

Semester-Long Internship Report

On

Design of Members Subjected to Bending and Spread-sheet to validate Beam-column

Submitted by

Rutvik Nitin Joshi

Under the guidance of

Prof. Sidhartha Ghosh Civil Engineering Department IIT Bombay

August 27, 2022

Acknowledgment

I would like to thank FOSSEE for providing me a platform to work on and also thank them for developing open-source tools for the country. The internship has improved my knowledge and application. I am thankful to everyone who was involved in the selection process based on screening tasks. I am grateful to be a part of the team which promotes open-source software.

I am grateful that I got a chance to work under Prof. Siddhartha Ghosh, who took the time to mentor us and monitored individual contributions as well. I thank Mr. Danish Ansari who made us feel welcome and planned all the tasks meticulously during this period. I thank profusely to all the faculty members for their kind help and the members who helped directly and indirectly.

Contents

1	Intr	oducti	on	4
	1.1	Osdag	Internship	5
	1.2	What	is Osdag?	5
	1.3	Who c	an use Osdag?	6
2	Des	ign of	Members Subjected to Bending	7
	2.1	Introd	uction	8
		2.1.1	Design bending strength of the section	9
			2.1.1.1 Laterally Supported Beam	9
			2.1.1.2 Laterally Unsupported Beam	9
		2.1.2	Design shear strength of the section	9
		2.1.3	Web crippling check	9
		2.1.4	Web buckling check	9
		2.1.5	Check for deflection:	10
		2.1.6	Combined Axial force and Bending moment	10
			2.1.6.1 Section Strength	10
			2.1.6.1.1 Plastic and Compact sections	10
			2.1.6.1.2 Semi-compact sections:	10
		2.1.7	Overall Member Strength	10
			2.1.7.1 Bending and axial compression	10
3	\mathbf{Spr}	ead-sh	eet to validate Beam-column design	11
	3.1	Introd	uction	12
	3.2	Inputs		12
	3.3	Outpu	ıt	12
4	AN	NEXU	RE	13

List of Figures

4.1	Buckling class of a member	14
4.2	Classification of a section	15
4.3	Design Compressive $Stress(f_{cd})$ for Buckling Class A	16
4.4	Design Compressive $Stress(f_{cd})$ for Buckling Class B	16
4.5	Design Compressive $Stress(f_{cd})$ for Buckling Class C	17
4.6	Design Compressive $Stress(f_{cd})$ for Buckling Class D	17
4.7	Stress reduction factor(χ_{LT}) for Buckling Class A	18
4.8	Stress reduction factor(χ_{LT}) for Buckling Class B	18
4.9	Stress reduction factor(χ_{LT}) for Buckling Class C	19
4.10	Stress reduction factor(χ_{LT}) for Buckling Class D	19
4.11	Critical stress f_{crb}	20
4.12	Design Bending Compressive Stress Corresponding Lateral Buckling	
	for 0.21	20
4.13	Design Bending Compressive Stress Corresponding Lateral Buckling	
	for 0.49	21
4.14	Partial Safety Factor for Materials	21
4.15	Equivalent Uniform Moment Factor	22
4.16	Constants $\alpha_1 and \alpha_2$	22
4.17	For plastic and compact sections without bolts holes	23

Chapter 1 Introduction

1.1 Osdag Internship

Osdag internship is provided under the FOSSEE project. FOSSEE project promotes the use of FOSS (Free/Libre and Open-Source Software) tools to improve the quality of education in our country. FOSSEE encourages the use of FOSS tools through various activities to ensure the availability of competent free software equivalent to commercial (paid) software.

The FOSSEE project is a part of the National Mission on Education through Information and Communication Technology (ICT), Ministry of Education, Government of India.

Osdag is one such open-source software that comes under the FOSSEE project. Osdag internship is provided through the FOSSEE project. Any UG/PG/Ph.D. holder can apply for this internship. And the selection will be based on a screening task.

1.2 What is Osdag?

Osdag is Free/Libre and Open-Source Software being developed for the design of steel structures following IS 800:2007 and other relevant design codes. OSDAG helps users in designing steel connections, members and systems using interactive Graphical User Interface (GUI).

The source code is written in Python, 3D CAD images are developed using PythonOCC. GitHub is used to ensure smooth workflow between different modules and team members. It is in a path where people from around the world would be able to contribute to its development. FOSSEE's "Share alike" policy would improve the standard of the software when the source code is further modified based on the industrial and educational needs across the country.

Design and Detailing Checklist (DDCL) for different connections, members and structure designs is one of the main products of this project. It would create a repository and design guidebook for steel construction based on Indian Standard codes and best industry practices.

1.3 Who can use Osdag?

Osdag is primarily created for use in academia for students and teachers but industry professionals also find it useful. As Osdag is currently funded by MHRD, the Osdag team is developing software in such a way that it can be used by the students during their academics and to give them a better insight look in the subject.

Osdag can be used by anyone starting from novice to professionals. Its simple user interface makes it flexible and attractive than other software. Video tutorials are available to help get started. The video tutorials of Osdag can be accessed here.

- The video tutorials of OSDAG can be easily accessed from https://osdag.fossee.in/resources/videos or YouTube.
- The sample design problems for different modules can be viewed from https://osdag.fossee.in/resources/sample-design.
- One can view the user tools used for the development of OSDAG from https://osdag.fossee.in/resources/user-tools.
- OSDAG can be downloaded from https://osdag.fossee.in/resources/downloads.

Chapter 2

Design of Members Subjected to Bending

2.1 Introduction

In general, a beam that does not move nor rotate laterally is termed as "Laterally Supported Beams". This lateral restraint can be possibly obtained by several means. Few of them are,

- Compression flange of the element embedded inside the slab
- Compression flange connected to the slab by means of shear connector
- Lateral braces provided in the beam

The design bending strength of beams, adequately supported against lateral torsional buckling (laterally supported beam) is governed by the yield stress. A typical laterally supported beam could fail by anyone of the following failure modes:

- Shear failure of the section
- Flexural failure of the section (bending failure)
- Web crippling/web buckling (local failures)
- Deflection.

Of the above-mentioned failure modes, Flexural failure of the section is a bending failure, occurs when the applied load produces an internal bending moment, which is pretty much higher than the bending strength or moment capacity of the beam. Under increasing transverse loads, a beam should attain its full plastic moment capacity. This type of behavior is seen in a laterally supported beam.

Two important assumptions have been made therein to achieve the ideal beam behaviour.

They are

- The compression flange of the beam is restrained from moving laterally;
- Any form of local buckling is prevented

When a beam is not adequately supported against lateral buckling (laterally UN-supported beams) the design bending strength may be governed by lateral torsional buckling strength

A beam experiencing bending about major axis and its compression flange not restrained against buckling may not attain its material capacity. If the laterally unrestrained length of the compression flange of the beam is relatively long then a phenomenon known as lateral buckling or lateral torsional buckling of the beam may take place and the beam would fail well before it can attain its full moment capacity. Such type of beams are known as Laterally Unsupported Beams.

