
Semester-Long Internship Report

On

Spoken Tutorial’s Moodle Migration

Submitted by

Nihal Shetty,
NMIMS Mukesh Patel School of Technology Management &

Engineering, Mumbai.

Under the guidance of

Prof. Kannan M. Moudgalya

Chemical Engineering Department

IIT Bombay

July 8, 2022.

Acknowledgment

First, I want to thank Mrs. Nancy Varkey, Senior Project Manager, Spoken Tutorial, IIT-Bombay,
for giving me the opportunity to work with the Spoken Tutorial team for the internship.

I would also like to thank Mrs. Kirti Ambre, Assistant Project Manager, and Mr. Saurabh
Adhikary, Assistant Project Manager, Spoken Tutorial, IIT-Bombay, for their continuous
mentorship during my time at the organization. With their patience and openness, I benefited
from an enjoyable working environment.

It is indeed with a profound sense of pleasure and immense sense of gratitude that I
acknowledge the help of these individuals.

I am grateful to FOSSEE for giving me the opportunity under the Semester Long Internship
Program 2022, in the organization.

Last but not the least, I wholeheartedly thank all of FOSSEE & Spoken Tutorial’s employees
working in different projects for helping me evolve better with their critical advice.

With Regards.

Nihal Shetty.

Contents
1. Introduction 4

2. Moodle 5

3. Problem Statements 6

3.1 Problem 1 6

3.1.1 Problem 1.1 6

Proposed Solution 1.1 6

3.1.2 Problem 1.2 6

Proposed Solution 1.2 6

3.1.3 Problem 1.3 7

Proposed Solution 1.3 7

3.1.4 Problem 1.4 7

Proposed Solution 1.4 7

3.2 Problem 2 7

3.2.1 Problem 2.1 8

Proposed Solution 2.1 8

3.2.2 Problem 2.2 8

Proposed Solution 2.2 8

4. Design Considerations 9

4.1 Dependencies and Packages Used: 9

4.2 Technologies Used 9

5. Tasks in detail 9

5.1 Output of scripts implemented and utilized: 10

5.1.1 Script used to identify changes made in OTC.schema (new) database by
comparing it with an unaltered (old) Moodle database:

5.1.2 Script used to find total list of exclusive tables populated in different

functions of Moodle found via their PHP files: 11

5.2 Upgrading Moodle: 11

5.2.1 Backup: 11

5.2.2 Configuring Git and Upgrading: 12

5.2.3 Error Diagnosing: 14

6. Outputs and Screenshots: 16

7. References: 18

1. Introduction

The Spoken Tutorial project is the initiative of the ‘Talk to a Teacher’ activity of the
National Mission on Education through Information and Communication Technology
(ICT), launched by the Ministry of Human Resources and Development, Government of
India.

The use of spoken tutorials to popularize software development and its use will be
coordinated through this website. (The Spoken Tutorial project is being developed by IIT
Bombay for MHRD, Government of India).

The spoken Tutorial Project aims to make spoken tutorials on FOSS available in several
Indian languages, for the learner to be able to learn in the language he/she is comfortable
in. Our goal is to enable the use of spoken tutorials to teach in any Indian language, and to
be taught to learners of all levels of expertise- Beginner, Intermediate or Advanced.

The Spoken Tutorial project provides various tutorials and courses in a wide range of IT
topics. Audio and captioning are provided in up to 28 different languages, ranging from
English and Hindi to regional languages like Assamese, Oriya, Telugu, Punjabi, Marathi,
etc. and also some international languages such as Vietnamese. These courses are
available for access at your own convenience for free on their website,
https://spoken-tutorial.org/.

During the course of my internship, I was working on a software called Moodle,
performing Data Migration of an old Moodle site used for conducting online tests of the
courses offered by Spoken Tutorial project. This site had to be upgraded to the latest
version of Moodle. Since the old Moodle site was customised to accommodate some
information to be passed on from the parent website, the migration of data to the latest
version became a difficult task as the default upgrade procedure does not allow for
modified code/database contents.

Their courses also have online tests and certificates are awarded to successful candidates.
To conduct the online tests, they had implemented Moodle LMS (Learning Management
System). It has also been integrated into their portal. The Moodle site is operating on
version 2.4.11, which is more than 7-8 years old, and many new features have been
introduced since, making it impractical to operate and obsolete. Generally, Moodle
software upgradations are a tedious, inconvenient and a lengthy process and the obsolete
v2.4 makes the process even more difficult. Therefore, my objective during this internship
is to perform upgradation of their Moodle LMS to the latest stable version, working on
successful data migration of the database which has been altered during the integration
with their portal, and may involve working on bringing new features to their webpage via
Moodle Plugins or any other methods deemed necessary/optimal.

