
Semester-Long Internship Report

On

Playing songs on Arduino,
Inline Assembly Language support &

LTI and Auto Grading support

Submitted by

Deepam Priyadarshi
Vellore Institute of Technology, Chennai

Under the guidance of

Prof. Kannan Moudgalya

Chemical Engineering Department

IIT Bombay

Mentors

Mr. Nagesh Karmali

Ms. Firuza Aibara

August 2022

Acknowledgement

I Deepam Priyadarshi, the summer intern of the FOSSEE - Arduino On
Cloud, 2022 is overwhelmed in all humbleness and gratefulness to acknowledge
my deep gratitude to all those who have helped me put our ideas to perfection and
have assigned tasks well above the level of simplicity and into something concrete
and unique. I wholeheartedly thank Prof. Kannan M. Moudgalya for having
faith in me, selecting me to be a part of his valuable project and for constantly
motivating me to do better. I thank Mr. Nagesh Karmali and Ms. Firuza
Aibara for providing me the opportunity to work on this project. I am also very
thankful to our mentors for their valuable suggestions. They were and are always
there to show me the right track when needed help. With help of their brilliant
guidance and encouragement, I was able to complete my tasks properly and was
up to the mark in all the tasks assigned. During the process, I got a chance to see
the stronger side of my technical and nontechnical aspects and also strengthen my
concepts. Last but not the least, I sincerely thank all our other colleagues working
in different projects under Prof. Kannan M. Moudgalya for helping me evolve
better with their critical advice.

1

Declaration

I declare that this written submission represents my ideas in our own words and
whenever others’ ideas or words have been included, I have adequately cited and
referenced the original sources. I declare that I have properly and accurately ac-
knowledged all sources used in the production of this thesis.

I also declare that I have adhered to all principles of academic honesty and in-
tegrity and have not misrepresented or fabricated or falsified any idea/data/fact/-
source in our submission. I understand that any violation of the above will be a
cause for disciplinary action by the Institute and can also evoke penal action from
the sources which have not been properly cited or from whom proper permission
has not been taken when needed.

Deepam Priyadarshi

2

Contents

1 Playing songs on Arduino 5
1.1 Introduction . 5
1.2 Literature Review . 5
1.3 Problem Solving Approach . 6
1.4 Implementation . 7
1.5 Result . 9
1.6 References . 10

2 AVR-GCC support for Arduino 11
2.1 Introduction . 11
2.2 Literature Review . 11
2.3 Problem solving approach . 11
2.4 Implementation . 12
2.5 Output . 15
2.6 References . 15

3 LTI and Auto-Grading Support 16
3.1 Introduction . 16
3.2 Literature Review . 16
3.3 Problem Solving Approach . 16
3.4 Implementation . 17

3.4.1 Creating a LTI assignment . 17
3.4.2 Submission and Auto-Grading 19

3.5 Output . 19
3.6 References . 22

3

List of Figures

1.1 Playing songs on Arduino. 9

2.1 Drop down menu for file type selection. 12
2.2 Arduino inline assembly coding. 15

3.1 Saving the Circuit. 18
3.2 LTI Created. 18
3.3 Moodle View. 19
3.4 Submission of correct answer. 20
3.5 Submitting incorrect circuit but valid code. 20
3.6 Submitting valid circuit but invalid code. 21
3.7 Submissions page. 21

4

Chapter 1

Playing songs on Arduino

1.1 Introduction

This task deals in making the Arduino play tones of various frequencies through
a piezo buzzer on the Arduino On Cloud platform. Initially, the buzzer present on
the aforementioned platform was able to generate sound only of a single frequency.
Analogous to real world scenario, an Arduino is able to generate various tones on
piezo buzzer by generating square waves of 50% duty cycle of the specified frequency.
The default Arduino.h library provides us with function named tone(pin, frequency,
delay), written by Brett Hagman, which encapsulates all the functionalities required
to generate the 50% duty cycle square wave of given frequency. This task requires the
tone() function to be compatible with the virtual piezo buzzer present on Arduino
On Cloud platform and vice versa which enables us to write codes for playing various
well known songs having notes of already known frequency. A sample of such codes,
playing songs using Arduino can be found on the following GitHub repository -
arduino-songs.

