
Summer Fellowship Report

On

Implementation of GUI Interface for uploading hex files

Submitted by

Jay Mistry

Under the guidance of

Prof.Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

August 18, 2021

Acknowledgment

I would like to express my very gratefulness to Prof. Kannan M. Moudgalya for his
valuable and constructive suggestions. His willingness to give his time so generously
and encouraging fellows have been very much appreciated.

I would also like to thank the eSim team for giving me such a great opportunity
of learning, being a part of such a wonderful project in such difficult pandemic sit-
uations, and also for enabling me for their help in offering me the resources and
guiding me throughout the project.

I would also like to thank my Project managers, Usha Viswanathan, Vineeta Ghavri,
and Gloria Nandihal for their guidance and support throughout the fellowship.

A special thanks to all my mentors, Sumanto Kar, Rahul Paknikar, and Saurabh
Bansode for helping me throughout the fellowship, sharing a lot of knowledge with
me, guiding, and giving me a wonderful fellowship experience.

Finally, I wish to thank my parents for their support and encouragement throughout
my study.

1

Contents

1 Introduction 4
1.1 HEX files . 4
1.2 Importance of HEX files in microcontrollers 4
1.3 eSim Microcontrollers . 5

2 Current Scenario 6
2.1 Uploading HEX files onto microcontroller in eSim 6
2.2 Workflow . 6

2.2.1 DUTghdl folder . 7

3 Problem Statement 8
3.1 Problem . 8

4 Solutions 9
4.1 Solution - 1: User uploads directly the HEX file 9

4.1.1 Introduction . 9
4.1.2 Workflow . 10
4.1.3 GUI Interface . 11
4.1.4 Code Snippets . 11
4.1.5 Advantages of this solution . 14
4.1.6 Disadvantages of this solution 14

4.2 Solution - 2: User uploads/ creates .C file, compiles and uploads the
HEX file . 14
4.2.1 Introduction . 14
4.2.2 Workflow . 15
4.2.3 GUI Interface . 16
4.2.4 Code Snippets . 17
4.2.5 Advantages of this solution . 18
4.2.6 Disadvantages of this solution 18

5 Implementation 19
5.1 Comparing Solution 1 and Solution 2 19

6 Conclusion 21

7 Future Work 22

2

8 Testing Microcontroller Circuits in Windows OS 23
8.1 Introduction . 23
8.2 Microcontroller circuits in Linux OS 23
8.3 Microcontroller circuits in Windows OS 23

8.3.1 Debugging . 24
8.4 Result . 25
8.5 Future Solution . 25

Bibliography 26

3

Chapter 1

Introduction

1.1 HEX files

A HEX file is a hexadecimal source file. These files are used mainly for programmable
logic devices like microcontrollers. The HEX file contains all the settings regarding
the information about the configuration of I/Os, the logic behind controlling the
process/ task, and the other data saved in hexadecimal format. These files might
be stored in either binary or text format.[1]

1.2 Importance of HEX files in microcontrollers

The HEX files store the machine code in hexadecimal form. It is widely used to store
programs to be transferred to microcontrollers, ROMs, EEPROMs, etc. The cor-
responding compilers convert the programs which are written in C or the assembly
language, etc into the corresponding hex files. Now, these files are flashed/ dumped
into the microcontrollers by using burners or respective programmers.

While simulating the circuits with microcontrollers, the same process of upload-
ing/ flashing up the machine code onto the microcontrollers is needed. Hence, a
HEX file content must be uploaded onto the microcontroller.

Since the microcontroller understands only the machine language which consists
of zeroes and ones, it is difficult practically not possible for humans to write codes
in such a manner. Hence, by using high-level languages we write down the code,
and then using a compiler, the high-level language code is converted into machine
language which is stored in the hex file format. A HEX file is a text file with an
extension .hex. A HEX file contents may look like as shown in the fig. 1.1 as below.

4

Figure 1.1: HEX file contents

1.3 eSim Microcontrollers

At present eSim provides the Attiny series microcontrollers[2] . By using these
microcontrollers one can create their required circuits and simulate them. Since the
microcontrollers require the HEX file to be uploaded, from which the microcontroller
will configure its I/Os, and process as per the specified code. Hence, there is a need
of uploading the HEX files onto the microcontroller. Once the HEX file is uploaded,
the circuit can be successfully simulated.