2. Moodle

Moodle is an acronym for ‘Modular Object-Oriented Dynamic Learning Environment’. It
provides a central space on the web where students can access a set of tools, resources,
and courses anytime anywhere. Moodle is the most popular and trusted learning
management system that caters to all types of organisations, no matter how large.
Moodle is a free and open-source Learning Management System (LMS) written in PHP
and distributed under the GNU General Public License. Developed on pedagogical
principles, Moodle is used for blended learning, distance education, flipped classroom
and other e-learning projects in schools, universities, workplaces, and other sectors.
With customizable management features, Moodle is used to create private websites with
online courses for educators and trainers to achieve learning goals. Moodle allows for
extending and tailoring learning environments using community-sourced plugins.

While Moodle presents certain common features in almost all similar e-learning tools, it
also provides certain plug-in options. As an e-learning platform, Moodle features: blogs,
chats, database activities, glossaries, support systems enabling the functioning in
multiple languages, content management, regular examination & assessment, etc.

The current infrastructure facilities adopted by Moodle enable it to support a plethora of
plug-in options like graphical themes and content filters, enrolment, and authentication
processes as well as resource and question patterns. Any operating system that supports
the usage of PHP allows the usage of an e-learning platform like Moodle and some of the
systems where Moodle can perform without any alterations include Mac OS X, Windows,
Linux, Unix, NetWare etc.

3. Problem Statements

3.1 Problem 1

The Moodle site currently in use had its database and code altered a few years back, to
integrate the Spoken Tutorial website to the Moodle site as a result of which, upgrading
was no longer possible via the conventional method as mentioned on their
documentation: (https://docs.moodle.org/311/en/Upgrading). Therefore, to perform
migration, all of the changes need to be identified and analysed as to what purpose they
serve.

3.1.1 Problem 1.1

All of the changes performed to the database involve addition/removal of tables,
addition/removal of columns within tables, or datatype changes of the columns. These
alterations are not concerned with the data, i.e., the individual records stored in the
tables. So only the structural changes of the database are needed to be analysed.

Proposed Solution 1.1

A fresh install of Moodle 2.4.11 will provide access to the same database but without
alterations. This can then be compared with the database in question to find out which
tables and columns were altered. A backup of Spoken Tutorial’s database (OTC.schema)
was performed and then imported to my system, where I can compare it to the
unaltered database (root).

3.1.2 Problem 1.2

There are up to 550+ tables which are to be compared against each other, to find out
whether one exists in both databases, and whether they were dropped/added. This is a
very tedious and time-consuming task if performed manually.

Proposed Solution 1.2

A python script can be written which finds out the names of all tables in each database
and then iteratively compares them to find the status of the database structures. The
information_schema database in MySQL is a default table which holds the metadata of
all other databases in the system. It provides access to database metadata, information
about the MySQL server such as the name of a database or table, the data type of a
column, or access privileges. Other terms that are sometimes used for this information
are data dictionary and system catalogue. This database can be accessed using the script
to identify the changes.

3.1.3 Problem 1.3
The output of the Python script was inaccurate and not corresponding to the changes
identified manually. There was some inconsistency in the outputs obtained.

Proposed Solution 1.3

The elements used to compare the tables were table_schema, table_name,
column_name, ordinal_position, data_type, and column_type which determined whether
there are any changes or not. These elements are a part of the information_schema
database. The ordinal_position variable caused the discrepancy here, since it stood for
the position of the column (e.g., column no. 12). While comparing tables this attribute is
not needed and removal of this element would provide the correct output.

3.1.4 Problem 1.4

Once the list of changes has been obtained, the migration plan has to be determined by
identifying what to do further. These changes have to be either completely expunged, or
partially based on how much they affect the system. This has to be evaluated to proceed
further.

Proposed Solution 1.4

So, it was found that apart from the 28 extra tables and 4 variable type changes in
OTC.schema, only 6 column additions were present. Since all of the variable type
changes were only size increases, and the extra tables are just won’t affect the Moodle
upgrade system. Essentially it all comes down to the 6 extra columns. So, the proposed
solution to solve the issue was to drop the column additions and then test the migration
on a sample site.