1.2 Literature Review

As per Arduino’s microprocessor, ATmega328p, datasheet, Arduino has 3 timers
namely Timer0, Timer1 and Timer2. Timer0 and Timer2 are of 8 bits each while
Timer1 is of 16 bits. Each of the timers have the follwing registers associated
to manipulate the behavior of the respective time (‘x’ at the end corresponds to
respective timer number) :-

1. TCCRx - Timer/Counter Control Register. Can be used to modify timer
prescaler value or the timer mode.

2. TCNTx - Timer/Counter Register. Stores the value of the counter.

3. OCRx - Output Compare Register. Useful in CTC mode of the timer.

According to Brett Hagman’s code, the Tone.cpp code utilises the CTC mode of
Atmega328p’s Timer2. In Clear Timer on Compare match (CTC) mode, the timer
counts until the value stored in the TCNTx register matches a pre-specified value

5

https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/Arduino.h
https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/Arduino.h
https://github.com/robsoncouto/arduino-songs
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

TOP value, after which an interrupt is generated which can be used to toggle any
selected GPIO pins. For Timer2, this TOP value is stored in OCR2A register.
The timer mode specification present/set using the Waveform Generation Mode
pins (WGM02, WGM01 & WGM00) present of the TCCR2A(WGM01 & WGM00)
and TCCR2B(WGM002) for Timer2. The CTC mode can be used to manipu-
late the frequency of an output signal by assigning the prescaler bits in the last
3 bit of TCCR2B register. The available prescaler values in Arduino for a 8-bit
timer are 1, 8, 64, 256 and 1024. All this functionalities are performed together
by tone(int pin, int frequency) alone to generate a square wave of 50% duty
cycle of the specified frequency and on the specified pin.

1.3 Problem Solving Approach

The Arduino On Cloud platform uses AVR8js library which provides an Object
Oriented model of Arduino’s 8-bit micro-controller. The CPU class has the necessary
methods along with their appropriate access modifiers to manipulate various data
members of the class representing different registers for the CPU. In a real world
scenario, a piezo buzzer’s piezo element has a natural phenomena to vibrate with
the applied signal’s frequency. To simulate it on a computer we need to know the
applied frequency of the signal on the pin connected to the piezo buzzer. There are
two approach to the solution :-

1. Taking the inverse of time interval between two different toggle state at the
given pin. This method cannot provide accurate figures for most of the fre-
quency values an Arduino can generate.

2. The second approach makes use of the formula given below, provided in the
datasheet

Fw =
Fcpu

2N(C + 1)
(1.1)

Fw = Output Frequency,

Fcpu = Clock Frequency of Arduino (16MHz),

N = Prescalar value,

C = TOP count present in OCR2A register

from the equation 1.1 we calculate the output frequency Fw by reading the N and
C values from the last 3 bits of TCCR2B register and OCR2A register respectively
and substituting it in the equation 1.1. This frequency can then be fed to the sound
generating module of the buzzer. The N and C values are repeatedly read every
millisecond using setInterval() method provided by JavaScript.

6

https://github.com/wokwi/avr8js
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

1.4 Implementation

All the code modification related to this task was done to the ArduinoFrontend/src/
app/Libs/outputs/Buzzer.ts file’s initSimulation() method as shown in the
code snippet below :-

1 import { CircuitElement } from '../CircuitElement';

2 import { Point } from '../Point';

3 import { ArduinoUno } from '../outputs/Arduino';

4 .

5 .

6 .

7 .

8 .

9 .

10

11 /**

12 * Logic for beeping sound

13 * @param val The Value on the positive pin

14 */

15 logic(val: number) {

16 // TODO: Handle PWM

17 if (this.nodes[0].connectedTo && this.nodes[1].connectedTo) {

18 if (val === 5) {

19 if (this.oscillator && !this.sound) {

20 this.oscillator.connect(this.audioCtx.destination);

21 this.sound = true;

22 }

23 } else {

24 if (this.oscillator && this.sound) {

25 this.oscillator.disconnect(this.audioCtx.destination);

26 this.sound = false;

27 }

28 }

29 this.nodes[1].setValue(val, null);

30 } else {

31 // TODO: Show Toast

32 window.showToast('Buzzer is not Connected properly');

33 }

34 }

35 /**

36 * returns properties object

37 * @param keyName Unique Class name

38 * @param id Component id

39 * @param body body of property box

40 * @param title Component title

41 */

7

42 properties() {

43 const body = document.createElement('div');

44 return {

45 title: 'Buzzer',

46 keyName: this.keyName,

47 id: this.id,

48 body

49 };

50 }

51 /**

52 * Initialize Variable and callback when start simulation is pressed

53 */

54 initSimulation() {

55 const trig = (this.pinNamedMap['POSITIVE'] as Point);

