
Semester Long Internship Report

On

Web app for auto-generation of mind maps

Submitted by

Ved Patwardhan

Under the guidance of

Prof. Kannan Moudgalya

PI of Spoken Tutorial Project

September 7, 2022

Acknowledgement

I, the FOSSEE intern of the Spoken-Tutorial Mind Map Genera-

tion Module, is overwhelmed in all humbleness and gratefulness to

acknowledge my deep gratitude to all those who have helped me

put my ideas to perfection and have assigned tasks, well above the

level of simplicity and into something concrete and unique.

I, wholeheartedly thankMs. Nancy Varkey, Senior Project

Manager, Spoken-Tutorial.org for having faith in me, se-

lecting me to be a part of this valuable project and for constantly

motivating the entire team to do better.

I am very thankful to my mentors Mr. Saurabh Adhikary

and Ms. Kirti Ambre for their valuable suggestions. They

were and are always there to show the right track when needed

help. With help of their brilliant guidance and encouragement, I

was able to complete my tasks properly and was up to the mark

in all the tasks assigned. During the process, I got a chance to see

the stronger side of my technical and non-technical aspects and

also strengthen my concepts.

With Regards.

Ved Patwardhan

(Pune Institute of Computer Technology, Pune)

1

Contents

1 Abstract 3

2 Web app for auto-generation of mind maps 4

3 Problems encountered 5

3.1 Problem 1 . 5

3.2 Problem 2 . 5

3.3 Problem 3 . 6

3.4 Problem 4 . 6

4 Design Considerations 8

5 Installation and updation guide 9

5.1 Installation . 9

5.2 Updation . 9

6 Code and Working 10

6.1 Code . 10

6.2 Working . 10

7 Results 11

References 12

2

1 Abstract

The Spoken Tutorial project is the initiative of the Talk to a

teacher activity launched by the Ministry of Human Resources

and Development, Government of India. It is being developed by

IIT Bombay and provides spoken tutorials on FOSS available in

several Indian languages, for the learner to be able to learn in any

language he/she is comfortable in.

A mind map is a graphical representation of various concepts

related to a topic and the relationships between them. This rep-

resentation finds its value in human understanding and also in

gaining a global view of the document in general. Various scien-

tific studies have affirmed the fact that a mind map provides a

faster way of learning concepts.

There is a large number of tutorials available on the website in

multiple forms like video and text. In order to learn through a

spoken tutorial or a script, learners need to go through them from

the start to the end of the content. Further, there is a lack of an

option to understand the importance of various keywords in that

script. This could be time-consuming for the learner, particularly

in cases where the objective is to run-through multiple scripts in

a short period of time. A mind map is useful for such purposes.

This project provides the functionality of generating a mind

map from a given spoken tutorial script or for multiple scripts

simultaneously, to provide learners the opportunity to learn and

revise a large number of concepts in a relatively short period of

time. A mind map is also a much more attractive way than a

script.

3

2 Web app for auto-generation of mind
maps

The web application developed allows the use of links to the Timed

Scripts of spoken tutorials to generate a mind map for represent-

ing the content in one or more tutorials using natural language

processing. The process of generating the mind map involves mul-

tiple stages. The first stage involves scraping data from the Timed

Script page of a tutorial to filter out unnecessary content. This is

followed by cleaning of the text which involves converting the text

to lower case, removing stop words and converting the text into a

list of sentences.

The list of sentences generated from one or more scripts is then

passed to a lemmatiser model that converts all the words into their

root forms. The resultant sequences of words are then passed to

a BERT-based keyword extraction model, that understands pat-

terns from the text to extract keywords from the text along with

their importance with respect to the overall information conveyed

through the text.

The word sequences generated after lemmatization are also used

to train a Word2Vec model to generate word embeddings for the

keywords generated previously. These word embeddings act as nu-

meric representations of the keywords which convey their semantic

meaning. Such word embeddings are then used to calculate the

degree of similarity between the keywords to establish the edges

between them. Finally, a force-directed graph drawing algorithm

is used to display the mind map for the given spoken tutorials or

scripts.

4

3 Problems encountered

3.1 Problem 1

The first problem was scraping and cleaning the text from the

Timed Script of the given spoken tutorial. This is crucial as the

pipeline that follows is sensitive to noise such as case of the input,

contributor names, stop words, special characters, digits, etc.

To address this, the Timed Script page was scraped using Beau-

tifulSoup, which is a library that simplifies the process. The text

scraped was then filtered out to remove stopwords, digits, special

characters and converted to lower case. The pipeline is very sen-

sitive to the contributor names of the scripts, so removing them

is crucial. The contributor names are limited, as a result of which

they were noted down and filtered out of the text accordingly.