2.1.1 Design bending strength of the section

2.1.1.1 Laterally Supported Beam

 M_d = design bending strength of the section [CL:8.2.1.2] which shall be taken as:

$$M_d = \frac{Z_p \ \beta_b \ f_y}{\gamma_{mo}}$$

2.1.1.2 Laterally Unsupported Beam

The design bending strength of laterally unsupported beam as governed by lateral torsional buckling is given by [CL:8.2.2]:

$$M_d = \beta_b \ Z_p \ f_{bd}$$

2.1.2 Design shear strength of the section

The factored design shear force, V in a beam due to external actions shall satisfy [CL:8.4] $V \le V_d$

where $V_d = \text{design strength}$

$$V_d = \frac{A_v \ f_{yw}}{\sqrt{3} \ \gamma_{mo}}$$

2.1.3 Web crippling check

When a member subjected to bending, the web of the section is subjected to crippling failure. The crippling capacity of a section (A_q) is given by

$$A_g = \frac{m \ t_w \ f_{yw}}{\gamma_{mo}}$$

2.1.4 Web buckling check

The design bending strength of a section subjected to buckling is determined by Buckling capacity (F_w)

$$F_w = B t_w f_{cd}$$

2.1.5 Check for deflection:

$$\delta = \frac{5}{384} \ \frac{W \ l^4}{E \ I_{z-}} < \frac{l}{300}$$

2.1.6 Combined Axial force and Bending moment

Under combined axial force and bending moment, section strength is governed by material failure and member strength governed by buckling failure.

2.1.6.1 Section Strength

2.1.6.1.1 Plastic and Compact sections [clause 9.3.1.1 of IS 800:2007]

$$\left(\frac{M_y}{M_{ndy}}\right)^{\alpha_1} + \left(\frac{M_z}{M_{ndz}}\right)^{\alpha_2} \le 1.$$

2.1.6.1.2 Semi-compact sections: [clause 9.3.1.3 of IS 800:2007]

$$\frac{N}{N_d} + \frac{M_y}{M_{dy}} + \frac{M_z}{M_{dz}} \le 1.$$

2.1.7 Overall Member Strength

2.1.7.1 Bending and axial compression

Members subjected to combined axial compression and biaxial bending shall satisfy the following interaction relationships

$$\frac{P}{P_{dy}} + \frac{K_y C_{my} M_y}{M_{dy}} + \frac{K_{LT} M_z}{M_{dz}} < +1$$
$$\frac{P}{P_{dz}} + \frac{0.6 K_y C_{my} M_y}{M_{dy}} + \frac{K_{LT} C_{mz} M_z}{M_{dz}} < +1$$

Chapter 3

Spread-sheet to validate Beam-column design

12

3.1 Introduction

A beam-column is a structural member that is subjected to axial compression and transverse bending at the same time. The combined compression and bending may be produced by an eccentrically applied axial load, a concentrically applied axial load and one or two end moments, or an axial load and a transverse load between the two ends, or a combination of all three. A beam-column differs from a column only by the presence of the eccentricity of the load application, end moment, or transverse load

3.2 Inputs:

- Axial Load
- Moment about z-z axis(Mz)
- Moment about y-y axis(My);
- Length of Column (L)
- Section Type

- Yield stress(fy)
- Ultimate stress(fu)
- End Conditions Translation Rotation

Spreadsheet will extract following information of a particular section

- Mass
- Area (A)
- Depth (H)
- Breadth (B)
- Thickness of Web (t_w)
- Thickness of Flange (t_f)
- Flange Slope (D)
- Radius at Root (R₁)

- Radius at toe (R₂)
- Moment of Inertia (I_z, I_y)
- Radius of Gyration $(\mathbf{r}_z, \mathbf{r}_y)$
- Elastic Modulus of Section $(\mathbf{Z}_z, \mathbf{Z}_y)$
- Plastic Modulus of Section $(\mathbf{Z}_{pz}, \mathbf{Z}_{py})$

3.3 Output

The spreadsheet will give up to 7 checks on whether the selected section has passed the various criteria's.

This spreadsheet is to be used to validate the Beam-Column python program while adding this module into Osdag.

Chapter 4 ANNEXURE

Cross-Section	Limits	Buckling About Axis	Buckling Class
(1)	(2)	(3)	(4)
Rolled I-Sections	$h/b_{\rm f} > 1.2$:	Z•Z	а
Y	$t_f \ge 40$ mm	у-у	b
	$40 \le mm < t_f \le 100 mm$	z-z y-y	b c
z [†] z [†]	$h/b_{\ell} \le 1.2$:	7-7	b
	$t_f \leq 100 \text{ mm}$	y-y	c
har y	<i>t_f</i> >100 mm	z-z y-y	d d
Welded I-Section	t _f ≤40 mm	Z=Z V=V	b c
	<i>t_t</i> >40 mm	z-z y-y	c d
Hollow Section	Hot rolled	Any	а
	Cold formed	Any	ь
Welded Box Section	Generally (except as below)	Any	ь
hu ter	Thick welds and		
	<i>b/t_f</i> < 30	Z-Z	c
	$h/t_w < 30$	у-у	c
Channel, Angle, T and Solid Sections			
		Any	c
Built-up Member	л.	Any	c

Figure 4.1: Buckling class of a member

r	Compressio	n Elemer	nt	Ratio	1	Class of Seath	on
	Compression			Ratio	Class 1	Class of Section	Class 3
					Plastic	Compact	Semi-compact
	(1))		(2)	(3)	(4)	(5)
Outstanding ele	ment of	Rolled	section	b/t _f	9.4ε	10.5 <i>ɛ</i>	15.7 <i>E</i>
compression fla	nge	Weldee	1 section	b/ tr	8.4 <i>ɛ</i>	9.4 <i>ɛ</i>	13.6 <i>e</i>
Internal elemen compression fla	t of nge	Compr bendin	ession due to g	b/ t _f	29.3 <i>ɛ</i>	33.5 &	42ε
		Ax	ial compression	b/ tr	Not ap	plicable	
	Neut	rai axis a	t mid-depth	d/t*	84£	105€	126
			If r ₁ is negative:	d/t _w		<u>105.0 ε</u>	
Web of an I,					<u>84</u> <i>ɛ</i>	1+ <i>r</i> ,	126.0 e
H or box section	Generally				1+r	105.0 c	$1 + 2r_{1}$
			If r ₁ is positive :	$d't_n$	but $\leq 42\varepsilon$	1+1.5r	but $\leq 42\varepsilon$
						but ≤ 42ε	
Web of a ba	Axial compre	ession		d/t _w	Not app	plicable	42 <i>ε</i>
Web of a chann		1		d/t _w	428	428	42ε
be satisfied)	ision due to be	ending (E	soth criteria should	d/t	9.4 E	10.5 E	15.7 <i>e</i> 15.7 <i>e</i>
Single angle,	or double an	gles wit	h the components	b/t			15.7 <i>ɛ</i>
separated, axial satisfied)	compression ((All three	e criteria should be	d/t (b+d)/t	Not app	plicable	15.7 <i>e</i>
Outstanding leg double angle m	g of an angle i ember	n contac	back-to-back in a	d/t	9.4 <i>ɛ</i>	10.5 <i>e</i>	15.7 <i>e</i>
Outstanding leg contact with an	g of an angle other componer	with its it	back in continuous	d/t	9.4 <i>ɛ</i>	10.5 <i>e</i>	15.7 <i>ɛ</i>
Stem of a T-se section	ction, rolled o	r cut fro	m a rolled I-or H-	D/t _f	8.4 <i>ɛ</i>	9.4 <i>ɛ</i>	18.9 <i>ɛ</i>
Circular hollow a) moment	tube, including	g welded	tube subjected to:	D/t	42 <i>e</i> ²	52 <i>e</i> ²	146 <i>8</i> ²
b) axial cor	npression			D/t	Not ap	plicable	88 <i>e</i> ²
NOTES 1 Elements 2 $\varepsilon = (250 / 3)$ 3 Webs sha taken as cli element, <i>d</i> i 4 Different favourable o 5 The stress $r_1 = r_2$	which exceed s f_{r}) ^{1/2} . II be checked fi ear distance be s the depth of ti elements of a classification. ratio r_1 and r_2 : Actual average Design comp Design comp	emi-comp or shear 1 tween la ne web, <i>L</i> cross-se are define axial stre pressive stal axial stre	bact limits are to be ta buckling in accordan teral supports or bet 0 is the outer diameter ction can be in diff ad as: ss (negative if tensile stress of web alone ss (negative if tensile tress of overll section	aken as of slender ce with 8.4.2 wh ween lateral sup r of the element (, erent classes. In <u>)</u>	r cross-section. en $d/t > 67\varepsilon$, where port and free edge see Fig. 2, 3.7.3 an n such cases the s	c, b is the width o e, as appropriate), d 3.7.4). section is classifie	f the element (may be <i>t</i> is the thickness of ed based on the least