5

Chapter 2

Current Scenario

2.1 Uploading HEX files onto microcontroller in

eSim

As mentioned that eSim provides the Attiny series of microcontrollers, for simulating
the circuits containing them, one has to upload the hex file onto the microcontroller,
so that the circuit behaves and works properly.

For simulating the microcontrollers in eSim, one has to set up the NGHDL server[3]
for the respective Attiny microcontroller instance which may include Attiny25/45/85.
Once the server is set up, the files associated with the microcontroller can be found
in the DUTghdl folder. This folder contains all the necessary required files like the
microcontroller VHDL code file, start server batch file, hex.txt file, etc. The hex.txt
file is the file in which the HEX content of the respective C code/ assembly code
must be loaded.

On simulating the circuit on eSim, the contents of the hex.txt are fetched and
according to it, the microcontroller present in the circuit is configured i.e., the con-
figuration of the microcontroller is done accordingly.

2.2 Workflow

As mentioned in section 2.1, the HEX file contents must be uploaded in the hex.txt
file present in the respective DUTghdl folder of the particular instance of the mi-
crocontroller. The current procedure being followed for the same i.e., uploading
the HEX file or the contents of the HEX file onto the microcontroller is manually
copying the contents of the HEX file and pasting it into the hex.txt present in the
DUTghdl folder.

The current workflow procedure that is carried out manually is shown in the below
figure 2.1.

6

Figure 2.1: Current workflow

2.2.1 DUTghdl folder

The path for the DUTghdl folder for the respective instance of the microcontroller
is very long. One has to navigate through many folders, and after this folder can be
located. Hence, practically it is not a feasible process to be followed.

For eg.: The path for Attiny85 instance of microcontroller in Linux OS is:
As mentioned above, the process is tedious and is carried out manually. Also,

the different instances of microcontrollers like Attiny25, Attiny45, or Attiny85 will
have its different NGHDL server and hence it will have different folders present in
the ghdl folder[4]. The path for these three microcontrollers is as follows:

7

Chapter 3

Problem Statement

3.1 Problem

As stated in the previous section 2.2, the current workflow for uploading the HEX
file onto a microcontroller, which is tedious and has to be manually carried out.

There is a need of adding a feature into the eSim, where the user can be asked
to upload the HEX file from within the software. The manual operation that is
carried out, can lead to errors. Remembering the path for locating the ”hex.txt” is
also not feasible.

8

Chapter 4

Solutions

The solution for the problem stated in section 3.1., is an implementation of a GUI
interface[5] for uploading the HEX files onto the microcontrollers. This feature can
be added into the eSim, and when the circuit comprises any of the microcontrollers,
the user will be asked to upload the HEX file associated with the respective circuit.
Hence the manual process which is associated will be eliminated and the whole up-
loading process (the content of the HEX file) will become an automated task. Also,
remembering the path of the respective DUTghdl folder will no longer be required.

Two solutions are proposed as mentioned below in section 4.1. and section 4.2.
respectively.

4.1 Solution - 1: User uploads directly the HEX

file

4.1.1 Introduction

If any circuit comprises of any of the instances of the microcontroller, then for these
circuits there will be an option to add and upload the HEX file. This feature is
provided in the KicadtoNgpice module, under the Ngspice Model tab. Once
the user finishes up with the circuit desiging, on converting the current circuit to
Ngpsice Model, for setting up the various transient parameters, or the AC/DC pa-
rameters, the sources details, the user has to execute the KicadtoNgpice module.
In this if the circuit contains any of the components like ADC or DAC, then the
different parameters associated with them like rise time, delay time, etc. needs to
be entered by the user if required or else the default values are selected.

In this section, the uploading of HEX file is added. If the circuit will contain
any instance of the microcontroller, (which may be any Attiny25/45/85), one more
additional parameter ”path of your .hex file” will be enabled.

9

4.1.2 Workflow

The user will have to follow simple 3 steps:

1. Press Add Hex file button

2. Browse the HEX file

3. Press the Upload Hex file button

The workflow block diagram is shown in the below figure 4.1.