56 if (trig.connectedTo) {

57 if (trig.connectedTo.start.parent instanceof ArduinoUno) {

58 this.arduino = trig.connectedTo.start.parent;

59 } else if (trig.connectedTo.end.parent instanceof ArduinoUno) {

60 this.arduino = trig.connectedTo.end.parent;

61 }

62 }

63 const AudioContext = window.AudioContext || window.webkitAudioContext;

64 this.audioCtx = new AudioContext();

65 this.oscillator = this.audioCtx.createOscillator();

66 this.oscillator.type = 'square';

67 this.oscillator.frequency.value = 2300;

68 const prescaler = [8, 32, 64, 128, 256, 1024];

69 this.setIntervId = setInterval(() => {

70 try {

71 const tccr2b = this.arduino.runner.timer2.TCCRB;

72 const ocr2a = this.arduino.runner.timer2.ocrA;

73 if (ocr2a !== 0) {

74 this.oscillator.frequency.value = Math.round(16000000 / (2 *

prescaler[tccr2b - 2] * (ocr2a + 1)));↪→

75 }

76 } catch (error) {

77 }

78 }, 10);

79 this.oscillator.start();

80 }

81

82 .

83 .

84 .

85 .

86 .

8

87

88 }

The calculated frequency is constantly assigned to the frequency parameter of the
AudionContext() object, a web audio api provided by WebKit.

1.5 Result

The code testing and the necessary simulations has been shown in the demo
video viewable by clicking on the figure 1.1. The song played in the demo video is
the Harry Potter theme song whose code and many other songs code can be found
on the GitHub link provide below -
Arduino Songs

Figure 1.1: Playing songs on Arduino.

9

https://github.com/robsoncouto/arduino-songs
https://user-images.githubusercontent.com/65447610/153737658-270aa62f-35aa-4fd4-86ff-b2061edd8f0e.mp4

1.6 References

1. https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Auto

motive-Microcontrollers-ATmega328P Datasheet.pdf

2. https://www.arduino.cc/reference/en/language/functions/advanced-

io/tone/

3. https://github.com/arduino/ArduinoCore-avr/blob/master/cores/ard

uino/Tone.cpp

4. https://github.com/robsoncouto/arduino-songs

5. https://github.com/wokwi/avr8js/blob/master/src/cpu/cpu.ts

10

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/Tone.cpp
https://github.com/arduino/ArduinoCore-avr/blob/master/cores/arduino/Tone.cpp
https://github.com/robsoncouto/arduino-songs
https://github.com/wokwi/avr8js/blob/master/src/cpu/cpu.ts

Chapter 2

AVR-GCC support for Arduino

2.1 Introduction

This task deals in making the Arduino On Cloud platform compatible in com-
piling high-level C code to program the given Arduino. This mode of Arduino
programming is also sometimes known as Bare Metal programming in Arduino. At
present the Arduino On Cloud only support the compilation of .ino files. Providing
the support for inline assembly programming helps in better understanding the hard-
ware architecture of ATmega328p and can also be used for writing more optimized
Arduino programs.

2.2 Literature Review

The support for the compilation of C code for converting it into AVR assembly
language code can be achieved using AVR-GCC toolchain that comprises of compiler,
assembler, linker and standard C and math libraries for AVR micro-controllers. The
source code is now saved with ‘.c’ extension. The AVR-GCC tool chain for Linux
provides a compiler that converts the source file to object file. The object file is then
converted to an executable file. This executable file is finally converted to HEX file
which then needs to be uploaded on the Arduino.

In a real world scenario, typically an Arduino is programmed using the Arduino
IDE which provides an abstraction for all the above mentioned procedure in a single
click of ‘Upload Sketch’ button. At the backend, the IDE also uses the same AVR-
GCC toolchain, compatible to the given OS. Apart from this, the IDE also provides
some additional headers (like Arduino.h) and macros which gets added to the source
file prior to its compilation. This enables writing user-friendly code for the Arduino
by providing encapsulation of various complicated low level functionality into a single
function.

2.3 Problem solving approach

The user is provided with a selection menu in the code editor component to
select the type of file user wants to create, .ino or .c. If the user selects the former,

11

https://linux.die.net/man/1/avr-gcc

then the source file is compiled using arduino-cli toolchain or else it gets compiled
using AVR-GCC toolchain. Both of these process return an equivalent HEX code of
the source code, which get uploaded onto the Arduino and is then parsed by the
Arduino Runner class.