3.2 Problem 2

The second problem was efficient lemmatization of data followed

by keyword extraction from it. This is an important problem as

there is a tradeoff between the processing time and quality of out-

put generated. Finding the combination of the right balance is

important given the number of lemmatization and keyword ex-

traction options available in the community.

The StanfordCoreNLP lemmatizer followed by a BERT-based

keyword extractor provided the right balance to achieve acceptable

results in a decent amount of time. Although, one of the downsides

of this process is that it is heavily dependent on the cleaning part

of the pipeline for handling noise.

5

3.3 Problem 3

The third and problem to be addressed was to extract relationships

between the keywords. While doing so, the header of a script was

also to be handled separately as the header of a script is supposed

to be related to every other keyword in that script. After getting

the weights of the relationships, a threshold was needed to create

a meaningful graph.

In order to address this problem, the input text consisting of se-

quences of lemmatized words is used to train a Word2Vec model.

Then, using the word embeddings of the keywords as returned by

the model are used to get a numeric estimate of the relationship

between those keywords using cosine similarity. Finally, a 92 per-

centile threshold was used to filter out the stronger relationships

between keywords to create the graph.

3.4 Problem 4

The final problem to be solved was graph drawing. The graph

generated in the previous stages was then to be drawn based on

the strength of the relationships. This raised the need of using

force-directed graph drawing of the mind map. Along with this,

the mind map should also be interactive such that users can click

on a particular keyword and the mind map would be redrawn em-

phasizing the relationships of that keyword with other keywords.

This problem was addressed by using D3.js, a library which

provided a force simulation API that was used to draw the mind

map considering the strengths of relationships of various keywords.

Event listeners were added for all keyword nodes in the mind map.

On clicking a particular keyword node, the strength of its relation-

6

ship with other keywords was multiplied by a suitable factor of

5, and then the edges were again thresholded based on the 92nd

percentile. Finally, the mind map was redrawn, highlighting the

relationships of that keyword with other keywords.

7

4 Design Considerations

There are a number of design considerations. Two different web

applications are provided which demonstrate the use of the pipeline

either as a standalone application that accepts links to spoken tuto-

rial timed scripts or an integration into the spoken tutorial website

through a Generate Mind Map button. The pipeline is particularly

designed to work with the Timed Script of a spoken tutorial and

the scraping process works only with the Timed Script. Contribu-

tor names are hard-coded to not be present in the mind map. The

mind map is generated with an appropriate value of the repulsive

strength of keyword nodes in the force simulation to accommo-

date the mind map in the given amount of space available. The

mind map is designed to generate 15 keywords per script for the

same purpose. Along with the lemmatizer and keyword extractor

used, other lemmatizers and keyword extractors are also supported

which could be enabled easily.

8

5 Installation and updation guide

5.1 Installation

Creating a virtual environment

$ python/python3 −m venv mind map venv

$ source mind map venv/bin / a c t i v a t e

Installation of requirements

$ pip i n s t a l l −r requ i rements . tx t −q

5.2 Updation

Any update to the mind map generation pipeline should be made

to the main code folder or the views.py file in the django applica-

tion. To update the lemmatizers or keyword extractors to be used

out of the ones available, the views.py file should be updated with

the corresponding function call from the lemmatizers.py or the ex-

tractors.py file. The number of keywords generated per script can

also be updated in the views.py file by changing the value of the

top n argument passed to the keyword extraction function. The

percentile criteria of the threshold for edge strength can be updated

through the graph.py file. Various factors related to the force sim-

ulation such as charge, center, etc. can be updated through app.js.

9

6 Code and Working

6.1 Code

The code is available at this GitHub repository. It is currently

present on two branches for two different web applications. The

final integration branch contains code for the web application that

can be used as an integration into the spoken tutorial website for

generating a mind map for a script using the ”Generate Mind

Map” button at the bottom of every page.

6.2 Working

10

https://github.com/VedPatwardhan/mind_map_generator/

7 Results

Figure 1: Integrated App (final integration branch

Figure 2: Standalone App (master branch)

11

References

[1] Mikolov, T., Chen, K., Corrado, G., and Dean, J. 2013a.

Efficient estimation of word representations in vector space.

ICLR. https://arxiv.org/abs/1301.3781.Google Scholar.

[2] T. Kamada and S. Kawai. An algorithm for drawing general

undirected graphs. Inform. Process. Lett., 31:7–15, 1989.

[3] Devlin, Jacob et al. “BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding.” ArXiv

abs/1810.04805 (2019): n. pag.

12

	Abstract
	Web app for auto-generation of mind maps
	Problems encountered
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Design Considerations
	Installation and updation guide
	Installation
	Updation

	Code and Working
	Code
	Working

	Results
	References

