

Summer Fellowship Report

On

Spoken Tutorial

Submitted by

Ajay Tripathi

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

June 20, 2018

Acknowledgment

I, Ajay Tripathi, a FOSSEE intern of the Spoken-Tutorial Project is
overwhelmed in all humbleness and gratefulness to acknowledge my deep
gratitude to all those who have helped me accomplish the tasks assigned to me.
I wholeheartedly thank Mrs. Nancy Varkey for selecting me to be a part of this
valuable project and for providing constant motivation to do better.
I am very thankful to my mentors Miss. Kirti Ambre & Mr. Saurabh
Adhikary for their valuable suggestions. They were always there to show the
right track when i needed help. With help of their brilliant guidance and
encouragement, i was able to complete the assigned tasks.
Last but not the least, I wholeheartedly thank all the other colleagues working in
different projects for helping me evolve better with their support & advices.

With Regards,

Ajay Tripathi
(Amity University, Noida)

1

Contents

Chapter 1: Problem #1 3

Introduction 3
Possible Solutions 3
Applied Solution 3
Results 3

Test Cases 4
Challenges Faced 4

Chapter 1: Problem #2 5

Possible Solutions 6
Applied Solutions 6
Results 6
Test Cases 8

Design Considerations 9

Assumptions and Dependencies 9
Packages & Technology Used 9

Conversions 10

`.srt` to `.vtt` 10
`.mp4` to `.webm` 11
`.mp4` to `.ogg` 11
`video` column & `audio` column 12

Database Manipulation 13

ER Diagram 14
Schema Diagram 15
Sequence Diagram 15

2

Chapter 1: Problem #1

Introduction

Spoken-Tutorial provides tutorial in 22 regional languages. To achieve this
tutorials are dubbed and video is stored at the server as 22 different videos,
hence increasing storage space. It also posed a problem for offline module of
the website, as the users had to download all the videos making the package size
quite large.

Possible Solutions
- Compress Video Files
- Change File Format (Some formats store same information in

lesser space than other formats)
- Store only one video with multiple audio files.
- Reduce the quality of the videos.

Applied Solution
Changing video format from ogv to webm in order to make sure that the
videos are smaller in size. Saving only one video and have audio for all
the languages and playing them synchronously on the browser. These
steps help us reduce the size that needs to be downloaded from the
̀\cdcontent` page.

Results

Course Languages Current Solution

Blender Assamese, Bengali, English, Gujarati, Hindi, Kannada,
Marathi, Nepali, Punjabi, Tamil, Urdu

1.6 GB 790.8 MB

Biopython English 55.9 MB

55.4 MB

LibreOffice
Suite Math

Assamese, Bengali, English, Gujarati, Hindi 255.8 MB 143.4 MB

3

As it can be noted from the table, when downloading the tutorial in
multiple languages several hundred MBs can be reduced. The more the
number of languages selected, then more data is saved in the proposed
system.

Test Cases

Task Status

Upload System: Uploading audio & video tutorials as a contributor and getting
it verified by administrator, domain reviewer, quality reviewer and publishing the
video to check if the new system works properly.

Working

Script System: Checking if the script is correctly synced and the questions
from forums appear on the correct timestamp. Integrity of the previous system
while asking a new question is also maintained.

Working

Deployment: The new code has been deployed to the beta server and is
functional.

Working

Challenges Faced
In the process of implementing the solution, some interesting challenges
were faced and solved as mentioned below:

Changing the current video and audio format
While making silent video and audio files from the existing video files,
conversion on files can cause unexpected loss in quality and duration if
not done carefully (some of the challenges faced are mentioned below).
In cases, File size may also expand exponentially. The server currently
contains .ogv and .mp4 format videos. The best conversion is noted from
.mp4 to .webm(video) and .ogg(audio). Hence, the contributors will be
uploading the video in `.mp4 ̀ and the other language contributors will
upload `.ogg ̀ files.