2.4 Implementation

� The first change is the addition of a drop down selection menu to select the
type of source code file. From figure 2.1 we can see that the platform provides
user two modes to write code for Arduino.

Figure 2.1: Drop down menu for file type selection.

� Upon selecting one of the two modes of programming, the respective endpoints
also get mapped to ‘Start Simulation’ button which gets called to initiate the
simulation. The two API endpoints are -

(i) POST api/arduino/compileINO :-
Saves the file with .ino extension and then uses arduino-cli toolchain
for generating equivalent HEX code.

(ii) POST api/arduino/compileInlineAssembly :-
Saves the file with .ino extension and then uses AVR-GCC toolchain for
generating equivalent HEX code.

� If ‘Inline C Assembly’ option is chosen then the saveFiles() function present
on eSim-Cloud/esim-cloud-backend/arduinoAPI/tasks.py save the code
as a .c on the container and returns the file name to the calling function.

12

1 def saveFiles(data, langIndex):

2 # try:

3 filenames = []

4 if not os.path.exists(settings.MEDIA_ROOT):

5 Path(settings.MEDIA_ROOT).mkdir(parents=True, exist_ok=True)

6 for k in data:

7 foldername = str(uuid.uuid4()) + '_' + str(k)

8 work_dir = settings.MEDIA_ROOT+'/'+str(foldername)

9 Path(work_dir).mkdir(parents=True, exist_ok=True)

10 if langIndex == 0:

11 filename =

settings.MEDIA_ROOT+'/'+str(foldername)+'/sketch.ino'↪→

12 elif langIndex == 1:

13 filename = settings.MEDIA_ROOT+'/'+str(foldername)+'/sketch.c'

14 fout = open(filename, 'w', encoding='utf8')

15 matches = re.finditer(PATTERN, data.get(k, ''), re.MULTILINE)

16 for _, match in enumerate(matches, start=1):

17 func_name = match.group().replace('{', '')

18 func_name = func_name.strip() + ';'

19 fout.writelines('#line 1 "{}"\n'.format(filename))

20 fout.writelines('{}\n'.format(func_name))

21 fout.writelines(data.get(k, ''))

22 fout.close()

23 filenames.append(foldername)

24 logger.info('Creating')

25 logger.info(filename)

26 return filenames

� After saving the .c file, CompileInlineAssembly() function generate the
object file out of it using the command avr-gcc -Os -DF_CPU=16000000UL

-mmcu=atmega328p -c -o sketch.o sketch.c. The object file sketch.o is
again converted to executable code using the command avr-gcc -mmcu=atmega

328p sketch.o -o sketch. This executable file is finally converted to equiv-
alent HEX code which is the returned as shown in the code below.

1 def CompileInlineAssembly(filenames):

2 ret = {}

3 try:

4 for filename in filenames:

5 c_name = settings.MEDIA_ROOT+'/'+str(filename)+'/sketch.c'

6 obj_name = settings.MEDIA_ROOT+'/'+str(filename)+'/sketch.o'

7 bin_name = settings.MEDIA_ROOT+'/'+str(filename)+'/sketch'

8 out_name = settings.MEDIA_ROOT+'/'+str(filename)+'/out.hex'

9 logger.info('Compiling')

10 logger.info(c_name)

11

13

12 ps = subprocess.Popen(

13 "avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega328p -c -o " +

obj_name + " " + c_name + " && avr-gcc

-mmcu=atmega328p " + obj_name + " -o " + bin_name + "

&& avr-objcopy -O ihex -R .eeprom " + bin_name + " " +

out_name,

↪→

↪→

↪→

↪→

14 stdout=subprocess.PIPE,

15 stderr=subprocess.PIPE,

16 shell=True

17)

18 output, err = ps.communicate()

19 data = ''

20 if err == '' and ps.returncode != 0:

21 err = b'Code Cannot be Compiled: Unknown Reason'

22

23 if os.path.isfile(out_name):

24 data = open(out_name, 'r').read()

25 pos = filename.find('_')

26 if pos != -1:

27 pos += 1

28 key = filename[pos:]

29 else:

30 key = filename

31

32 ret[key] = {

33 'output': "Compiled Successfully",

34 'error': re.sub(

35 rf'{settings.MEDIA_ROOT}/{filename}/',

36 '',

37 err.decode('utf-8')

38),

39 'data': data

40 }

41

42 except Exception:

43 print(traceback.format_exc())

44 return False

45 finally:

46 for filename in filenames:

47 parent = settings.MEDIA_ROOT+'/'+str(filename)

48 shutil.rmtree(parent, True)

49 logger.info('Removing')

50 logger.info(parent)

51 return ret

14

2.5 Output

The working demo of the above implementation can be viewed by clinking on
the image-link of figure 2.2. The code used in the video blinks the LED with a delay
of 1000ms.