3.2 Problem 2

Along with the Moodle Database, the Moodle code, which is composed of PHP files, must
have been altered too, in order to accommodate the changes and to incorporate them
into the Moodle System. There is a need to identify these code changes to better
understand how the Moodle site used by Spoken Tutorial works, and how migration can
be performed.

3.2.1 Problem 2.1

Every time a new user, course, assignment, quiz or question bank is created, the Moodle
code populates some tables to store these as data. These tables must be of utmost
importance to the site, and while migration we can choose to ignore the rest if
necessary. Therefore, all code files which perform tasks related to the above-mentioned
examples must be carefully studied to find which tables are being used.

Proposed Solution 2.1

The Moodle System makes use of the XMLDB structure, which is Moodle's database
abstraction layer - it is the library of code that lets Moodle interact with and access the
database. Moodle supports a number of Database Engines, including MySQL, MariaDB,
Postgresql, OCI, and MS SQL Server. Each of these has a slightly different format for some
of their table creation statements. XMLDB has been created as a standardised format to
describe the structure of the database in a human-readable format which the Moodle
installer can turn into DDL commands to create the database structure. There are two
main sublayers- DDL and DML (Data Definition and Data Manipulation), which have
functions defined in them to perform these database operations. These files are stored
in /opt/lampp/htdocs/moodle/lib/dml & /ddl. A new script can be implemented using
Python that searches for these function calls within the directories of all operations in
question (user, course, assignment, quiz).

3.2.2 Problem 2.2

The script written to perform the task mentioned in Problem 3.2 was not able to find
out the table names and returned empty lists each time it was executed, especially in the
case of DDL functions.

Proposed Solution 2.2

Every table defined in Moodle has a prefix “mdl_” attached to it. In the code, identifying
the tables can be an increasingly difficult task, as these tables are not directly
mentioned. Therefore, the script can be improvised by adding search terms such as
“DML/DDL_function_name(‘table_name’….” so that it returns the exact name of the
table, even without the prefix. In the case of DDL tables, another search term was used:
“$table = new XMLDB table (‘table_name’….” which returned the correct results.

4. Design Considerations

4.1 Dependencies and Packages Used:
● XAMPP: XAMPP is a free and open-source cross-platform web server solution

stack package developed by Apache Friends, consisting mainly of the Apache
HTTP Server, MariaDB database, and interpreters for scripts written in the PHP
and Perl programming languages.

● Mysqldump : The mysqldump client utility performs logical backups, producing
a set of SQL statements that can be executed to reproduce the original database
object definitions and table data. It dumps one or more MySQL databases for
backup or transfer to another SQL server.

● Python Lib/os.py: Python OS module provides the facility to establish the
interaction between the user and the operating system. The Python OS module
lets us work with the files and directories.

● MySQL Cursor: In MySQL by using a cursor, you can iterate, or step through the
results of a query and perform certain operations on each row. The cursor allows
you to iterate through the result set and then perform the additional processing
only on the rows that require it. A cursor contains the data in a loop.

● phpMyAdmin: phpMyAdmin is a free and open-source administration tool for
MySQL and MariaDB. As a portable web application written primarily in PHP, it
has become one of the most popular MySQL administration tools, especially for
web hosting services.

4.2 Technologies Used

● Python: High-Level Scripting Language for Back-End coding and for server-side
programming. Python features a dynamic types system and automatic memory
management and supports multiple programming paradigms.

● MySQL: It is the world's most used open-source relational database management
that runs as a server providing multi-user access to a number of databases.

● PHP: PHP is a general-purpose scripting language geared toward web
development. The PHP reference implementation is now produced by The PHP
Group. PHP originally stood for Personal Home Page, but it now stands for the
recursive initialism PHP: Hypertext Preprocessor.. PHP code can also be directly
executed from the command line.