Figure 4.2: Classification of a section

	KL/r									Yield	Stress, <i>f</i> y	(MPa)								
	*	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
	10	182	191	200	213	218	227	236	255	273	291	309	327	345	364	382	409	436	464	491
	20	182	191	200	208	217	226	235	252	270	287	305	322	339	357	374	400	425	451	476
	30	178	186	195	203	212	220	229	245	262	279	295	311	328	344	360	384	408	431	454
	40	173	181	189	197	205	213	221	237	253	268	283	298	313	328	342	363	384	405	425
	50	168	176	183	191	198	205	213	227	241	255	268	281	294	306	318	336	352	368	383
	60	162	169	175	182	189	195	202	214	226	237	248	258	268	278	286	299	310	320	329
	70	154	160	166	171	177	182	188	197	207	215	223	230	237	243	249	256	263	268	274
	80	144	149	154	158	163	167	171	178	184	190	195	199	204	207	210	215	219	222	225
	90	133	137	140	143	146	149	152	157	161	164	168	170	173	175	177	179	182	184	185
	100	120	123	125	128	130	132	133	136	139	141	143	145	146	148	149	151	152	153	154
	110	107	109	111	112	114	115	116	118	120	121	123	124	125	126	127	128	129	129	130
	120	95.5	96.7	97.9	98.9	100	101	101	103	104	105	106	107	107	108	109	109	110	110	111
	130	84.6	85.5	86.3	87	87.7	88.3	88.8	89.8	90.6	91.3	92.0	92.5	93.0	93.5	93.9	94.4	94.9	95.3	95.7
	140	75.2	75.8	76.4	76.9	77.4	77.8	78.2	78.9	79.5	80.0	80.5	80.9	81.3	81.6	81.9	82.3	82.6	83.0	83.2
1	150	67.0	67.4	67.9	68.2	68.6	68.9	69.2	69.7	70.2	70.6	70.9	71.2	71.5	71.8	72.0	72.3	72.6	72.9	73.1
	160	59.9	60.3	60.6	60.9	61.1	61.4	61.6	62.0	62.4	62.7	62.9	63.2	63.4	63.6	63.8	64.0	64.3	64.5	64.6
	170	53.8	54.1	54.3	54.6	54.8	55.0	55.1	55.5	55.7	56.0	56.2	56.4	56.6	56.7	56.9	57.1	57.3	57.4	57.6
	180	48.6	48.8	49.0	49.2	49.3	49.5	49.6	49.9	50.1	50.3	50.5	50.6	50.8	50.9	51.0	51.2	51.3	51.5	51.6
	190	44.0	44.2	44.3	44.5	44.6	44.7	44.9	45.1	45.3	45.4	45.6	45.7	45.8	45.9	46.0	46.2	46.3	46.4	46.5
	200	40.0	40.2	40.3	40.4	40.5	40.7	40.7	40.9	41.1	41.2	41.3	41.4	41.5	41.6	41.7	41.8	41.9	42.0	42.1
	210	36.6	36.7	36.8	36.9	37.0	37.1	37.2	37.3	37.4	37.6	37.7	37.8	37.8	37.9	38.0	38.1	38.2	38.3	38.3
	220	33.5	33.6	33.7	33.8	33.9	34.0	34.0	34.2	34.3	34.4	34.5	34.5	34.6	34.7	34.7	34.8	34.9	35.0	35.0
	230	30.8	30.9	31.0	31.1	31.2	31.2	31.3	31.4	31.5	31.6	31.6	31.7	31.8	31.8	31.9	31.9	32.0	32.1	32.1
	240	28.5	28.5	28.6	28.7	28.7	28.8	28.8	28.9	29.0	29.1	29.1	29.2	29.3	29.3	29.4	29.4	29.5	29.5	29.6
L	250	26.3	26.4	26.5	26.5	26.6	26.6	26.7	26.7	26.8	26.9	26.9	27.0	27.0	27.1	27.1	27.2	27.2	27.3	27.3

Figure 4.3: Design Compressive $Stress(f_{cd})$ for Buckling Class A

KL/r									Yield	Stress, f,	(MPa)								
+	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	182	191	200	209	218	227	236	255	273	291	309	327	345	364	382	409	436	464	491
20	182	190	199	208	217	225	234	251	268	285	302	319	336	353	369	394	419	443	468
30	175	183	192	200	208	216	224	240	256	271	287	302	318	333	348	370	392	414	435
40	168	176	183	191	198	206	213	228	242	256	270	283	297	310	323	342	360	378	395
50	161	167	174	181	188	194	201	214	226	238	250	261	272	283	293	308	322	335	347
60	152	158	164	170	176	181	187	197	207	217	226	235	243	251	259	269	279	287	295
70	142	147	152	157	162	166	171	179	187	194	201	207	213	218	223	230	236	241	246
80	131	135	139	143	147	150	154	160	165	170	175	179	183	186	190	194	198	201	204
90	120	123	126	129	131	134	136	141	144	148	151	154	156	159	161	163	166	168	170
100	108	110	112	114	116	118	120	123	126	128	130	132	134	135	137	139	140	142	143
110	96.5	98.3	100	101	103	104	105	107	109	111	112	114	115	116	117	118	119	121	121
120	86.2	87.5	88.6	89.7	90.7	91.7	92.5	94.1	95.4	96.6	97.7	98.6	100	100	101	102	103	104	104
130	76.9	77.8	78.7	79.5	80.3	81.0	81.6	82.7	83.7	84.6	85.4	86.1	86.8	87.3	87.9	88.6	89.2	89.8	90.3
140	68.7	69.4	70.1	70.7	71.3	71.8	72.3	73.1	73.9	74.6	75.2	75.7	76.2	76.6	77.1	77.6	78.1	78.5	78.9
150	61.6	62.1	62.6	63.1	63.6	64.0	64.3	65.0	65.6	66.1	66.6	67.0	67.4	67.7	68.1	68.5	68.9	69.2	69.5
160	55.4	55.8	56.2	56.6	56.9	57.3	57.5	58.1	58.5	59.0	59.3	59.7	60.0	60.3	60.5	60.9	61.2	61.5	61.7
170	50.0	50.3	50.7	51.0	51.2	51.5	51.7	52.2	52.5	52.9	53.2	53.5	53.7	53.9	54.1	54.4	54.7	54.9	55.1
180	45.3	45.6	45.9	46.1	46.3	46.5	46.7	47.1	47.4	47.7	47.9	48.1	48.3	48.5	48.7	48.9	49.2	49.3	49.5
190	41.2	41.5	41.7	41.9	42.1	42.2	42.4	42.7	42.9	43.2	43.4	43.6	43.7	43.9	44.0	44.2	44.4	44.6	44.7
200	37.6	37.8	38.0	38.2	38.3	38.5	38.6	38.9	39.1	39.3	39.5	39.6	39.8	39.9	40.0	40.2	40.3	40.5	40.6
210	34.5	34.7	34.8	35.0	35.1	35.2	35.3	35.5	35.7	35.9	36.0	36.2	36.3	36.4	36.5	36.6	36.8	36.9	37.0
220	31.7	31.9	32.0	32.1	32.2	32.3	32.4	32.6	32.8	32.9	33.0	33.1	33.2	33.3	33.4	33.6	33.7	33.8	33.9
230	29.2	29.4	29.5	29.6	29.7	29.8	29.9	30.0	30.1	30.3	30.4	30.5	30.6	30.7	30.7	30.8	30.9	31.0	31.1
240	27.1	27.2	27.3	27.3	27.4	27.5	27.6	27.7	27.8	27.9	28.0	28.1	28.2	28.3	28.3	28.4	28.5	28.6	28.7
250	25.1	25.2	25.3	25.3	25.4	25.5	25.6	25.7	25.8	25.9	26.0	26.0	26.1	26.2	26.2	26.3	26.4	26.5	26.5