4

Shortening of Video
When converting the video from ogv to silent ogv video, the length of the
video would be lost by 2-5 seconds. This caused problems in video /
audio synchronization. This problem was solved by using mp4 files and
converting them to webm & instead of removing audio, the audio of the
video was filtered by `-af volume 0.0` option in ffmpeg.

Corrupt .ogv videos
In the process of conversion, some of the ogv files, example Biopython
course gets corrupted losing video quality. This is solved by using using
`.mp4 ̀ instead of the `.webm ̀ file format.

Changing Script Format
`.srt ̀ is no more supported by the video.js player (used in the website).
Currently, all the scripts are stored in `.srt ̀ format, these files needed to
be converted to the format supported by the player (`.vtt ̀ format).

Changing database structure
After the implementation of the new system, the information in `video`
column & `audio` column need to be changed. The videos do not have
language, now, they only contain a `-Video` at the end of the name.
audio file’s path are stored in a separate column.

Synchronization of audio and video
With the help of mozilla’s popcorn.js and standard Web APIs, the audio
and video are delivered in synchronization.

Chapter 1: Problem #2
Testimonials are send by the users as text / audio / video. The existing
system allows only text testimonials to be displayed, the audio and video
testimonials are not displayed on the website.

5

https://github.com/mozilla/popcorn-js

Possible Solutions

- Uploading all the audio / video testimonial on the server.
- Asking user to upload on their youtube channel and sending the

link which can then be embedded on the website.

Applied Solutions

User can send the file to the administrator the way they prefer, that file
can be processed and uploaded from the administrator’s end. This
allows freedom for the users to send the testimonial and the processing
can be done in the spoken office.

Results
The form to be filled to upload the testimonial is shown in (fig. i), it is
accessible from the `testimonial/new/` page and after the testimonials
are uploaded, they are displayed on the series page (fig. 2) and
testimonial page (fig. 3).

(fig. 1 - Upload Form)

6

(fig. 2 - View Tutorials on `series` page)

(fig. 3 - View Tutorials on `testimonial` page)

7

(fig. 4 - Media Testimonial review page for the administrator)

(fig. 5 - Delete Testimonial page)

Test Cases

Task Status

Create Text Testimonial: Making a new testimonial on the after the
implementation of the new code to check the compatibility.

Working

Create Video / Audio Testimonial: Creating a new video / audio testimonial
and checking for uploaded tutorial on view page.

Working

View Testimonials in Series Page Working

View Testimonials in Testimonials Page Working

8

Delete Audio / Video Testimonial: Deleting tutorial removes it from the
database.

Working

Deployment: The new code has been deployed to the beta server and is
functional.

Working

Note: events/tests.py contains tests for the module.

Design Considerations

Assumptions and Dependencies

- Python 2.7
- Django == 1.8

Packages & Technology Used

- FFmpeg: A complete, cross-platform solution to record, convert
and stream Audio and Video.

- HTML: It is the main markup language for displaying web pages

and other information that can be displayed in a web browser.

- CSS: (CSS) is a style sheet language used for describing the
presentation semantics (the look and formatting) of a document
written in a markup language.

- JavaScript: It is a prototype-based scripting language that is

dynamic, weakly typed and has first-class functions and is mainly
used for validation etc.

- Python: High-Level Scripting Language for Back-End coding and

for server side programming.Python features a dynamic types
system and automatic memory management and supports multiple
programming paradigms.

9

- Django: Python framework for web application development. It
follows MVC(Model View Controller) structure for managing the
models and controlling the views

- MySQL: It is the world's most used open source relational

database management that runs as a server providing multi-user
access to a number of databases.

- Popcorn.js: it is Mozilla's HTML5 video and media library for the

open web. It allows web developers, filmmakers, artists, designers
and others to easily create timeline based web productions.

Conversions

- `.srt` to `.vtt`
Conversion of scripts from `.srt` to `.vtt` is done with the help of

python script.
The following can be used on any `.srt ̀ file to convert to `.vtt ̀.

 '''
 PATH: Input folder path

 DESIRED_PATH: Output folder path

 Arguments:

 object: Course Code

 innerObject: script Code

 scriptObject: script Object to Convert

 This function makes VTT from SRT Files.

 '''

 # Input File
 FILE = PATH + object + "/" + \
 innerObject + "/" + scriptObject
 # Make required Directories
 bashCommand = "mkdir -p " + DESIRED_PATH + object + "/" + innerObject +
"/"

 os.system(bashCommand)

10

 # Make the file
 output = "WEBVTT\n\n"
 with open(FILE) as fout:
 line = fout.readline()

 while line:
 if "-->" in line:
 output = output+line[:8]+".000 --> "
 output = output+line[13:21]
 output = output+".000"+"\n"
 else:
 output = output+line

 line = fout.readline()

 with open(FILE[:-4]+".vtt", "a") as fout:
 objectList = output.split("\n")
 for object in objectList:
 fout.write(object)

 fout.write('\n')

- `.mp4` to `.webm`
Conversion of videos from `.mp4` to `.webm` is done with the help

of FFmpeg.
ffmpeg -y -i <MY_AWESOME_INPUT>.mp4 -vcodec libvpx -af
'volume=0.0' -max_muxing_queue_size 1024 -f webm

<MY_AWESOME_OUTPUT>-Video.webm

- `.mp4` to `.ogg`
Conversion of videos from `.mp4` to `.ogg` is done with the help of

FFmpeg.
ffmpeg -y -i <MY_AWESOME_INPUT>.mp4 -vn -acodec libvorbis
<MY_AWESOME_OUTPUT>.ogg

11

- `video ̀ column & `audio` column
`video ̀ column & `audio` column in creation_tutorialresource table.
Audio and Video Information for new system can be changed with
script:

 '''
 Script to change path of the video saved in accordance to

 the new file system & populate audio path column for

existing rows.

 '''

 # Get data from database
 try:
 # Check if the `audio` field exists in the database.
 field_exist_check =

TutorialResource._meta.get_field('audio')
 existing_video_list =

TutorialResource.objects.filter(video__gt="").values_list("pk",
"video", "language_id__name")
 for row in existing_video_list:
 audio_name = row[1].rsplit('.')[0]
 # To ensure database is not corrupted on running
this script again by mistake.

 if audio_name.rsplit('-',1)[1] != "Video":

TutorialResource.objects.filter(pk=row[0]).update(audio=audio_name
+".ogg", video=audio_name.rsplit(row[2])[0]+"Video.webm")
 except FieldDoesNotExist:
 print ("1001: No changes have occured", error)
 except Exception as error:
 print ("1002:", error)

12

Database Manipulation

- `creation_tutorialresource`

For the implementation of the solution(one video multiple audio), a new
column is added in the creation_tutorialresource table named `audio`.

- `audio` stores the path to the audio file for the record
- `video` stores the path to the video file for the record.

- `events_mediatestimonials`

- `id` stores the id of media testimonial
- `path` stores path to the testimonial

13

- `user` stores the name of the user who send the testimonial
- `content` stores the text content description of the testimonial
- `created` stores the date & time of creation of the record
- `foss_id` contains a foreign key relation to the foss published for users.

ER Diagram

14

Schema Diagram

Sequence Diagram

1. The sequence diagram for enabling media testimonials is as followed:
- Users will to send tutorials to spoken office where the processing of the

testimonial can take place, this includes quality check for content and video /
audio, once this is done, testimonial can go live.

2. The sequence diagram for enabling one video multiple audio task is
as followed:

- Since action for english audio uploaders and other language uploaders is
different, the diagram covers the path for both type of uploaders.

- Diagram assumes audio filtering method is in place.

15

Reference

● Popcorn.js: https://github.com/mozilla/popcorn-js

● FFmpeg package: http://ffmpeg.org/ffmpeg.html

16

https://github.com/mozilla/popcorn-js
http://ffmpeg.org/ffmpeg.html

