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Chapter 1

Introduction

The RayleighTaylor instability, or RT instability (after Lord Rayleigh and G. I. Tay-
lor), is an instability of an interface between two fluids of different densities which
occurs when the lighter fluid is pushing the heavier fluid. Examples include the
behavior of water suspended above oil in the gravity of Earth, mushroom clouds like
those from volcanic eruptions and atmospheric nuclear explosions, supernova explo-
sions in which expanding core gas is accelerated into denser shell gas, instabilities
in plasma fusion reactors and inertial confinement fusion.

Water suspended atop oil is an everyday example of RayleighTaylor instability,
and it may be modeled by two completely plane-parallel layers of immiscible fluid,
the more dense on top of the less dense one and both subject to the Earth’s grav-
ity. The equilibrium here is unstable to any perturbations or disturbances of the
interface: if a parcel of heavier fluid is displaced downward with an equal volume
of lighter fluid displaced upwards, the potential energy of the configuration is lower
than the initial state. Thus the disturbance will grow and lead to a further release
of potential energy, as the more dense material moves down under the (effective)
gravitational field, and the less dense material is further displaced upwards. This
was the set-up as studied by Lord Rayleigh. The important insight by G. I. Taylor
was his realisation that this situation is equivalent to the situation when the flu-
ids are accelerated, with the less dense fluid accelerating into the more dense fluid.
This occurs deep underwater on the surface of an expanding bubble and in a nuclear
explosion.

As the RT instability develops, the initial perturbations progress from a linear
growth phase into a non-linear growth phase, eventually developing ”plumes” flow-
ing upwards (in the gravitational buoyancy sense) and ”spikes” falling downwards.
In the linear phase, equations can be linearized and the amplitude of perturbations
is growing exponentially with time. In the non-linear phase, perturbation ampli-
tude is too large for the non-linear terms to be neglected. In general, the density
disparity between the fluids determines the structure of the subsequent non-linear
RT instability flows (assuming other variables such as surface tension and viscosity
are negligible here). [1]
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Chapter 2

Rayleigh-Taylor instability

2.1 Abstract

The report about the simulation of Reyleigh-Taylor instability of two fluids with
density 1020 kg/m3 and 800 kg/m3 with heavier liquid being top on the lighter.
The result obtained is good but not excellent. It could have been better but it
needs high computational power. This case is solved with interFoam with k-Epsilon
model. The result fairly agrees with experimental videos taken by several people.

2.2 Geometry & Meshing

It is 20cm x 20cm x 1cm cuboid with only single cell in z direction to make it 2D
simulation. Top wall is named as topWall while remaining sides are named as walls.
Meshing was done using blockMesh with all sides except front and back being wall
and front and back side being empty.

Fig 1: Mesh

2.3 Solver

This simulation is done using interFoam with K-Epsilon model. InterFoam solves
for two incompressible immiscible fluids under isothermal conditions using a volume
of fluid approach. It also allows us to use mesh motion, mesh topology changes
and adaptive re-meshing. The solver solves the Navier Stokes equations for two in-
compressible, isothermal immiscible fluids. That means that the material properties
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are constant in the region filled by one of the two fluid except at the interphase.
It should be highlighted that interFoam applies the OpenFOAM specific algebraic
VOF scheme called MULES (Multidimensional Universal Limiter with Explicit So-
lution)for the task of advecting the sharp interface. That it should be noted because
of the MULES scheme has a number of desirable properties:

• It preserves the volume of fluid, i.e. it does not artificially create or destroy
fluid.

• It keeps the so-called volume fraction field in the physically meaningful range-
between 0 and 1.

• The interface stays sharp to within a few cell widths

• It works on unstructured meshes both in 2D and 3D

• It is efficient so only a minor fraction of the calculation time is spent on
interfaceadvection. [2]

Concerning the solver algorithm used to solve the types of problems under con-
sideration here, the PISO (Pressure Implicit with Splitting of Operators) loop was
chosen.The main reason is that this algorithm works proper for transient calcula-
tions and for low Courant numbers (less than one). As it will be check, all the
simulations run in the present thesis match with both approaches. The PISO ap-
proach was proposed by Issa [3] (1986). It consists on three steps for each time
step and the iterations are only needed for the two last steps. One summary of this
algorithm can be presented as [4]:

• Momentum predictor: The momentum equations are optionally solved using a
best-guess pressure field to produce a best-guess velocity field. However, Issa
[3] (1986) notes that while this momentum predictor step is formally required
for the method, many applications do not require it, and can proceed straight
to the second step using the previous time-steps velocity field.