Figure 4.4: Design Compressive $Stress(f_{cd})$ for Buckling Class B

K∐r									Yield	Stress, f	(MPa)								
· ·	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	182	191	200	209	218	227	236	255	273	291	309	327	345	364	382	409	436	464	491
20	182	190	199	207	216	224	233	250	266	283	299	316	332	348	364	388	412	435	458
30	172	180	188	196	204	211	219	234	249	264	278	293	307	321	335	355	376	395	413
40	163	170	177	184	191	198	205	218	231	244	256	268	280	292	304	320	337	352	367
50	153	159	165	172	178	183	189	201	212	222	232	242	252	261	270	282	295	306	31
60	142	148	153	158	163	168	173	182	191	199	207	215	222	228	235	244	252	260	26
70	131	136	140	144	148	152	156	163	170	176	182	187	192	197	202	208	213	218	22
80	120	123	127	130	133	136	139	145	149	154	158	162	165	169	172	176	180	183	18
90	108	111	114	116	119	121	123	127	131	134	137	140	142	144	146	149	152	154	15
100	97.5	100	102	104	105	107	109	112	114	116	119	120	122	124	125	127	129	131	13
110	87.3	89.0	90.5	92.0	93.3	94.6	95.7	97.9	100	102	103	104	106	107	108	110	111	112	113
120	78.2	79,4	80.6	81.7	82.7	83.7	84.6	86.2	87.6	88.9	90.1	91.1	92.1	93.0	93.8	94.9	95.9	96.8	9
130	70.0	71.0	71.9	72.8	73.5	74.3	75.0	76.2	77.3	78.3	79.2	80.0	80.7	81.4	82.0	82.9	83.6	84.3	84
140	62.9	63.6	64.4	65.0	65.6	66.2	66.7	67.7	68.6	69.3	70.0	70.7	71.2	71.8	72.3	72.9	73.5	74.1	74
150	56.6	57.2	57.8	58.3	58.8	59.2	59.7	60.4	61.1	61.7	62.3	62.8	63.3	63.7	64.1	64.6	65.1	65.5	65
160	51.1	51.6	52.1	52.5	52.9	53.3	53.6	54.2	54.8	55.3	55.7	56.1	56.5	56.9	57.2	57.6	58.0	58.4	58
170	46.4	46.8	47.1	47.5	47.8	48.1	48.4	48.9	49.3	49.8	50.1	50.5	50.8	51.1	51.3	51.7	52.0	52.3	52
180	42.2	42.5	42.8	43.1	43.4	43.6	43.9	44.3	44.7	45.0	45.3	45.6	45.8	46.1	46.3	46.6	46.9	47.1	47
190	38.5	38.8	59.0	39.3	39.5	39.7	39.9	40.3	40.6	40.9	41.1	41.4	41.6	41.8	42.0	42.2	42.5	42.7	42
200	35.3	35.5	35.7	35.9	36.1	36.3	36.5	36.8	37.0	37.3	37.5	37.7	37.9	38.1	38.2	38.4	38.6	38.8	39
210	32.4	32.6	32.8	33.0	33.1	33.3	33.4	33.7	33.9	34.1	34.3	34.5	34.7	34.8	34.9	35.1	35.3	35.4	35
220	29.9	30.1	30.2	30.4	30.5	30.6	30.8	31.0	31.2	31.4	31.5	31.7	31.8	31.9	32.1	32.2	32.4	32.5	32
230	27.6	27.8	27.9	28.0	28.2	28.3	28.4	28.6	28.8	28.9	29.1	29.2	29.3	29.4	29.5	29.7	29.8	29.9	30
240	25.6	25.7	25.9	26.0	26.1	26.2	26.3	26.4	26.6	26.7	26.9	27.0	27.1	27.2	27.3	27.4	27.5	27.6	27
250	23.8	23.9	24.0	24.1	24.2	24.3	24.4	24.5	24.7	24.8	24.9	25.0	25.1	25.2	25.3	25.4	25.5	25.6	25