5. Tasks in detail

5.1 Output of scripts implemented and utilized:

5.1.1 Script used to identify changes made in OTC.schema (new) database
by comparing it with an unaltered (old) Moodle database:

Both databases were obtained from the same Moodle version, i.e., 2.4:
Total number of tables in old: 309
Total number of tables in new: 333
Total number of tables in both old & new (including duplicates): 642
Total number of tables in both old & new (excluding duplicates): 337
Total number of tables in old not present in new: 4
Total number of tables in new not present in old: 28

Tables found with changes:

Name No. of
changes

Description:

mdl_course_completion_aggr_meth
d

1 ● Column ‘criteriatype’ was changed
from bigint(10) to bigint(20)

mdl_course_completion_criteria 1 ● Column ‘criteriatype’ was changed
from bigint(10) to bigint(20)

mdl_event 1 ● Column 'name’ was changed from
longtext to varchar(255)

mdl_external_tokens 1 ● Column 'creatorid' was changed
from bigint(10) to bigint(20)

mdl_user 7 ● Column ‘institution’ was changed
from varchar(40) to varchar(100).
Column number 22->24

● Column 25 'academic_code' was
added

● Column 14 ‘agerange’ was added
● Column 55 'flag' was added
● Column 13 'gender' was added
● Column 54 'invigilator' was added
● Column 53 'organizer' was added

5.1.2 Script used to find total list of exclusive tables populated in different
functions of Moodle found via their PHP files:

This is a summary of all mentions of tables in the various code files checked. The entire list
consists of these 22 tables found throughout all the .php code files.

1. mdl_user
2. mdl_user_info_category
3. mdl_User_info_data
4. mdl_user_info_field
5. mdl_course_modules_avail_fields
6. mdl_course_modules
7. mdl_external_tokens
8. mdl_quiz_attempts
9. mdl_quiz
10. mdl_quiz_reports
11. mdl_quiz_feedback
12. mdl_quiz_question_instances
13. mdl_quiz_overrides
14. mdl_quiz_grades
15. mdl_quiz_question_statistics
16. mdl_quiz_question_response_stats
17. mdl_quiz_statistics
18. mdl_quiz_overview_regrades
19. mdl_question_attempt_step_data
20. mdl_question_attempt_steps
21. mdl_question_attempts
22. mdl_question_usages

So, from 5.1.1, it was found that apart from the 28 extra tables and 4 variable type changes in
OTC.schema, only 6 column additions were present. Since all of the variable type changes were
only size increases, and the extra tables won’t affect the Moodle upgrade system. Essentially it all
comes down to the 6 extra columns. So, my proposed solution to solve the issue was to drop the
column additions and then test the migration on a test site.

5.2 Upgrading Moodle:

5.2.1 Backup:
Firstly, the new table additions were dropped from mdl_user, which makes our database almost
similar to the unaltered database and makes it ready for migration. A backup of the system was
performed using the following:

There are three areas that should be backed up before any upgrade:
1. Moodle software (For example, everything in lampp/htdocs/moodle): Backing this up is

easy, the entire file must be copied and stored somewhere else in a safe location,
preferably a different storage drive, along with lampp/htdocs/moodle/ config.php which
has special permissions and cannot be copied easily. To bypass this, we can use Linux’s
file explorer nautilus, with root privileges by entering sudo nautilus on the terminal,
after which we can transfer the config.php file.

2. Moodle uploaded files (For example, lampp/moodledata): Similar to Moodle Software,
this is easy to backup as well, and there are no files with special permissions in
moodledata.

3. Moodle database (For example, your Postgres or MySQL database dump): The following
command was entered:
mysqldump -u root --skip-password --default-character-set=utf8
-N --routines --single-transaction --column-statistics=0
--skip-triggers --databases OTC.schema > OTCbackup.sql

5.2.2 Configuring Git and Upgrading:
So, the upgrade path I have decided on is:

The PHP, MySQL and MariaDB versions are what I have used based on the minimum and
maximum software requirements for each version of Moodle.

Moodle 2.6 is used, even though it is not an LTS version and can be skipped because: A
disadvantage of using Xampp is that the highest compatible version of MySQL with Xampp is
5.5.5.X which is incompatible with Moodle from v2.7 onwards. MariaDB was introduced in
Moodle 2.6, so it is used as a transitionary stage to switch the database from MySQL to MariaDB
before getting to Moodle 2.7.

Once the data has been backed up, we can proceed with the upgrade.
The most convenient way to do so in my opinion, is through Git. Git is a software which is used
for tracking changes in any set of files, usually used for coordinating work among programmers
collaboratively developing source code during software development. To do so we need to first
install Git through the following command: # sudo apt-get install git.