• Using the previous velocities the pressure field is obtained. Therefore, thefirst
estimate of the new pressure field is obtained.

• The velocity field is corrected using the new pressures.

Within each time step, additional equations for multi-phase flow are solved before
the PISO algorithm, while other equations, such as turbulence models, are solved
afterwards.

2.3.1 Equations

Continuity Equation

∂uj
∂xj

= 0 (2.1)
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Momentum Equation

∂(ρui)

∂t
+
∂(ρujui)

∂xj
= − ∂p

∂xi
+
∂(τtij + τij)

∂xj
+ ρgi + fσi (2.2)

u represent the velocity, gi the gravitational acceleration, p the pressure and τij and
τtij are the viscose and turbulent stresses. fσi, is the surface tension.

The density ρ is defined as follows:

ρ = αρ1 + (1− α)ρ2 (2.3)

is 1 inside fluid 1 with the density ρ1 and 0 inside fluid 2 with the density ρ2 . At
the interphase between the two fluids α varies between 0 and 1. The surface tension
fσi, is modelled as continuum surface force (CSF). It is calculated as follows:

fσi = σκ
∂α

∂xi
(2.4)

σ is the surface tension constant and κ the curvature. The curvature can be approx-
imated as follows:

κ = −∂ni
∂xi

= − ∂

∂xi

(
∂α/∂xi
|∂α/∂xi|

)
(2.5)

Interphase Equation
In order to know where the interphase between the two fluids is, an additional

equation for α has to be solved.

∂α

∂t
+
∂(αuj)

∂xj
= 0 (2.6)

The equation can be seen as the conservation of the mixture components along the
path of a fluid parcel. [5]

2.3.2 K-Epsilon

K-epsilon (k-) turbulence model is the most common model used in Computational
Fluid Dynamics (CFD) to simulate mean flow characteristics for turbulent flow
conditions. It is a two equation model that gives a general description of turbulence
by means of two transport equations (PDEs). The original impetus for the K-epsilon
model was to improve the mixing-length model, as well as to find an alternative to
algebraically prescribing turbulent length scales in moderate to high complexity
flows. [6]

• The first transported variable is the turbulence kinetic energy (k).

• The second transported variable is the rate of dissipation of turbulence energy
(ε).

For turbulent kinetic energy k

∂(ρk)

∂t
+
∂(ρkui)

∂xi
=

∂

∂xj

[
µt
σk

∂k

∂xj

]
+ 2µtEijEij − ρε (2.7)
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For dissipation ε

∂(ρε)

∂t
+
∂(ρεui)

∂xi
=

∂

∂xj

[
µt
σε

∂ε

∂xj

]
+ C1ε

ε

k
2µtEijEij − C2ερ

ε2

k
(2.8)

[Rate of change of k or ε + Transport of k or ε by convection = Transport of k
or ε by diffusion + Rate of production of k or ε - Rate of destruction of k or ε]

where,
ui represents velocity component in corresponding direction
Eij represents component of rate of deformation
µt represents eddy viscosity

µt = ρCµ
k2

ε
(2.9)

The equations also consist of some adjustable constants σk, σε, C1ε and C2ε. The
values of these constants have been arrived at by numerous iterations of data fitting
for a wide range of turbulent flows. These are as follows:

Cµ= 0.09 σk= 1.00 σε= 1.30 C1ε= 1.44 C2ε= 1.92

2.4 Case Setup

2.4.1 Boundary Conditions

All patches with type were set with slip velocity boundary condition with respec-
tive wall functions in files k, nut and epsilon (kqRWallFunction in k file, nutk-
WallFunction for nut and epsilonWallFunction for epsilon). The values were
made dependent on internal field. topWall was kept at fixed pressure where walls
were made zeroGradient. Alpha.water conditions were zeroGradient everywhere.
frontAndBack was made empty in all of the above files.

Fig 2: Case setup
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2.5 Results

As shown in the following figure, very good results agreeing with experiments were
obtain. From the figures shown below, the mushroom formation with heavier liquid
penetrating into lighter one can be noticed.

Fig 3a

Fig 3b

2.6 Overview

The above case reasonably satisfies the experimental results, but it is not precisely
correct. In the actual case, it must locally form the mushrooms and should continue
to form until there is no surface present between the liquids (before complete mixing
and the final separation).
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