Figure 4.1: Adding HEX file directly - workflow

Step 1: Press Add Hex file button

User on clicking the Add Hex file button as shown in figure 4.2, a window will be
prompted allowing user to navigate through the computer to upload the HEX file for
the microcontroller circuit. This will only show .hex files and no other files present
in any of the directories. Once the user chooses the right .hex file for the circuit,

Step 2: Browse the HEX file

On clicking the Add hex file button, the user will be prompted to browse the .hex
file as shown in the figure 4.3 for the microcontroller as mentioned above. Once the
user has selected the .hex file, the user will clicks on the open button present.

Step 3: Upload the file

This process has two different methods listed below:

Method 1:

After selecting the appropriate .hex file for the microcontroller, the user will have to
click the ’upload hex file’ button present just beside the ’add hex file’ button. After
this, the contents of the selected .hex file will be pasted in the hex.txt file present
in the DUTghdl folder.

Method 2:

User on clicking on the ’Upload hex file’ button, a window will be prompted as
shown in the figure 4.3, which will directly open in the ghdl folder, from where the
differnt instances of microcontrollers like Attiny25/45/85 folders will be present.

10

This method will make the completely dynamic and allow the user to choose the re-
spective Attiny microcontroller DUTghdl folder, rather than explicitly hard coding
the paths for same as done in method 1.

On choosing the respective DUTghdl folder and opening the same, the code will
copy the contents of the .hex file selected to the respective selected DUTghdl folder’s
’hex.txt’ file.

4.1.3 GUI Interface

The following figure shows the GUI interface developed for the solution 1 is shown
in the figure 4.2.

Figure 4.2: GUI interface for solution 1 under Ngspice model tab

4.1.4 Code Snippets

The definition for the ’Add hex file’ button defined under the ’Model.py’ file is:

def addHex(self):

"""

This function is use to keep track of all Device Model widget

"""

#print("Calling Track Device Model Library funtion")

init_path = ’../../../’

11

Figure 4.3: Window prompted on clicking ’Add hex file’ button

Figure 4.4: On clicking ’Upload hex file’ button for method2 stated in 4.1.2 step 3

12

if os.name == ’nt’:

init_path = ’’

self.hexfile = QtCore.QDir.toNativeSeparators(

QtWidgets.QFileDialog.getOpenFileName(

self, "Open Hex Directory",

init_path + "home", "*.hex"

)[0]

)

self.text = open(self.hexfile).read()

chosen_file_path = os.path.abspath(self.hexfile)

The definition for the ’Upload hex file’ button following the method 1 as stated
above under section 4.1.2 step 3:

def uploadHex(self):

"""

This function is use to keep track of all Device Model widget

"""

#print("Calling Track Device Model Library funtion")

#path for different instances can be added.

path1 = os.path.expanduser(’~’)

path2 =

"/ngspice-nghdl/src/xspice/icm/ghdl/attiny_85_nghdl/DUTghdl/hex.txt"↪→

path = path1 + path2 #final path for Attiny5 DUTghdl folder

self.file=open(path,’w’)

self.file.write(self.text)

self.file.close()

The definition for the ’Upload hex file’ button following the method 2 as stated
above under section 4.1.2 step 3:

def uploadHex(self):

"""

This function is use to keep track of all Device Model widget

"""

#print("Calling Track Device Model Library funtion")

init_path = ’/home/jay/ngspice-nghdl/src/xspice/icm/ghdl’

if os.name == ’nt’:

init_path = ’’

self.hexloc = QtWidgets.QFileDialog.getExistingDirectory(

self, "Open Hex Directory",

init_path)

print(self.hexloc)

13

self.file = open(self.hexloc+"/hex.txt","w")

self.file.write(self.text)

self.file.close()

4.1.5 Advantages of this solution

The following are the advantages of this solution:

1. The manual operation of uploading HEX file content eliminated.

2. Dynamic i.e., when the circuit contains microcontroller instance, the HEX file
upload parameter is enabled.

3. User-friendly GUI for uploading HEX file.

4.1.6 Disadvantages of this solution

The following are the disadvantages of this solution:

1. Compiling the C code explicitly.

2. Generating the HEX file explicitly.

4.2 Solution - 2: User uploads/ creates .C file,

compiles and uploads the HEX file

4.2.1 Introduction

This solution creates a model which can be referred to as ”hexgen” model. Similar
to the KicadtoNgpice module, simulation, NGHDL, etc. one extra module for gen-
eration and uploading of HEX file is added.