Figure 4.5: Design Compressive $Stress(f_{cd})$ for Buckling Class C

KL/r									Yield	Stress, f,	(MPa)								
1 +	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	182	191	200	209	218	227	236	255	273	291	309	327	345	364	382	409	436	464	491
20	182	190	198	206	215	223	231	247	263	279	294	310	325	340	355	377	399	421	442
30	168	175	182	189	197	204	211	224	238	251	264	277	290	302	314	332	350	367	384
40	154	161	167	173	179	185	191	203	214	225	235	246	256	266	275	289	303	316	328
50	141	147	152	157	162	167	172	182	191	199	208	216	224	231	238	249	258	268	277
60	129	133	137	142	146	150	154	161	168	175	182	188	193	199	204	212	219	225	231
70	116	120	124	127	130	133	137	142	148	153	158	162	167	171	174	180	184	189	193
80	105	108	111	113	116	118	121	125	129	133	137	140	143	146	149	153	156	159	162
90	94.1	96.4	98.6	101	103	105	107	110	113	116	119	121	123	126	128	130	133	135	137
100	84.3	86.2	87.9	89.6	91.1	92.6	94.0	96.7	99.1	101	103	105	107	108	110	112	114	116	117
110	75.6	77.0	78.4	79.7	81.0	82.1	83.2	85.3	87.1	88.8	90.4	91.8	93.1	94.4	95.5	97.1	98.5	100	101
120	67.8	69.0	70.1	71.1	72.1	73.0	73.9	75.5	77.0	78.3	79.5	80.6	81.7	82.6	83.5	84,7	85.8	86.9	87.8
130	61.0	62.0	62.8	63.7	64.5	65.2	65.9	67.2	68.3	69.4	70.4	71.2	72.1	72.8	73.5	74.5	75.4	76.2	76.9
140	55.0	55.8	56.5	57.2	57.8	58.4	59.0	60.0	61.0	61.8	62.6	63.3	64.0	64.6	65.2	66.0	66.7	67.3	67.9
150	49.8	50.4	51.0	51.6	52.1	52.6	53.1	53.9	54.7	55.4	56.0	56.6	57.2	57.7	58.1	58.8	59.3	59.9	60.4
160	45.2	45.7	46.2	46.7	47,1	47.5	47.9	48.6	49.3	49.9	50.4	50.9	51.3	51.7	52.1	52.7	53.1	53.6	54.0
170	41.2	41.6	42.1	42.4	42.8	43.1	43.5	44.1	44.6	45.1	45.5	45.9	46.3	46.7	47.0	47.4	47.8	48.2	48.6
180	37.7	38.0	38.4	38.7	39.0	39.3	39.6	40.1	40.5	41.0	41.3	41.7	42.0	42.3	42.6	43.0	43.3	43.6	43.9
190	34.5	34.9	35.2	35.4	35.7	35.9	36.2	36.6	37.0	37.4	37.7	38.0	38.2	38.5	38.7	39.1	39.4	39.6	39.9
200	31.8	32.0	32.3	32.5	32.8	33.0	33.2	33.6	33.9	34.2	34.5	34.7	35.0	35.2	35.4	35.7	35.9	36.2	36.4
210	29.3	29.6	29.8	30.0	30.2	30.4	30.5	30.9	31.2	31.4	31.7	31.9	32.1	32.3	32.5	32.7	32.9	33.1	33.3
220	27.1	27.3	27.5	27.7	27.9	28.0	28.2	28.5	28.7	29.0	29.2	29.4	29.6	29.7	29.9	30.1	30.3	30.5	30.6
230	25.2	25.3	25.5	25.7	25.8	26.0	26.1	26.4	26.6	26.8	27.0	27.1	27.3	27.5	27.6	27.8	27.9	28.1	28.2
240	23.4	23.6	23.7	23.9	24.0	24.1	24.2	24.5	24.7	24.8	25.0	25.2	25.3	25.4	25.5	25.7	25.9	26.0	26.1
250	21.8	22.0	22.1	22.2	22.3	22.5	22.6	22.8	22.9	23.1	23.2	23.4	23.5	23.6	23.7	23.9	24.0	24.1	24.2

Figure 4.6: Design Compressive $Stress(f_{cd})$ for Buckling Class D

KL/r									Yiel	d Stress, f	(MPa)								
4	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
20	1.000	0.999	0.998	0.997	0.995	0.994	0.993	0.993	0.990	0.988	0.986	0.984	0.983	0.981	0.979	0.977	0.975	0.972	0.970
30	0.977	0.975	0.974	0.972	0.970	0.969	0.967	0.965	0.961	0.957	0.954	0.951	0.948	0.946	0.943	0.938	0.934	0.930	0.925
40	0.952	0.949	0.947	0.944	0.942	0.939	0.937	0.934	0.926	0.921	0.916	0.911	0.906	0.901	0.896	0.888	0.881	0.873	0.865
50	0.923	0.919	0.915	0.911	0.908	0.904	0.900	0.896	0.884	0.876	0.867	0.859	0.851	0.842	0.834	0.820	0.807	0.794	0.780
60	0.888	0.883	0.877	0.871	0.865	0.859	0.853	0.847	0.828	0.816	0.803	0.790	0.777	0.763	0.750	0.730	0.710	0.690	0.671
70	0.846	0.837	0.829	0.820	0.811	0.803	0.794	0.785	0.758	0.740	0.722	0.703	0.686	0.668	0.651	0.626	0.602	0.579	0.557
80	0.793	0.781	0.769	0.757	0.746	0.734	0.722	0.710	0.675	0.653	0.631	0.610	0.589	0.570	0.551	0.525	0.501	0.478	0.458
90	0.730	0.715	0.700	0.685	0.671	0.657	0.643	0.628	0.590	0.565	0.542	0.520	0.500	0.481	0.463	0.439	0.416	0.396	0.377
100	0.661	0.644	0.627	0.610	0.594	0.579	0.564	0.549	0.510	0.486	0.463	0.443	0.424	0.407	0.390	0.368	0.348	0.331	0.314
110	0.591	0.573	0.555	0.538	0.522	0.507	0.492	0.478	0.440	0.418	0.397	0.379	0.362	0.346	0.332	0.312	0.295	0.279	0.265
120	0.525	0.507	0.489	0.473	0.458	0.443	0.429	0.416	0.381	0.361	0.343	0.326	0.311	0.297	0.284	0.267	0.252	0.238	0.226
130	0.466	0.448	0.432	0.416	0.402	0.388	0.376	0.364	0.332	0.314	0.298	0.283	0.269	0.257	0.246	0.231	0.217	0.206	0.195
140	0.413	0.397	0.382	0.368	0.355	0.342	0.331	0.320	0.291	0.275	0.260	0.247	0.235	0.224	0.214	0.201	0.189	0.179	0.170
150	0.368	0.353	0.339	0.326	0.314	0.303	0.293	0.283	0.257	0.243	0.229	0.218	0.207	0.197	0.189	0.177	0.166	0.157	0.149
160_	0.329	0.316	0.303	0.291	0.280	0.270	0.261	0.252	0.229	0.215	0.204	0.193	0.184	0.175	0.167	0.157	0.147	0.139	0.132
170	0.296	0.283	0.272	0.261	0.251	0.242	0.233	0.225	0.204	0.192	0.182	0.172	0.164	0.156	0.149	0.140	0.131	0.124	0.117
180	0.267	0.255	0.245	0.235	0.226	0.218	0.210	0.203	0.184	0.173	0.163	0.155	0.147	0.140	0.134	0.125	0.118	0.111	0.105
190	0.242	0.231	0.222	0.213	0.205	0.197	0.190	0.183	0.166	0.156	0.147	0.140	0.133	0.126	0.121	0.113	0.106	0.100	0.095
200	0.220	0.210	0.202	0.193	0.186	0.179	0.172	0.166	0.151	0.142	0.134	0.127	0.120	0.115	0.109	0.102	0.096	0.091	0.086
210	0.201	0.192	0.184	0.177	0.170	0.163	0.157	0.152	0.137	0.129	0.122	0.115	0.110	0.104	0.099	0.093	0.087	0.083	0.078
220	0.184	0.176	0.169	0.162	0.155	0.149	0.144	0.139	0.126	0.118	0.111	0.106	0.100	0.095	0.091	0.085	0.080	0.075	0.071
230	0.170	0.162	0.155	0.149	0.143	0.137	0.132	0.128	0.115	0.108	0.102	0.097	0.092	0.088	0.083	0.078	0.073	0.069	0.065
240	0.157	0.149	0.143	0.137	0.132	0.127	0.122	0.118	0.106	0.100	0.094	0.089	0.085	0.081	0.077	0.072	0.068	0.064	0.060
250	0.145	0.138	0.132	0.127	0.122	0.117	0.113	0.109	0.098	0.092	0.087	0.082	0.078	0.074	0.071	0.066	0.062	0.059	0.056

