

FOSSEE Fellowship Report

on

FILM COOLING ON A FLAT PLATE BY AIR-WATER MIST INJECTION

Submitted by **JISHNU HANDIQUE**

Under the guidance of

Prof. Shivasubramanian Gopalakrishnan

Department of Mechanical Engineering INDIAN INSTITUTE OF TECHNOLOGY BOMBAY July, 2019

Acknowledgment

I would like to express my sincere gratitude to Prof. Shivasubramanian Gopalakrishnan for his guidance. I deeply thank Prof. Kannan M Moudgalya for starting the fellowship program and providing the project work opportunity at FOSSEE, IIT Bombay.

In addition, I am thankful to Sathish Kanniappan, research associate, FOSSEE and Deepa Vedartham, research assistant, FOSSEE for their mentorship and help during my fellowship.

Contents

Nomenclature

Greek Symbols

Notations

Chapter1 Introduction and Problem Statement

1.1. Introduction

Film cooling is mainly used in gas-turbine operation. A low-temperature secondary fluid is injected to the surface exposed to high temperature gas. The coolant fluid forms a film over the surface and protects it from the hot gas [1]. This process is known as film cooling.

Figure 1.1(a). Film cooling in a gas turbine blade [2]

Figure 1.1(b). Cad model of film cooling holes in turbine blade [3]

1.2. Problem Statement

A film cooling problem on a flat surface was simulated by using a 2D model. The secondary hole was assumed as slotted hole with height 4 mm. The temperature of main stream fluid air, T_g and the secondary fluid air-water mist, T_c were 400K and 300K respectively. Secondary coolant fluid was injected at 35⁰. Main stream velocity, $U_g=10$ m/sec and $U_c = 10$ m/sec. The simulations were carried out for mist loading fraction, $f = 2\%$, 5%, 15% and 25%. thermalPhaseChange phase model was implemented to capture the phase change due to temperature. A multiphase solver reactingMultiphaseEulerFoam was used to study the problem [4]. The detailing of the geometry was shown clearly in the Figure1.2.

Figure 1.2. 2D Grid

Parameter	Detail
Model	2 Dimensional
Geometry-Mesh creating software	ICEM CFD
Number of cells	11,699
Post-processing tool	Paraview, Sigma Plot
Solver	reactingMultiphaseEulerFoa m
Turbulence model	Standard $k-\epsilon$
Pressure-velocity coupling	PIMPLE algorithm [4]
Convective term solving scheme	Gauss upwind [4]
Turbulent term solving scheme	Gauss upwind [4]

Table 1. Geometry and Computational Details

Table 2. Fluid properties and initial conditions

Chapter2 Equations

2.1. Individual Phase Continuity Equation [5]

$$
\frac{\partial}{\partial t}(\rho_N\alpha_N)+\frac{\partial}{\partial x_i}\big(\rho_N\alpha_N U_{N_i}\big)=I_N
$$

2.2. Individual Phase Momentum Equation [5]

$$
\frac{\partial}{\partial t} \big(\rho_N \alpha_N U_{N_k} \big) + \frac{\partial}{\partial x_i} \big(\rho_N \alpha_N U_{N_i} U_{N_k} \big) = \alpha_N \rho_N g_k + F_{N_k} - \delta_N \{ \frac{\partial p}{\partial x_k} - \frac{\partial \sigma^D c_{ki}}{\partial x_i} \big)
$$

2.3. Individual Phase Energy Equation [5]

$$
\frac{\partial}{\partial t}(\rho_N{\alpha_N}e^*{}_N)+\frac{\partial}{\partial x_i}\big(\rho_N{\alpha_N}e^*{}_NU_{N_i}\big)=Q_N+W_N+\xi_N-\delta_N\frac{\partial}{\partial x_j}\big(U_{C_i}\sigma_{C_{ij}}\big)
$$

2.4. Effectiveness

$$
\eta = \frac{T_h - T_f}{T_h - T_c}
$$

Chapter3

Results and Discussion

3.1. Validation

The effectiveness was found out over flat plate from the secondary inlet position. Then the outcomes were validated with the numerical work of Li and Wang [6].

Figure 1.3. Validation

3.2. Comparison Between Results of Air and Air-Water Mist as Coolant

Figure 1.4. Comparison of Effectiveness for No Mist ($f = 0$) and Mist Injection ($f = 5\%$)

3.3. Contours

Figure 1.5. Temperature contour $(f = 0)$

Figure 1.6. Temperature contour $(f = 5\%)$

3.4. Conclusion

From the numerical works we can conclude that the injection of mist protects the flat surface from hot gases better than the air injection system.

Reference

- [1] Irvine T. F., Jr. and Hartnett J. P., Advances in Heat Transfer, Film Cooling, Volume VII, Academic Press, New York (1971)
- [2] [www.quora.com/What-is-film-cooling-technology-which-is-used-for-gas-turbine](http://www.quora.com/What-is-film-cooling-technology-which-is-used-for-gas-turbine-blades-to-cool-it)[blades-to-cool-it](http://www.quora.com/What-is-film-cooling-technology-which-is-used-for-gas-turbine-blades-to-cool-it)
- [3] Andrei L. et al., Film Cooling Modeling for Gas Turbine Nozzles and Blades: Validation and Application, J. Turbomach 139(1) 011004, doi: 10.1115/1.4034233 (2016)
- [4] OpenFOAM User Guide version 6.0 (2018)
- [5] Brennen C.E., Fundamentals of Multiphase Flows, Cambridge University Press, ISBN 0521 848040 (2005)
- [6] Li X.C. and Wang T., Simulation of Film Cooling Enhancement with Mist Injection, ASME J. Heat Transfer, vol. 128, pp. 509–519, doi:10.1115/1.2171695 (2006)