After this, a clone of the Git repository of Moodle has to be set up (the original repository can be
viewed at https://github.com/moodle/moodle). Follow these steps:

1. $ cd /opt/lampp/htdocs/
2. $ git clone git://git.moodle.org/moodle.git moodle_from_git

This command initializes the new local repository as a clone of the 'upstream' (i.e., the
remote server based) moodle.git repository to a new folder called moodle_from_git. The
upstream repository is called 'origin' by default. It creates a new directory
named Moodle, where it downloads all the files. This operation can take a while as it is
actually getting the entire history of all Moodle versions.

https://github.com/moodle/moodle

3. $ cd moodle_from_git
4. $ git branch -a. This command lists all available branches.

5. $ git branch --track MOODLE_31_STABLE origin/MOODLE_31_STABLE
Use this command to create a new local branch called MOODLE_31_STABLE and set it to
track the remote branch MOODLE_31_STABLE from the upstream repository. To install
any other version, simply enter the name of the file as shown when executing git

branch -a.

6. $ git checkout MOODLE_31_STABLE
This command actually switches to the newly created local branch.

Now, we have to rename moodle_from_git to moodle and the original moodle as
moodleog. Copy the config.php file from moodleog to moodle and then open
http://127.0.0.1/Moodle. The site will then guide you through the update as shown
below. I have chosen to upgrade to version 2.6, which is the first upgrade from the entire
upgrade path to Moodle 4.0.
Now, whenever we need to upgrade to another version, simply enter the commands in
steps 5 and 6 and replace the version name and that’s it! This is why Git is more
convenient, it takes only two commands to upgrade Moodle. Plus, it’s even more
convenient for registered site owners since it has more features which make the
upgrading much less of a hassle.

The above-mentioned procedure is used to install Moodle 2.6 from 2.4. Now, before
upgrading to Moodle 2.7, Database settings has to be changed from MySQL to MariaDB.
This is done by editing the config.php file stored in /opt/lampp/moodle/. Change the

$CFG->dbtype = “mysqli” to $CFG->dbtype = “mariadb” and save it. Upgrade

successful, we can now see that there have been some noticeable changes in the UI.

Again, same procedure is then used to install 2.7 and 3.1. To proceed towards Moodle
3.5, Xampp has to be upgraded to PHP version 7.0 as a minimum. To do so:

http://127.0.0.1/Moodle

1) Stop Xampp,
2) Rename the /opt/lampp folder to /opt/lampp-old (or whatever),
3) Then install the new lampp version.
4) Finally rename the newly installed htdocs folder to htdocs-original or so, and then

copy the whole /opt/lampp-old/htdocs folder to the new release
(/opt/lampp/htdocs,) and same for the MySQL data, copy the whole
/opt/lampp-old/var/mysql to /opt/lampp/var/mysql (and also rename mysql
folder from newly installed Xampp before).

5) Be sure to keep the same file permissions and users of the copied folders. Then
copy moodledata from lampp-old to /opt/lampp/.

Then give the necessary permissions to the MySQL folder by entering:
sudo chmod 777 /opt/lampp/var/
sudo chown -R mysql:mysql /opt/lampp/var/mysql/

Note that after doing so, the Git upgrade will stop working. A new clone of the repository
has to be initialized (Start from step 1 of the Git upgrade method again). This is another
disadvantage of using Xampp since Xampp does not provide update procedures, you
have to uninstall the old release and install the new release. This has to be repeated each
time Xampp is upgraded during the Moodle upgrade path. Some errors which can be
encountered during the Xampp upgrade are discussed in the Error Diagnosing (5.2.3)
section.

Now, upgrading to Moodle 3.9. Xampp will have to be upgraded to 7.2 using the steps
mentioned earlier to do so. When completed: the site will have some more changes to
the UI. Now that we have been able to get to 3.9, we can proceed to the final and latest
stable release of Moodle, i.e., Moodle 4.0. Xampp will have to be upgraded to 7.4 using
the steps mentioned earlier to do so. After upgradation, all of the original data will be
intact, as evidenced in the Outputs section.

5.2.3 Error Diagnosing:
There were some errors which I repeatedly encountered while upgrading Moodle and Xampp.
The following mentions how to diagnose them:

1. Got error 2002: Can’t connect to local MySQL server through socket
‘/var/run/mysqld/mysqld.sock’:
This error was shown when I tried to back up my MySQL database. To fix this error, I
tried to find where mysqld.sock exists using sudo find / -type s. This command
shows all socket files present. It was found to be present at
/opt/lampp/var/mysql/mysql.sock so, I created a symbolic link to that file using
Ubuntu’s file explorer at /var/run/mysqld/ and named it mysqld.sock which fixed the
error.