Hence when the circuit contains any instance of microcontroller, the user will be
accessing this module for uploading the HEX file onto the microcontroller. This
model will not only be limited to uploading direct HEX files, but this will allow
users to upload the corresponding C program files, or create a new file having ex-
tension .C. Write or edit the code from the editor space provided on the GUI. Once
the user finishes up with the uploading / creating .C file and editing same, the user
needs to press the upload button.

On pressing the upload button present on the GUI the process for the user will
be finished, provided that the user has upload error-free code.

In the backend, the uploaded .C file will be compiled with avr-gcc compiler (as
of now limited to Attiny series of microcontrollers), generate the .obj file and .hex
file for same. Copy the content of the generated .hex file into the required DUTghdl
folder’s ”hex.txt” file. Once the contents are pasted, the generated .obj file, and the
.hex file will be removed.

14

4.2.2 Workflow

The user will have to follow the below mentioned steps:

1. Open the .c to hex converter module or the hexgen model

2. Browse the required .C file from the computer and open

3. Edit the uploaded .C file if needed

4. Press the upload button to upload the HEX file

The workflow block diagram is shown in the below figure

Figure 4.5: hexgen model - workflow

Step 1: Open the .c to hex converter or hexgen model

The user can open the hexgen model from the main menu/ welcome screen of the
eSim.

Step 2: Browsing the .C file

The user will browse the .C file from the prompted window which is shown on
pressing the browse button present on the GUI. Once the file is selected, the contents
of the file will be shown in the editor block of th GUI as shown in the figure 4.7.

Step 3: Edit the code if require

As mentioned above on choosing the file, the contents of the file is shown in the
editor block. The user can edit the code if require which is shown in the figure 4.7.

Step 4: Upload the file

Once the file is browsed, and the contents of the file are checked, the user will press
the upload button.

15

Backend Process

After the user clicks the upload button present on the GUI as shown in the figure.
The following backend processes takes place:

• Compilation of the C code using avr-gcc compiler.

• Calling the shell script, which has automated the task of generating the .obj
and .hex files.

• After generation of .hex file, copy the content of the .hex file from the local
directory.

• Change the directory to the respective DUTghdl folder, locate the hex.txt file.

• Pastes the content inside the hex.txt file.

• Deletes the generated .obj file and .hex file present which were generated in
step 3, in the specified directory.

4.2.3 GUI Interface

The following figures show the GUI Interface developed for the solution 2 is shown
in the figure 4.6.

Figure 4.6: The GUI Interface for hexgen model

16

Figure 4.7: C code file uploaded, editable in editor space

4.2.4 Code Snippets

The following is the code for the shell scripting part present in ”script.sh” file.
The above script is called when the ”upload” button is pressed. The python

code for definition of upload button press is shown below which is present in the
model.py:

def writeDoc(self, text):

’’’ definition for upload button

’’’

if self.isValid(self.fileName):

base = os.path.basename(self.fileName)

fileName = os.path.splitext(base)[0]

path = os.path.split(self.fileName)

attiny_85_path =

"/home/jay/ngspice-nghdl/src/xspice/icm/ghdl/attiny_85_nghdl/DUTghdl"↪→

’’’

this path can be passed to the shell script

also for future when multiple different MCUs are implemented the path

can be defined↪→

’’’

subprocess.call([’bash’,’script.sh’,path[0], fileName])

17

4.2.5 Advantages of this solution

The following are the advantages of this solution:

1. The manual operation of uploading HEX file content eliminated.

2. User-friendly to code and upload the hex file.

3. No need of explicit compilation and generation of hex files.

4. User can edit the file that has been selected.

4.2.6 Disadvantages of this solution

The following are the disadvantages of this solution:

1. Need of avr-gcc compiler being installed on the system, or else should be
included in eSim installation package.

2. Compiler dependency, creates problem for showing up the errors if any in code
on the GUI.

3. Difficult to implement same logic in Windows OS.

4. The size of the overall software eSim increases.

18

Chapter 5

Implementation

As mentioned in the previous section about the solutions for the problem of HEX
file content to be uploaded, solution 1 has been implemented as of now.

