, the data will be serialized and whole array will inserted
simultaneously. This is an optimal way of creating array of instance rather than
inserting one by one. With respect to the actions the API returns True or False.

PATCH

It takes a dictionary contains ’pk’ of that Script Details model. The update is
based on pk. For that particular instance it will be replaced with received data.
The update can not be made for a bulk data. It can be done in slide level only.

DELETE

It takes the slide id as query parameter and it deletes the instance in the Script
Details model. After deleting, this function checks that there is any instance of
same script. If not then it deletes the script data also. So, that new script can be
crate.

21



5.3 API We Use

In API documentation we are going to discuss about API used in this project.

5.3.1 FOSS category List API:

This api returns a list of foss category and language assigned the current user
Allowed Method : GET
URL: /scripts/api/foss/
Permissions:

Must be Authenticated
GET:

Sample JSON:

1 [

2 {

3 "foss_category": {

4 "id": integer,

5 "name": string,

6 "description": string

7 },

8 "language": {

9 "id": integer,

10 "name": string,

11 },

12 "user": string,

13 "status": boolean

14 }

15 ]

5.3.2 Tutorials Details List API:

This api returns a list of tutorials for a particular foss category and language
Allowed Method: GET
URL: /scripts/api/foss/¡foss id¿/language/¡langage id¿/tutorials/
Url parameters:
foss id: It is the id of the foss category that the user wants to view tutorial
langage id: It is the id of the language that the user wants to view tutorial
Permissions:
Must be Authenticated
Must be assigned to the foss category and language

GET:
Sample JSON:

22



1 [

2 {

3 "id": integer,

4 "foss":integer ,

5 "language": integer,

6 "tutorial": integer,

7 "level": integer,

8 "order": integer,

9 "script_status":boolean,

10 outline:string

11 }

12 ]

5.3.3 Script Details List API:

This api returns a list of scripts,create scripts,update scripts for a tutorial id
Allowed Method: GET, POST
URL: /scripts/api/tutorial/¡tutorial id¿/language/¡language id¿/scripts/
Url parameters:
tutorial id:It is the id of the tutorial that the user wants to view script details
langage id: It is the id of the language that the user wants to view tutorial
Permissions:
Must be Authenticated
Tutorial must be assigned to the current user

GET:
Sample JSON:

1 [

2 {

3 "id":id,

4 "cue": string(html by CKeditor),

5 "narration": string(html by CKeditor),

6 "order": integer,

7 "script": integer

8 }

9 ]

POST:
It takes arrays of script details json and it returns True or False

23



Sample JSON:

1 {

2 "details":

3 [

4 {

5 "cue": string,

6 "narration": string,

7 "order": integer

8 }

9 ]

10 }

5.3.4 Script Details API:

This api update a script and delete script
Allowed Method: PATCH, DELETE
URL: /scripts/api/tutorial/¡tutorial id¿/language/¡language id¿/scripts/¡script details id¿/
Url parameters:
tutorial id:It is the id of the tutorial that the user wants to view script details
langage id: It is the id of the language that the user wants to view tutorial
script details id: It is the id of a particular slide, that the user wants to edit / delete
Permissions: Must be Authenticated
Tutorial must be assigned to the current user

PATCH:
Sample JSON:

1 [

2 {

3 "id": integer,

4 "cue": string,

5 "narration": string,

6 "order": integer,

7 "script": integer

8 }

9 ]

24



5.3.5 Comments API:

This api returns a list of comments,also it creates comments for a slide (script detail id)
Allowed Method: GET, POST
URL: api/scripts/¡script detail id¿/comments/
Url parameters:
script detail id:It is the id of a particular slide, that the user wants to view comment
Permissions:
Must be Authenticated

GET: Sample JSON:

1 [

2 {

3 "id": integer,

4 "comment": string,

5 "user": string,

6 "script_details": integer,

7 "time": string

8 }

9 ]

POST:
It takes a comment in json and returns True / False. Sample JSON:

1 {

2 "comment":string

3 }

5.3.6 Reversions List API:

This api returns a list of reversion for a slide(script detail id) Allowed Method: GET
URL: api/scripts/¡script detail id¿/reversions/
Url parameters:
script detail id:It is the id of a particular slide, that the user wants to view comment
Permissions:
Must be Authenticated

GET:
Sample JSON:

25



1 [

2 {

3 "reversion_id": integer,

4 "id": integer,

5 "cue": string,

6 "narration": string,

7 "order": string,

8 "script_id": string,

9 "date_time": string,

10 "user": string

11 }

12 ]

5.3.7 Reversions Revert API:

This api is to revert from current version to the some other version
It takes the reversion id and return True / False
Allowed Method: PATCH URL: api/scripts/¡script detail id¿/reversions/¡reversion id¿/
Url parameters:
script detail id:It is the id of a particular slide, that the user wants to view comment
reversion id:It is the id of the particular slide, that the user wants to revert
Permissions:
Must be Authenticated.

26



Bibliography

1. https://docs.djangoproject.com/en/2.2/topics/install/

2. https://angular.io/

3. https://angular.io/tutorial

27


	Introduction
	Problem Statement
	Project Objective
	Project Outcome
	Project Requirements

	Project Overview
	Django for backend & Angular 7 for frontend

	Front-end
	Authentication Using JWT tokens
	The Home UI
	Direct Entry in the system
	Upload File
	User can copy and paste the table directly on the system

	View UI
	Scripts Details Table
	Comments
	Revisions

	Edit UI

	Module/libraries Used for Developing Frontend/Backend
	Backend
	Analyze & Approach
	Rest API
	API We Use
	FOSS category List API:
	 Tutorials Details List API:
	Script Details List API:
	Script Details API:
	Comments API:
	Reversions List API:
	Reversions Revert API:



