

Summer Fellowship Report

On

Spoken Tutorials Creation Module

Submitted by

Abhinav,
National Institute Of Technology Patna

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

July 6, 2018

Acknowledgment

I, the FOSSEE intern of the Spoken-Tutorial Creation Module, is
overwhelmed in all humbleness and gratefulness to acknowledge
our deep gratitude to all those who have helped us put our ideas to
perfection and have assigned tasks, well above the level of
simplicity and into something concrete and unique
I, wholeheartedly thank Nancy Ma’am for having faith in us,
selecting us to be a part of his valuable project and for constantly
motivating us to do better.
I am very thankful to our mentors Kirti Ma’am and Saurabh Sir for
their valuable suggestions. They were and are always there to
show us the right track when needed help. With help of their brilliant
guidance and encouragement, we all were able to complete our
tasks properly and were up to the mark in all the tasks assigned.
During the process, I got a chance to see the stronger side of our
technical and non-technical aspects and also strengthen our
concepts. Hereby, I gladly consider ourselves to be the most
fortunate batch of interns.

Last but not the least, I wholeheartedly thank all our other
colleagues working in different projects for helping us evolve better
with their critical advice.

With Regards.

Abhinav
(NIT Patna)

Contents

1. Introduction 4

2. Creation Module 5

3. Problem Statements 6
3.1 Problem 1 6

3.1.1 Problem 1.1 6
Proposed Solution 1.1 6

3.1.2 Problem 1.2 7
Proposed Solution 1.2 7

3.1.3 Problem 1.3 7
Proposed Solution 1.3 7

3.1.4 Problem 1.4 8
Proposed Solution 1.4 8

3.1.5 Problem 1.5 8
Proposed Solution 1.5 8

3.2 Problem 2 9
3.2.1 Problem 2.1 9

Proposed Solution 2.1 9
3.2.2 Problem 2.2 9

Proposed Solution 2.2 10

4. Design Considerations 11
4.1 Dependencies and Packages Used 11
4.2 Technologies Used 12

5. Tasks in detail 13
5.1 One Video Multiple Audio 13
5.2 Youtube Upload 15

6. Diagrams 17
6.1 ER Diagram 17
6.2 Schema Diagram 18
6.3 Sequence Diagram 19

7. References : 21

1. Introduction

The Spoken Tutorial project is the initiative of the ‘Talk to a
Teacher’ activity of the National Mission on Education through
Information and Communication Technology (ICT), launched by the
Ministry of Human Resources and Development, Government of
India.

The use of spoken tutorials to popularize software development
and its use will be coordinated through this website.

(The Spoken Tutorial project is being developed by IIT Bombay for
MHRD, Government of India)

The spoken Tutorial Project aims to make spoken tutorials on
FOSS available in several Indian languages, for the learner to be
able to learn in the language he/she is comfortable in. Our goal is to
enable the use of spoken tutorials to teach in any Indian language,
and to be taught to learners of all levels of expertise- Beginner,
Intermediate or Advanced

This project is for the community and by the community. Through
the portal, we aim to reach out to like-minded individuals to
collaborate with us and with each other to create Spoken Tutorials.
The next step is to get each Spoken Tutorial dubbed into as many
Indian languages as possible. This will help anyone anywhere to
understand the contents of the Spoken Tutorials. Each of the
Tutorials, whether original or dubbed, go through a strict review
procedure, after which they are uploaded on the public domain.
This is to ensure that the highest possible quality is attained.

2. Creation Module

The Creation module is all about creating tutorials, dubbing them,
translating and publishing them on the spoken-tutorial website.
There are different roles in creation module and they are assigned
to each users. There are contributors who creates and uploads
videos on our website, then we have some reviewers who will
review these uploaded tutorials, we also have an admin team which
will cross-verify the audio-video quality, and if everything is proper
then they will publish the video on the website.
So each and every video undergoes several processes, starting
from the creation of the tutorials which are uploaded by the
contributors. this is followed by several quality checks, for which we
have a dedicated team. This team performs several noise,
loudness,video resolution and several others audio and video
quality checks. After the video has passed all the quality checks,
the review team removes extra noise from the video, otherwise it is
sent for need-improvement state where the contributor has to
modify their video. After removing the noise, video is stored in the
system and is transferred to the admin for the final review, who
after a thorough review publishes the video onto the website for the
users to view.

3. Problem Statements

3.1 Problem 1

The existing situation requires every contributor, irrespective of the
language (except English) he/she is dubbing in, to record an audio
corresponding to the silent video of the slides provided to them by the
Spoken Tutorials team. They, then merge their audio file recordings with
the video and uploads to the website for further review. Now, the video
file as uploaded by the contributor is stored as it is (.ogv) on the server.
This highlights the problem of space wastage as the only difference in all
the files for a specific tutorial is the language in which the audio is
recorded in, while the video remains the same, that was used for the
corresponding English tutorial.

3.1.1 Problem 1.1

The audio files uploaded by the contributors are prone to the effects
caused by some unwanted signals occurring in the video, that may
cause disturbances in the actual audio and reduce the impact and flow
of the recording. Some of these “noise” include unintentional breathing
sounds with the recording or sound of fan or air in the background etc.

Proposed Solution 1.1

The audio files after being uploaded by the contributor passes through
the noise filter developed using effective and standard techniques to
eradicate such noises and enhance the quality of speech. This speech
enhancement is necessary to reduce the unwanted disturbances in
audio.

3.1.2 Problem 1.2

It is possible that the recording by the contributor might not get carried
out as expected due to some problems in hardware/software at the
contributor’s end. This may lead to change in properties of the signal that
makes it unsuitable for uploading, mainly due to variation in loudness of
sound, that may be too loud or too dull.

Proposed Solution 1.2

The amplitude of any incoming audio is checked for validation and the
average amplitude throughout the signal is normalized to values
between -1 and +1, irrespective of it’s original amplitude. This is done to
bring the loudness of audio files to the same level. This way, all audio
files, whether too loud or too dull will be normalized instead of getting
directly rejected.

3.1.3 Problem 1.3

It is possible that the script that works according to the variation of
frequencies in the waveforms, diminishes some relevant data from the
signal. So, the filtered audio file can sometimes not be as effective as
expected and might cause discomfort for the contributor, whose audio
file got tampered with.

Proposed Solution 1.3

The contributor gets a choice after uploading the audio file, to preview
both the audio files-- filtered and original one, and select which one of
them they want to send further for review, or reject in case they want to
record again.

3.1.4 Problem 1.4

Providing the contributor with the option to reject uploaded files will
cause inconsistency as the files uploaded to the server directory are
deleted with one user click, which might not be the best approach.

Proposed Solution 1.4

Instead of uploading directly to the main directory, a temp folder is
maintained in the media directory to store the temporary files, as
uploaded by the contributor and only on user accept operation, the
selected file is sent to the main directory.

3.1.5 Problem 1.5

What about the files present in the temp folder? How will they be
managed if they are of no use after not being accepted by the
contributor?

Proposed Solution 1.5

A cron is implemented that will run every 2 days to clear the temp folder,
as it is just wasting up the space. In addition to this, files that user
chooses to reject are there and then, deleted.

3.2 Problem 2

The spoken tutorials videos need to be published on youtube at the time
of publish to the site, to maintain consistency. In absence of any such

procedure, the users, who want to watch the videos on youtube require
to wait until the videos are finally uploaded to youtube. This might take
few days.

3.2.1 Problem 2.1
Currently, the videos present on the spoken tutorials website are not
uploaded on youtube at the time of publish, and a separate script is run
every few days to collect such files and upload them to Youtube. It uses
version v2 of Youtube API, which has been deprecated now.

Proposed Solution 2.1

A new script was written using Youtube v3 API and OAuth 2.0
authentication that doesn’t require authentication every single time we
upload videos to youtube. This solves the problem of manual running of
script. Now, the videos are uploaded and put inside their respective
playlists on publish to site.

3.2.2 Problem 2.2

As youtube v2 api has been deprecated and the conventions of playlist
item IDs have changed, we need to update the api for storing the videos
in the respective playlists in which they belong. Currently, there are
almost 4000+ videos which are present on youtube but still do not
belong to any playlist.

Proposed Solution 2.2

The Script, in addition to uploading the videos on youtube, also checks
for the presence of their respective playlists on the youtube server and if,

the playlist is not present, it creates the playlist before adding the video
to it.

4. Design Considerations

4.1 Dependencies and Packages Used

● FFMPEG : It is a complete, cross-platform solution to record,
convert and stream Audio and Video. All the important conversions
between different file formats are done using FFMPEG.

● SoX : Short for Sound eXchange, SoX is a command line utility,

that can apply effects and do modifications with the sound files,
and, as an added bonus, SoX can play and record audio files on
most platforms.

● Youtube Data v3 API : Youtube API provides us with the feature

of OAuth 2.0 authentication, that allows us to integrate the
automation of videos upload, creation of playlists etc into the site
without needing the authentication every single time.

● Google-api-python-client : It is a dependency, needed to use the

Youtube Data API.

4.2 Technologies Used

● HTML : It is the main markup language for displaying web
pages and other information that can be displayed in a web
browser.

● CSS : (CSS) is a style sheet language used for describing the
presentation semantics (the look and formatting) of a document
written in a markup language.

● JavaScript : It is a prototype-based scripting language that is
dynamic, weakly typed and has first-class functions and is mainly
used for validation etc.

● Ajax : AJAX is the art of exchanging data with a server, and
updating parts of a web page - without reloading the whole page.

● JQuery : It is a cross-browser JavaScript library designed to
simplify the client-side scripting of HTML. It also includes the
functionality of Ajax.

● PYTHON : High-Level Scripting Language for Back-End
coding and for server side programming.Python features a dynamic
types system and automatic memory management and supports
multiple programming paradigms.

● DJANGO : Python framework for web application
development. It follows MVC(Model View Controller) structure for
managing the models and controlling the views

● MySQL : It is the world's most used open source relational
database management that runs as a server providing multi-user
access to a number of databases.

5. Tasks in detail

5.1 One Video Multiple Audio
As the current system accepts ogv videos from contributors of all
languages and the proposed solution requires them to upload mp4
format for English video and only ogg audio files for the contributors of
other languages, necessary modifications were required in the upload
module to accept these changes.

● For the English video, the conversion of mp4 to silent webm and
corresponding English audio goes on in the background. The
contributor needs to know about the process going on behind
before giving him a success message. So, a spinner is provided to
make sure he is notified about the same.

● The audio files of other languages pass through a filter where
noise and volume are checked and the audio files are manipulated
accordingly. The user is provided with the option to preview the
video with both the files and accept whichever they wish to.

Task Status

Upload System: Modifying the upload system to only accept the files according to the new
formats decided. Spinners and previews are added for the benefit of the contributor.

 ✅

Noise Filter & Volume Check: Amplifying the low volume files and de-amplifying the high
volume files and then removing the noise present for clarity.

 ✅

Deployment: The new code has been deployed to the beta server and is functional. ✅

5.2 Youtube Upload
● The Youtube script is written to basically, publish the videos to

youtube, at the same time, when the video is approved and is
published to the spoken-tutorials website.

● The tutorial videos that are already present on the website can be

unpublished for some or the other reasons. In such cases, it would
be needed to unpublish the videos from youtube too. This is also
implemented and the script deletes the videos from youtube on
unpublish from the site.

● There are many such tutorials available on the server that are
actually published on the website, but have not been uploaded to
Youtube. A separate page was shown for all such videos which
can be uploaded simultaneously with a single click.

Task Status

Uploading To Youtube on publish. : Publishing to youtube on publish to site. ✅
Adding videos to specific playlist. : The tutorials need to be added to the specific playlist
of FOSS they belong to.

 ✅

Deleting videos on unpublish. : The videos need to be deleted on unpublish from the
site.

 ✅

6. Diagrams

6.1 ER Diagram

6.2 Schema Diagram

6.3 Sequence Diagram

The sequence diagram for enabling one video multiple audio task is as
followed:

Sequence Diagram For Youtube Upload Task :

7. References :
● Popcorn.js: https://github.com/mozilla/popcorn-js
● FFmpeg package: http://ffmpeg.org/ffmpeg.html
● SoX : http://sox.sourceforge.net/
● Youtube API : https://developers.google.com/youtube/

https://github.com/mozilla/popcorn-js
http://ffmpeg.org/ffmpeg.html
http://sox.sourceforge.net/
https://developers.google.com/youtube/