Figure 2.2: Arduino inline assembly coding.

2.6 References

1. https://spoken-tutorial.org/watch/Arduino/AVR-GCC+programming+th

rough+Arduino/English/

2. https://linux.die.net/man/1/avr-gcc

3. https://create.arduino.cc/projecthub/milanistef/introduction-to-

bare-metal-programming-in-arduino-uno-f3e2b4

4. https://github.com/arduino/arduino-ide

15

https://user-images.githubusercontent.com/65447610/155765289-da379d63-d570-468a-8235-6e8e1967c7bf.mp4
https://spoken-tutorial.org/watch/Arduino/AVR-GCC+programming+through+Arduino/English/
https://spoken-tutorial.org/watch/Arduino/AVR-GCC+programming+through+Arduino/English/
https://linux.die.net/man/1/avr-gcc
https://create.arduino.cc/projecthub/milanistef/introduction-to-bare-metal-programming-in-arduino-uno-f3e2b4
https://create.arduino.cc/projecthub/milanistef/introduction-to-bare-metal-programming-in-arduino-uno-f3e2b4
https://github.com/arduino/arduino-ide

Chapter 3

LTI and Auto-Grading Support

3.1 Introduction

Learning Tool Interoperability(LTI), is a security standard developed by 1EdTech
(previously IMS Global Learning Consortium) for secure information exchange be-
tween a Learning Management Systems (LMS) and external learning tool. It is
enabled via OAuth2 through which LMS platforms like moodle, edX etc. can host
an external learning tool’s interface to work with, without having to log into the
external system. The information about the learner and their activities are shared
by LMS to the external system. Custom restriction on features of the hosted LTI
interface can be added for free and premium user or even for creating assignment for
student. Through LTI support on Arduino on Cloud platform, custom assignments
related to Arduino circuits and its coding can created on moodle which can then be
graded through auto grading support as per student simulation results.

3.2 Literature Review

LTI was created to standardize the creation of content among LMS platforms.
Through LTI, functionalities of learning technologies can be delivered by these LMS
platform through a secure plug and play environment. Students and instructors
only have to keep track of one login. LTI1.3 has become the minimum requirement
for tools that exchange sensitive and personally identifiable data. Tracking grades
become more standardized across different LMS platforms since the grading speci-
fications are handled by the learning tool itself and the final grade is scaled down
to a uniform scale specified by LTI1.3. This enables to create assignments using
more than learning tool provider, in a course, still maintaining the uniform scoring
standards among them.

3.3 Problem Solving Approach

The user requirements for this particular component are:-

� Assignments that can be created should be of three type, either circuit oriented
where the student is given an incomplete circuit and is asked to complete it

16

as per the correct code given to him or code oriented where the complete
circuit is given to student and is asked to write appropriate code for it or the
student needs to create the circuit as well as write a code for it according to
the specification provided in a question statement.

� The student is graded on the simulation results of his circuit and if the simula-
tion results matches with instructors simulation data he/she is awarded with
full marks. Partial marking is also awarded based on the extent of similarity
in simulation results achieved by the student.

� The instructor has the privilege to decide the weightage of the circuit drawn
and code.

� The instructor also has the privilege to select one of available valid test cases
of the actual correct circuit for evaluation.

� While creating an assignment, the instructor can also choose from list of in-
correct variations of the actual circuit to assign it as the initial circuit to work
on, for the student.

Auto-Grading

Grading is done based on the data generated upon simulation of the circuit. The
information contained in this data are the various pins of Arduino that were used
in wiring connections. These are then matched with the pins used in instructor’s
simulation circuit and the resultant value contributes to connection weightage of
the overall grade. The simulation data also contains the HEX values that are fed
into the PORTB(pins 0-7) and PORTD(pins 8-13) registers by the CPU during
the runtime. The binary equivalent of these HEX values decides which GPIO pin of
Arduino will toggle to logic HIGH based on the position of the 1’s in the 8-bit binary
value. The HEX values received by both the registers follow a particular sequence
during the runtime. If two similar such sequence exits then both the circuits are
said to perform same simulation/operation. This contributes to the code weightage
of the overall grade.

