

FOSSEE Fellowship Report

on

DUST PARTICLES TRACKING INSIDE A MODEL ROOM

Submitted by JISHNU HANDIQUE

Under the guidance of **Prof. Shivasubramanian Gopalakrishnan**

Department of Mechanical Engineering INDIAN INSTITUTE OF TECHNOLOGY BOMBAY July, 2019

Acknowledgment

I would like to express my sincere gratitude to Prof. Shivasubramanian Gopalakrishnan for his guidance. I deeply thank Prof. Kannan M Moudgalya for starting the fellowship program and providing the project work opportunity at FOSSEE, IIT Bombay.

In addition, I am thankful to Sathish Kanniappan, research associate, FOSSEE and Deepa Vedartham, research assistant, FOSSEE for their mentorship and help during my fellowship.

Contents

	Description	Page No.
	Acknowledgment	i
	Contents	ii
	Nomenclature	iii
1	Chapter 1 – Introduction and Problem Statement	1-2
2	Chapter 2 – Equations	3
3	Chapter 3 – Results and Discussion	4-6
3.1.	Plots	4
3.2.	Contours	5-6
3.3.	Conclusion	6
3.4.	Reference	7

Nomenclature

U	Velocity, m/s
g	Gravitational acceleration, m/s^2
F _{Drag}	Drag force, N
Р	Pressure, Pa
V_p	Volume of the particle

Greek Symbols

- ρ Particle density, kg/m³
- τ stress tensor, Pa

Chapter1 Introduction and Problem Statement

Dust particle parcels driven by air inside a room was simulated using a Lagrangian solver DPMFoam [1]. The 2D geometry of the problem can be seen in the Figure 1.1. The other computational details are given in the following tables.

Figure 1.1. 2D Geometry

Parameter	Detail
Model	2 Dimensional
Geometry-Mesh creating software	ICEM CFD
Number of cells	4,906
Post-processing tool	Paraview, Sigma Plot
Solver	DPMFoam
Turbulence property	Laminar
Pressure- velocity coupling	PIMPLE algorithm [1]
Convective term solving scheme	Gauss linear upwind V unlimited [1]

Table 1. Geometry and Computational Details

Table 2. Fluid properties and initial conditions

Parameter	Value/Condition
Continuous phase	Air
υ _{air}	1e-05 m ² /sec
ρ _{air}	1.2 kg/m^3
ρ particle	2600 kg/m ³
No. of particles in one parcel	1e6
Inlet injection	5000 parcels/sec
Initial parcel velocity	5 m/sec
Uair	10 m/sec
Inlet	Particles escape
Outlet	Particles escape
Wall	Particles rebound
Sofa	Particles rebound
Slab	Particles rebound

Chapter2 Equations 2.1. Continuity Equation [2] $\frac{\partial}{\partial t}(\alpha) + \nabla . (\alpha U) = 0$

2.2. Momentum Transfer Equation [2]

$$\frac{\partial}{\partial t}(\alpha U) + \nabla . \left(\alpha UU\right) - \nabla . \alpha \tau = -\nabla P + g + \frac{F_{Drag}}{\alpha \rho} - \frac{1}{V} \sum_{p} V_{p} \left[\frac{DU}{Dt}\right]_{p}$$

Chapter3 Results and Discussion 3.1. Plots

The air velocity was calculated at different positions to have an idea about the flow.

Figure 1.2. Air velocity along height at x = 0.2m

Figure 1.3. Air velocity along height at x = 0.7m

3.2. Contours

Figure 1.4. Particle tracked inside the room at (a) 0.0003, (b) 0.001, (c) 0.002, (d) 0.005, (e) 0.007, (f) 0.01, (g) 0.014 and (h) 0.021 sec

3.3. Conclusion

The locations of all the particle parcels can be tracked at different time with the DPMFoam solver.

Reference

- [1] OpenFOAM User Guide version 6.0 (2018)
- [2] Hofman J., Understanding DPMFoam/MPPICFoam (2015)