2. Opcache.enable issue in Moodle Environment:
When Xampp is freshly installed/upgraded, Moodle will show a missing opcache
warning each time you try to upgrade Moodle software. While this can be ignored since
it’s just a warning, opcache improves performance and I still tried diagnosing it. It can be
installed by entering:

sudo apt-get install apache2 libapache2-mod-php php php-cli
php-opcache php-mysql php-zip php-gd php-mbstring php-curl php-xml
-y
This will install opcache and then, we can search where it is located using
sudo find / -name ‘opcache.so’. Then paste the following in
/opt/lampp/etc/php.ini:

zend_extension=/opt/lampp/lib/php/extensions/no-debug-non-zts-201909
02/opcache.so

[opcache]
opcache.enable = 1
opcache.memory_consumption = 128
opcache.max_accelerated_files = 10000
opcache.revalidate_freq = 60

; Required for Moodle
opcache.use_cwd = 1
opcache.validate_timestamps = 1
opcache.save_comments = 1
opcache.enable_file_override = 0

Now restart Xampp using sudo /opt/lampp/lampp restart and check Moodle
environment, it will be fixed. Zend OPCache is now present in http://127.0.0.1/info.php
when checked

3. These errors are encountered each time Xampp is upgraded:
mysqli_real_connect(): (HY000/2002): No such file or directory phpMyAdmin tried to
connect to the MySQL server, and the server rejected the connection. You should check
the host, username and password in your configuration and make sure that they
correspond to the information given by the administrator of the MySQL server. Enter the
following:
sudo chmod -R 777 /opt/lampp
sudo chown -hR nobody /opt/lampp
sudo chmod -R 755 /opt/lampp
sudo service mysql stop
sudo /opt/lampp/lampp restart

Can't create/write to file '/opt/lampp/var/mysql/ (Errcode: 13 "Permission denied")
sudo chown mysql:mysql -R /opt/lampp/var/mysql

XAMPP: Another web server daemon is already running and
sudo rm /opt/lampp/logs/httpd.pid
sudo netstat -nap | grep :80
note the PID (next to LISTEN),
sudo kill <PID>

XAMPP: Another FTP daemon is already running.
netstat -peanutl | grep :21
Port <Port_number>

And then restart Xampp. The errors will have been fixed.

http://127.0.0.1/info.php

6. Outputs and Screenshots:

Snippet of the script used to identify database alterations:

Snippet of the script used to find out tables being populated in certain Moodle functions:

Moodle 2.4.11, the initial site from where the migration was performed

Moodle 4.0, the site after successful migration

7. References:
● https://moodle.org/

● https://moodle.org/mod/forum/

● https://www.youtube.com/channel/UCtubrWLY7-zm2RwenKh-bmQ/videos

● https://en.wikipedia.org/wiki/Moodle

● http://www.syndrega.ch/blog/

● https://docs.moodle.org/dev/Moodle_2.4_release_notes

● https://spoken-tutorial.org/stinternship2022/moodlemigration/

● https://moodledev.io/docs/apis/core/dml/ddl

● https://moodledev.io/docs/apis/core/dml/

● https://community.apachefriends.org/

● https://docs.moodle.org/dev/Overview_of_the_Moodle_question_engine#Databas

e_tables

● https://docs.moodle.org/dev/Question_Engine_2

● https://docs.moodle.org/311/en/Verify_Database_Schema

https://moodle.org/
https://moodle.org/mod/forum/
https://www.youtube.com/channel/UCtubrWLY7-zm2RwenKh-bmQ/videos
https://en.wikipedia.org/wiki/Moodle
http://www.syndrega.ch/blog/
https://docs.moodle.org/dev/Moodle_2.4_release_notes
https://spoken-tutorial.org/stinternship2022/moodlemigration/
https://moodledev.io/docs/apis/core/dml/ddl
https://moodledev.io/docs/apis/core/dml/
https://community.apachefriends.org/
https://docs.moodle.org/dev/Overview_of_the_Moodle_question_engine#Database_tables
https://docs.moodle.org/dev/Overview_of_the_Moodle_question_engine#Database_tables
https://docs.moodle.org/dev/Question_Engine_2
https://docs.moodle.org/311/en/Verify_Database_Schema