5.1 Comparing Solution 1 and Solution 2

As the advantages and disadvantages associated with each of the solutions i.e. solu-
tion 1 and solution 2 mentioned above are stated in sections 4.1.5, 4.1.6, and 4.2.5,
4.2.6 respectively.

On comparing both the solutions, solution 1 has been selected and implemented
as of now with eSim for HEX file content upload. The reasons behind selecting
solution 1 over solution 2 are:

1. No dependency of any compiler in solution 1, whereas dependency of the com-
piler in solution 2.

2. Solution 1 can also work in Windows OS, whereas the stated solution 2 can
only work in Linux OS because of the avr-gcc compiler being used, again
alternate compilers for Windows can be explored and Implemented. But this
will again make compiler dependent.

3. Considering the compilation feature to be a part of the software increases the
demand of making our GUI more dynamic and user-friendly which includes
the interface or the model to be powerful for showing the errors if any in the
code.

4. As of now, the eSim software provides only the Attiny microcontrollers, but
when in the future this is expanded to other types of microcontrollers, the
need for different compilers and compilation processes will arise. This can be
managed, however, the size of the software gets affected.

5. Since, the eSim software is meant for the students and the size of the soft-
ware being one of the most important factors, implementing solution 2 will
completely increase the size of the software as compared to solution 1.

19

Hence, due to the above-mentioned reasons solution 1 as of now is implemented, to
make the manual process of uploading the HEX file content to the required folder.
In the future, this can be improved, and even the compilation part can be added.

20

Chapter 6

Conclusion

Solution 1 - the direct uploading of HEX files onto the microcontrollers by imple-
menting the GUI interface for same dynamically is carried out.

The user will have to only generate the HEX file by using any external compiler,
online HEX file generation tool, or by Arduino IDE, etc. Once the HEX file is ready,
the user only has to upload the same through the eSim software without worrying
about the path of the DUTghdl folder or the target folder. Hence the problem stated
above which was carried out manually has been automated.

However, kindly note that the situation of having a multiple instance of the same
microcontroller in one circuit has not be addressed as of now. The current solution
provided for uploading of the hex files will be applicable to the multiple instances
of same microcontroller if used in a circuit. But the problem being faced is about
the NGHDL server being set up.

21

Chapter 7

Future Work

Solution 2 stated in section 4.2 can be improvised and implemented in the future.
By adding the feature of the compilation within the software, makes it more user-
friendly and reliable for users to use it.

Similarly, for Windows OS other alternatives can be explored few of which is by
using the Arduino IDE. More exploration and research for the same can be carried
out and implemented keeping in mind more microcontrollers that will be added to
the system.

As mentioned in the conclusion section about the multiple instance of the same
microcontroller in the same circuit, the respective microcontroller folder in present
in the DUTghdl folder must contain multiple hex.txt files. This would be equal to
the number of microcontrollers of that particular instance being used. Hence while
uploading hex file to the microcontroller, the user than can select the respective
hex.txt for it. This solution can be implemented instead of having two different
folders for the same microcontroller in the DUTghdl folder.

22

Chapter 8

Testing Microcontroller Circuits in
Windows OS

8.1 Introduction

The Attiny microcontrollers implemented in the eSim software work properly in
Linux OS[4]. These microcontrollers need to be tested in Windows OS. The circuits
which are already designed for testing the microcontrollers implementation which
includes square wave generation, triangular wave generation, etc. need to be tested
in the Windows OS.

8.2 Microcontroller circuits in Linux OS

The circuits used for testing are the square wave generation and the triangular wave
generation circuits [7] avaiable on the github repo of eSim[6]. To simulate the micro-
controller circuits in eSim, the NGHDL server needs to be set up for the respective
instance of the microcontroller (Attiny25/45/85). Once it is done, the hex.txt con-
tent must be updated with the testing code as per the requirement. The results for
the simulation were obtained in Linux for microcontroller circuits.