Figure 4.7: Stress reduction factor(χ_{LT}) for Buckling Class A

KL/r									Yield	Stress, f,	(MPa)								
÷	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
20	1.000	0.998	0.996	0.994	0.993	0.991	0.990	0.986	0.983	0.981	0.978	0.975	0.972	0.970	0.967	0.963	0.960	0.956	0.953
30	0.963	0.961	0.958	0.955	0.953	0.950	0.948	0.943	0.938	0.933	0.929	0.924	0.920	0.915	0.911	0.904	0.898	0.892	0.886
40	0.925	0.921	0.917	0.913	0.909	0.906	0.902	0.895	0.887	0.880	0.873	0.866	0.859	0.852	0.845	0.835	0.825	0.815	0.805
50	0.883	0.877	0.872	0.866	0.861	0.855	0.850	0.839	0.829	0.818	0.808	0.798	0.787	0.777	0.767	0.752	0.737	0.722	0.708
60	0.835	0.827	0.820	0.812	0.805	0.798	0.790	0.775	0.761	0.746	0.732	0.718	0.704	0.691	0.677	0.657	0.638	0.620	0,602
70	0.781	0.771	0.761	0.751	0.742	0.732	0.722	0.703	0.685	0.667	0.649	0.632	0.615	0.599	0.584	0.561	0.540	0.520	9,502
80	0.721	0.709	0.697	0.685	0.673	0.661	0.650	0.627	0.606	0.585	0.566	0.547	0.529	0.512	0.496	0.474	0.453	0.434	0.416
90	0.657	0.643	0.629	0.615	0.602	0.589	0.576	0.552	0.530	0.508	0.488	0.470	0.452	0.436	0.421	0.400	0.380	0.363	0.346
100	0.593	0.577	0.562	0.548	0.534	0.520	0.507	0.483	0.461	0.440	0.421	0.403	0.387	0.372	0.358	0.339	0.321	0.306	0.291
110	0.531	0.515	0.500	0.485	0.471	0.458	0.445	0.422	0.401	0.381	0.364	0.348	0.333	0.319	0.306	0.289	0.274	0.260	0.247
120	0.474	0.458	0.443	0.429	0.416	0.403	0.391	0.370	0.350	0.332	0.316	0.301	0.288	0.276	0.265	0.249	0.236	0.223	0.212
130	0.423	0.408	0.394	0.380	0.368	0.356	0.345	0.325	0.307	0.291	0.276	0.263	0.251	0.240	0.230	0.217	0.204	0.194	0.184
140	0.378	0.364	0.350	0.338	0.327	0.316	0.306	0.287	0.271	0.256	0.243	0.231	0.221	0.211	0.202	0.190	0.179	0.169	0.161
150	0.339	0.325	0.313	0.302	0.291	0.281	0.272	0.255	0.241	0.227	0.215	0.205	0.195	0.186	0.178	0.167	0.158	0.149	0.142
160	0.305	0.292	0.281	0.271	0.261	0.252	0.243	0.228	0.215	0.203	0.192	0.182	0.174	0.166	0.158	0.149	0.140	0.133	0.126
170	0.275	0.264	0.253	0.244	0.235	0.227	0.219	0.205	0.193	0.182	0.172	0.163	0.155	0.148	0.142	0.133	0.125	0.118	0.112
180	0.249	0.239	0.229	0.220	0.212	0.205	0,198	0.185	0.174	0.164	0.155	0.147	0.140	0.133	0.128	0.120	0.113	0.106	0.101
190	0.227	0.217	0.208	0.200	0.193	0.186	0.179	0.168	0.157	0.148	0.140	0.133	0.127	0.121	0.115	0.108	0.102	0.096	0.091
200	0.207	0.198	0.190	0.183	0.176	0.169	0.163	0.153	0.143	0.135	0.128	0.121	0.115	0.110	0.105	0.098	0.092	0.087	0.083
210	0.190	0.182	0.174	0.167	0.161	0.155	0.149	0.140	0.131	0.123	0.117	0.110	0.105	0.100	0.096	0.090	0.084	0.080	0.075
220	0.174	0.167	0.160	0.154	0.148	0.142	0.137	0.128	0.120	0.113	0.107	0.101	0.096	0.092	0.088	0.082	0.077	0.073	0.069
230	0.161	0.154	0.147	0.141	0.136	0.131	0.126	0.118	0.111	0.104	0.098	0.093	0.088	0.084	0.080	0.075	0.071	0.067	0.063
240	0.149	0.142	0.136	0.131	0.126	0.121	0.117	0.109	0.102	0.096	0.091	0.086	0.082	0.078	0.074	0.070	0.065	0.062	0.058
250	0.138	0.132	0.126	0.121	0.117	0.112	0.108	0.101	0.095	0.089	0.084	0.080	0.076	0.072	0.069	0.064	0.060	0.057	0.054

Figure 4.8: Stress reduction factor(χ_{LT}) for Buckling Class B

KL/r									Yield	Stress, f,	(MPa)								
Ļ	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
20	0.999	0.997	0.994	0.992	0.990	0.987	0.985	0.981	0.976	0.972	0.968	0.964	0.961	0.957	0.953	0.948	0.943	0.938	0.933
30	0.948	0.944	0.941	0.937	0.933	0.930	0.926	0.920	0.913	0.907	0.901	0.895	0.889	0.883	0.877	0.869	0.861	0.853	0.845
40	0.896	0.891	0.885	0.880	0.875	0.870	0.866	0.856	0.847	0.838	0.829	0.820	0.812	0.803	0.795	0.783	0.771	0.760	0.748
50	0.841	0.834	0.827	0.821	0.814	0.807	0.801	0.788	0.776	0.763	0.752	0.740	0.729	0.717	0.706	0.690	0.675	0.660	0.645
60	0.783	0.774	0.765	0.757	0.748	0.740	0.732	0.716	0.700	0.685	0.670	0.656	0.642	0.628	0.615	0.596	0.578	0.561	0.544
70	0.722	0.711	0.700	0.690	0.680	0.670	0.660	0.641	0.623	0.605	0.588	0.572	0.557	0.542	0.528	0.508	0.489	0.471	0.454
80	0.659	0.646	0.634	0.622	0.611	0.600	0.589	0.568	0.548	0.529	0.512	0.495	0.479	0.464	0.450	0.430	0.412	0.395	0.379
90	0.596	0.583	0.569	0.557	0.544	0.533	0.521	0.499	0.479	0.460	0.443	0.426	0.411	0.397	0.383	0.365	0.348	0.332	0.318
100	0.536	0.522	0.508	0.495	0.483	0.471	0.459	0.438	0.418	0.400	0.384	0.368	0.354	0.341	0.328	0.311	0.296	0.282	0.269
110	0.480	0.466	0.453	0.440	0.428	0.416	0.405	0.385	0.366	0.349	0.333	0.319	0.306	0.294	0.283	0.268	0.254	0.242	0.230
120	0.430	0.416	0.403	0.391	0.379	0.368	0.358	0.339	0.321	0.306	0.291	0.278	0.267	0.256	0.246	0.232	0.220	0.209	0.199
130	0.385	0.372	0.360	0.348	0.337	0.327	0.317	0.299	0.283	0.269	0.256	0.244	0.234	0.224	0.215	0.203	0.192	0.182	0.173
140	0.346	0.333	0.322	0.311	0.301	0.291	0.282	0.266	0.251	0.238	0.227	0.216	0.206	0.197	0.189	0.178	0.168	0.160	0.152
150	0.311	0.300	0.289	0.279	0.269	0.261	0.252	0.237	0.224	0.212	0.202	0.192	0.183	0.175	0.168	0.158	0.149	0.141	0.134
160	0.281	0.270	0.260	0.251	0.242	0.234	0.227	0.213	0.201	0.190	0.180	0.172	0.164	0.156	0.150	0.141	0.133	0.126	0.120
170	0.255	0.245	0.236	0.227	0.219	0.212	0.205	0.192	0.181	0.171	0.162	0.154	0.147	0.140	0.134	0.126	0.119	0.113	0.107
180	0.232	0.223	0.214	0.206	0.199	0.192	0.186	0.174	0.164	0.155	0.147	0.139	0.133	0.127	0.121	0.114	0.107	0.102	0.096
190	0.212	0.203	0.195	0.188	0.181	0.175	0.169	0.158	0.149	0.140	0.133	0.126	0.120	0.115	0.110	0.103	0.097	0.092	0.087
200	0.194	0.186	0.179	0.172	0.166	0.160	0.154	0.144	0.136	0.128	0.121	0.115	0.110	0.105	0.100	0.094	0.089	0.084	0.079
210	0.178	0.171	0.164	0.158	0.152	0.146	0.141	0.132	0.124	0.117	0.111	0.105	0.100	0.096	0.092	0.086	0.081	0.076	0.072
220	0.164	0.157	0.151	0.145	0.140	0.135	0.130	0.122	0.114	0.108	0.102	0.097	0.092	0.088	0.084	0.079	0.074	0.070	0.066
230	0.152	0.145	0.140	0.134	0.129	0.124	0.120	0.112	0.105	0.099	0.094	0.089	0.085	0.081	0.077	0.073	0.068	0.065	0.061
240	0.141	0.135	0.129	0.124	0.120	0.115	0.111	0.104	0.098	0.092	0.087	0.082	0.078	0.075	0.071	0.067	0.063	0.060	0.056
250	0.131	0.125	0.120	0.115	0.111	0.107	0.103	0.096	0.090	0.085	0.081	0.076	0.073	0.069	0.066	0.062	0.058	0.055	0.052