3.4 Implementation

3.4.1 Creating a LTI assignment

To create an LTI assignment the user needs to save the original correct circuit.
Any variations of this circuit can also be saved along with it. Run the simulation for
the original/correct circuit and save the necessary data points generated to choose
one them as the test case for evaluation. This process has been clearly depicted
clearly depicted in the figure 3.1.

17

Figure 3.1: Saving the Circuit.

Open the saved the circuit from the dashboard. Click on “Create LTI App”
option from the dialog box that appears. This brings you to the LTI setup page.
Here you can fill in the LTI specifications related to the assignment. For creating the
LTI app you need to specify the ‘Consumer Key’, ‘Secret Key’, maximum possible
score of the assignment (0.0 to 1.0), select the initial circuit for student to work on -
‘Student’s Circuit’, the original correct circuit - ‘Teacher’s Circuit’, Test case data,
enabling auto-grading by accepting submissions, showing the code to the student or
not and specifying the code and circuit weightage. After filling all the compulsory
details the ‘Save’ button will get activated which will save the details onto the
database and will also generate the LTI config url to be used at the LMS platform
as shown in figure 3.2.

Figure 3.2: LTI Created.

18

Figure 3.3: Moodle View.

3.4.2 Submission and Auto-Grading

On LMS after completing the external tool setup by using the earlier provided
consumer key, secret key and LTI config URL, student gets to sees an Arduino On
Cloud platform’s interface embedded into the LMS assignment section of a course
as shown in the figure 3.3. The student needs to modify the circuit or code or even
both as per the questions requirement. Then the simulations needs to be run for
generating the data points for evaluation. A student can run simulation any number
of time. All his simulation records will be listed in the ‘See Previous Runs’ drop
down menu. From there anyone of them can be chosen for evaluation by clicking
on the submit button. The auto-grading process evaluate the circuit based on the
GPIO pins used and HEX sequence generated in the PORT registers.

3.5 Output

After evaluation, the marks are displayed on the submission confirmation dialog
box as shown in figure 3.4. The marks shown in the figure are scaled down to LMS
uniform grading standard for LTI apps. In figure 3.4 since simulation data and the
circuit matches with the valid reference circuit of the instructor, hence the student
has been awarded 1.0 marks. Figure 3.5 shows that the student has been awarded
0.91 marks. The marks was deducted due to the submission of partially incorrect
circuit. Though the student got full 60% marks for his submitted code but was only
able to get 31% marks out 40% marks, for his submitted circuit.

19

Figure 3.4: Submission of correct answer.

Another possible scenario is shown in figure 3.6 where the circuit submitted is
completely correct but the code submitted is only partially correct. Since the code
has a higher weightage than circuit component, the deducted marks are also higher
in this case. Hence the student is only awarded 0.87 marks.

Figure 3.5: Submitting incorrect circuit but valid code.

20

Figure 3.6: Submitting valid circuit but invalid code.

The circuit and the code submitted by the students can be viewed on the Arduino
On Cloud platform by navigating to submissions page from the dashboard or from
the ‘Edit LTI page’.

Figure 3.7: Submissions page.

21

3.6 References

1. https://spoken-tutorial.org/watch/Arduino/AVR-GCC+programming+th

rough+Arduino/English/

2. https://moodle.com/news/what-is-lti-and-how-it-can-improve-you

r-learning-ecosystem/

3. https://www.imsglobal.org/activity/learning-tools-interoperabili

ty

4. https://github.com/rohitjose/django-lti-auth

5. https://github.com/Harvard-ATG/django-app-lti

22

https://spoken-tutorial.org/watch/Arduino/AVR-GCC+programming+through+Arduino/English/
https://spoken-tutorial.org/watch/Arduino/AVR-GCC+programming+through+Arduino/English/
https://moodle.com/news/what-is-lti-and-how-it-can-improve-your-learning-ecosystem/
https://moodle.com/news/what-is-lti-and-how-it-can-improve-your-learning-ecosystem/
https://www.imsglobal.org/activity/learning-tools-interoperability
https://www.imsglobal.org/activity/learning-tools-interoperability
https://github.com/rohitjose/django-lti-auth
https://github.com/Harvard-ATG/django-app-lti

	Playing songs on Arduino
	Introduction
	Literature Review
	Problem Solving Approach
	Implementation
	Result
	References

	AVR-GCC support for Arduino
	Introduction
	Literature Review
	Problem solving approach
	Implementation
	Output
	References

	LTI and Auto-Grading Support
	Introduction
	Literature Review
	Problem Solving Approach
	Implementation
	Creating a LTI assignment
	Submission and Auto-Grading

	Output
	References