8.3 Microcontroller circuits in Windows OS

To simulate the microcontroller circuits in eSim, the NGHDL server has to be set
up as mentioned for the respective microcontroller instance. This can be set up
by uploading the VHDL file for the required microcontroller by using the NGHDL
feature in the eSim.

The ”attiny85nghdl.vhdl” file was uploaded in the NGHDL server successfully. The
”startserver.sh”, ”tiny85c.c”, and ”ghdlaccess.vhdl” files were copied to the DUT-
ghdl folder created in the ngspice-nghdl folder. The hex.txt was copied and the
contents of same where updated as per the circuit.

23

8.3.1 Debugging

On simulating the circuit, an error occured which stated:
This error snippet is shown in the below figure 8.1. The above mentioned error

Figure 8.1: Error while setting up NGHDL server for Attiny 85 in Windows OS

is due to the wrong path selection. The path for my installed eSim is:
The startserver.sh file gives command of changing the directory to the path which

is correct for the Linux OS, but not always valid in Windows OS.

The startserver.sh file contains:
As from above it can be seen that the third line command is causing the eror as

mentioned above.

24

Hence, by changing this command and providing the right path, the error can be
resolved.

This command for debugging purpose, I changed to as:
The above mentioned error of not able to locate any such file or directory got

eliminated, but another error came while setting up the server. This error was re-
lated ghdlserver.o:ghdlserver.c in which undefined reference being made was alerted.

The snippet for the error is:

Figure 8.2: ghdlserver error while setting up the server

8.4 Result

The NGHDL server for the microcontroller was not set up due to the above-mentioned
errors. Hence, the microcontroller circuits as mentioned which were readily simu-
lated in Linux OS, were not able to simulated in Windows OS.

8.5 Future Solution

The path related problems in Windows will be encountered often. Hence, the path
of the installed eSim must be obtained and for Windows the microcontroller imple-
mentation must be changed so that the correct path is selected.

25

Bibliography

[1] HEX file.
URL: https://www.engineersgarage.com/hex-file-format/

[2] Attiny Microcontrollers.
URL: https://www.microchip.com/wwwproducts/en/ATtiny85/

[3] Research Paper.
eSim: An Open Source EDA Tool for Mixed-Signal and Microcontroller
Simulations

[4] GitHub Official Website.
URL: https://github.com/FOSSEE/nghdl

[5] PyQt5 Module.
URL: https://pypi.org/project/PyQt5/

[6] Microcontroller Testing Circuits.
URL: https://github.com/FOSSEE/nghdl/tree/attiny-alpha/Attiny

[7] Square wave and triangular wave examples.
URL : https://github.com/FOSSEE/nghdl/tree/attiny-alpha/Attiny/

ATtiny85/Examples

26

https://www.engineersgarage.com/hex-file-format/
https://www.microchip.com/wwwproducts/en/ATtiny85/
https://github.com/FOSSEE/nghdl
https://pypi.org/project/PyQt5/
https://github.com/FOSSEE/nghdl/tree/attiny-alpha/Attiny
https://github.com/FOSSEE/nghdl/tree/attiny-alpha/Attiny/ATtiny85/Examples
https://github.com/FOSSEE/nghdl/tree/attiny-alpha/Attiny/ATtiny85/Examples

	Introduction
	HEX files
	Importance of HEX files in microcontrollers
	eSim Microcontrollers

	Current Scenario
	Uploading HEX files onto microcontroller in eSim
	Workflow
	DUTghdl folder

	Problem Statement
	Problem

	Solutions
	Solution - 1: User uploads directly the HEX file
	Introduction
	Workflow
	GUI Interface
	Code Snippets
	Advantages of this solution
	Disadvantages of this solution

	Solution - 2: User uploads/ creates .C file, compiles and uploads the HEX file
	Introduction
	Workflow
	GUI Interface
	Code Snippets
	Advantages of this solution
	Disadvantages of this solution

	Implementation
	Comparing Solution 1 and Solution 2

	Conclusion
	Future Work
	Testing Microcontroller Circuits in Windows OS
	Introduction
	Microcontroller circuits in Linux OS
	Microcontroller circuits in Windows OS
	Debugging

	Result
	Future Solution

	Bibliography