Figure 4.9: Stress reduction factor(χ_{LT}) for Buckling Class C

KL/r									Yield	Stress, <i>f</i> ,	(MPa)								
+	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
20	0.999	0.995	0.991	0.988	0.984	0.980	0.977	0.970	0.964	0.958	0.952	0.946	0.940	0.935	0.930	0.922	0.915	0.908	0.901
30	0.922	0.916	0.911	0.906	0.901	0.896	0.891	0.881	0.872	0.863	0.855	0.847	0.839	0.831	0.823	0.813	0.802	0.792	0.782
40	0.848	0.841	0.834	0.828	0.821	0.815	0.808	0.796	0.784	0.773	0.762	0.751	0.741	0.731	0.721	0.707	0.694	0.681	0.668
50	0.777	0.768	0.760	0.752	0.744	0.736	0.728	0.713	0.699	0.685	0.672	0.659	0.647	0.635	0.624	0.608	0.592	0.577	0.563
60	0.707	0.697	0.687	0.678	0.668	0.659	0.651	0.634	0.617	0.602	0.587	0.573	0.560	0.547	0.535	0.517	0.501	0.486	0.471
70	0.640	0.629	0.618	0.607	0.597	0.587	0.578	0.559	0.542	0.526	0.510	0.496	0.482	0.469	0.456	0.439	0.423	0.408	0.394
80	0.576	0.564	0.553	0.542	0.531	0.521	0.511	0.492	0.474	0.458	0.442	0.428	0.414	0.402	0.390	0.373	0.358	0.344	0.330
90	0.517	0.505	0.493	0.482	0.471	0.461	0.451	0.432	0.415	0.399	0.384	0.370	0.357	0.345	0.334	0.319	0.304	0.292	0.280
100	0.464	0.451	0.440	0.428	0.418	0.408	0.398	0.380	0.363	0.348	0.334	0.321	0.309	0.298	0.288	0.274	0.261	0.249	0.239
110	0.416	0.404	0.392	0.381	0.371	0.361	0.352	0.335	0.319	0.305	0.292	0.281	0.270	0.259	0.250	0.237	0.226	0.215	0.206
120	0.373	0.361	0.350	0.340	0.330	0.321	0.313	0.297	0.282	0.269	0.257	0.246	0.236	0.227	0.219	0.207	0.197	0.187	0.179
130	0.336	0.325	0.314	0.305	0.295	0.287	0.279	0.264	0.251	0.239	0.228	0.218	0.209	0.200	0.193	0.182	0.173	0.164	0.157
140	0.303	0.292	0.283	0.274	0.265	0.257	0.250	0.236	0.224	0.213	0.203	0.194	0.185	0.178	0.171	0.161	0.153	0.145	0.138
150	0.274	0.264	0.255	0.247	0.239	0.231	0.224	0.212	0.201	0.190	0.181	0.173	0.165	0.159	0.152	0.144	0.136	0.129	0.123
160	0.249	0.240	0.231	0.223	0.216	0.209	0.203	0.191	0.181	0.171	0.163	0.155	0.149	0.142	0.137	0.129	0.122	0.116	0.110
170	0.227	0.218	0.210	0.203	0.196	0.190	0.184	0.173	0.164	0.155	0.147	0.140	0.134	0.128	0.123	0.116	0.110	0.104	0.099
180	0.207	0.199	0.192	0.185	0.179	0.173	0.167	0.157	0.149	0.141	0.134	0.127	0.122	0.116	0.111	0.105	0.099	0.094	0.089
190	0.190	0.183	0.176	0.169	0.164	0.158	0.153	0.144	0.136	0.128	0.122	0.116	0.111	0.106	0.101	0.095	0.090	0.085	0.081
200	0.175	0.168	0.162	0.156	0.150	0.145	0.140	0.132	0.124	0.118	0.112	0.106	0.101	0.097	0.093	0.087	0.082	0.078	0.074
210	0.161	0.155	0.149	0.143	0.138	0.134	0.129	0.121	0.114	0.108	0.102	0.097	0.093	0.089	0.085	0.080	0.075	0.071	0.068
220	0.149	0.143	0.138	0.133	0.128	0.123	0.119	0.112	0.105	0.100	0.094	0.090	0.086	0.082	0.078	0.074	0.069	0.066	0.062
230	0.138	0.133	0.128	0.123	0.118	0.114	0.110	0.104	0.097	0.092	0.087	0.083	0.079	0.075	0.072	0.068	0.064	0.061	0.058
240	0.129	0.123	0.119	0.114	0.110	0.106	0.103	0.096	0.090	0.085	0.081	0.077	0.073	0.070	0.067	0.063	0.059	0.056	0.053
250	0.120	0.115	0.110	0.106	0.102	0.099	0.095	0.089	0.084	0.079	0.075	0.071	0.068	0.065	0.062	0.058	0.055	0.052	0.049

Figure 4.10: Stress reduction factor(χ_{LT}) for Buckling Class D

	T														
KL/r								h/t _r							
	8	10	12	14	16	18	20	25	30	35	40	50	60	80	100
10	22 551.2	22 255.1	22 092.6	21 994.1	21 929.8	21 885.7	21 854.0	21 805.4	21 779.0	21 763.1	21 752.7	21 740.5	21 733.8	21 727.2	21 724.2
20	6 220.5	5 947.9	5 794.5	5 700.0	5 637.8	5 594.7	5 563.8	5 515.8	5 489.7	5 473.8	5 463.5	5 451.4	5 444.8	5 438.2	5 435.1
30	3 149.3	2 905.9	2 764.6	2 676.0	2 616.7	2 575.3	2 545.3	2 498.5	2 472.8	2 457.1	2 447.0	2 434.9	2 428.3	2 421.7	2 418.6
40	2 036.1	1 821.2	1 693.0	1 610.8	1 555.1	1 515.8	1 487.0	1 441.7	1 416.5	1 401.1	1 391.0	1 379.0	1 372.5	1 365.9	1 362.8
50	1 492.9	1 303.2	1 187.3	1 111.8	1 059.9	1 022.7	995.3	951.7	927.1	912.0	902.0	890.2	883.7	877.1	874.2
60	1 178.0	1 009.5	905.0	835.6	787.4	752.4	726.4	684.6	660.9	646.1	636.4	624.7	618.2	611.7	608.7
70	973.9	823.2	728.5	664.8	620.1	587.4	562.9	522.9	500.0	485.5	476.0	464.4	458.0	451.7	448.7
80	831.3	695.4	609.2	550.7	509.1	478.4	455.3	417.2	395.1	381.2	371.8	360.5	354.1	347.7	344.7
90	725.9	602.6	523.6	469.5	430.9	402.2	380.4	344.2	322.9	309.3	300.2	289.1	282.8	276.5	273.5
100	644.7	532.0	459.3	409.3	373.2	346.4	325.8	291.4	270.9	257.7	248.8	237.9	231.8	225.5	222.5
110	580.4	476.6	409.3	362.9	329.2	303.9	284.5	251.8	232.1	219.3	210.8	200.1	194.0	187.8	184.8
120	527.9	431.9	369.5	326.0	294.5	270.7	252.3	221.2	202.4	190.1	181.6	171.2	165.2	159.1	156.2
130	484.3	395.0	336.8	296.1	266.5	244.1	226.7	197,1	179.0	167.1	1,58.8	148.6	142.8	136.7	133.9
140	447.6	364.2	309.5	271.5	243.4	222.3	205.8	177.5	160.2	148.7	140.7	130.8	125.0	119.0	116.2
150	416.0	337.8	286.6	250.6	224.2	204.2	188.4	161.5	144.8	133.7	126.0	116.3	110.6	104.7	101.9
160	388.7	315.2	266.8	232.8	207.8	188.8	173.9	148.2	132.0	121.3	113.9	104.3	98.8	93.0	90.1
170	364.9	295.4	249.6	217.5	193.7	175.6	161.4	136.7	121.3	111.0	103.6	94.4	89.0	83.2	80.4
180	343.9	278.0	234.6	204.1	181.5	164.2	150.6	127.1	112.2	102.2	95.2	86.0	80.7	75.0	72.3
190	325.2	262.6	221.3	192.3	170.7	154.2	141.2	118.6	104.3	94.6	87.8	79.0	73.7	68.1	65.3
200	308.3	248.8	209.6	181.7	161.2	145.4	133.0	111.3	97.5	88.1	81.4	72.8	67.8	62.2	59.5
210	293.3	236.5	198.9	172.4	152.7	137.6	125.7	104.8	91.5	82.4	75.9	67.5	62.6	57.1	54.5
220	279.5	225.3	189.3	163.9	145.1	130.6	119.1	99.0	86.2	77.4	71.2	62.9	58.1	52.7	50.1
230	267.1	215.2	180.7	156.3	138.2	124.3	113.3	93.9	81.5	72.9	66.9	58.9	54.1	48.8	46.2
240	255.8	205.8	172.8	149.4	132.0	118.6	108.0	89.3	77.2	69.0	63.1	55.3	50.6	45.4	42.8
250	245.3	197.3	165.6	143.0	126.3	113.4	103.2	85.1	73.5	65.5	59.7	52.1	47.5	42.4	39.8
260	235.7	189.5	159.0	137.3	121.1	108.7	98.8	81.3	70.1	62.3	56.7	49.3	44.8	39.7	37.2
270	226.8	182.3	152.8	131.9	116.3	104.3	94.7	77.9	67.0	59.4	53.9	46.8	42.2	37.3	34.8
280	218.6	175.7	147.2	126.9	111.9	100.2	91.1	74.7	64.1	56.8	51.5	44.4	40.0	35.2	32.7
290	210.9	169.4	141.9	122.3	107.8	96.6	87.7	71.8	61.5	54.3	49.2	42.2	38.1	33.2	30.8
300	203.8	163.7	137.1	118.1	104.1	93.2	84.5	69.1	59.1	52.1	47.1	40.4	36.2	31.5	29.0

Figure 4.11: Critical stress f_{crb}

										<i>f</i> ,									
Jer,b	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10 000	181.8	190.9	200	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
8 000	181.8	190.9	200	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
6 000	181.8	190.9	200	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
4 000	181.8	190.9	200	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
2 000	181.8	190.9	200	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
1 000	169.1	179.5	186	196.5	202.9	209.1	219.8	229.1	245.5	261.8	275.1	291.3	300.5	323.6	332.2	355.9	370.9	384.8	412.4
900	169.1	179.5	186	194.5	200.7	204.5	215.1	231.6	242.7	258.9	272	291.3	300.5	316.4	328.4	339.5	366.5	380.2	392.7
800	167.3	177.5	184	190.3	196.4	206.8	212.7	224	240	258.9	268.9	284.7	293.6	301.8	324.5	335.5	349.1	370.9	387.8
700	163.6	171.8	182	188.2	192	202.3	208	226.5	237.3	250.2	259.6	278.2	286.7	294.5	305.5	327.3	340.4	352.4	363.3
600	161.8	168	176	181.9	194.2	197.7	203.3	218.9	226.4	244.4	253.5	261.8	276.4	287.3	294	306.8	322.9	333.8	343.6
500	161.8	166.1	172	179.8	185.5	188.6	200.9	208.7	218.2	232.7	244.2	248.7	259.1	269.1	274.9	286.4	296.7	301.4	314.2
450	158.2	164.2	168	173.5	183.3	186.4	191.5	206.2	215.5	224	231.8	242.2	248.7	258.2	263.5	274.1	279.3	292.1	294.5
400	150.9	162.3	166	169.4	174.5	184.1	186.7	196	204.5	215.3	222.5	229.1	238.4	243.6	248.2	257.7	261.8	264.3	274.9
350	147.3	152.7	162	165.2	170.2	172.7	179.6	188.4	193.6	200.7	210.2	212.7	221.1	225.5	229.1	233.2	240	241.1	245.5
300	143.6	147	152	154.7	161.5	163.6	167.8	175.6	182.7	186.2	194.7	196.4	196.9	203.6	206.2	212.7	213.8	217.9	220.9
250	134.5	137.5	142	144.3	148.4	152.3	153.6	160.4	163.6	165.8	170	173.5	179.6	178.2	179.5	184.1	183.3	185.5	191.5
200	121.8	124.1	126	129.6	130.9	134.1	134.7	137.5	141.8	142.5	145.3	147.3	148.5	149.1	152.7	151.4	152.7	153	157.1
150	101.8	103.1	104	104.5	106.9	106.8	108.7	109.5	111.8	113.5	114.4	114.5	117.5	116.4	118.4	118.6	117.8	120.5	122.7
100	74.5	76.4	76	77.4	76.4	77.3	78	78.9	79.1	78.5	80.4	81.8	79.5	80	80.2	81.8	82.9	83.5	83.5
90	67.3	68.7	70	69	69.8	70.5	70.9	71.3	70.9	72.7	74.2	72	72.5	72.7	72.5	73.6	74.2	74.2	73.6
80	61.8	63	62	62.7	63.3	63.6	63.8	63.6	65.5	64	64.9	65.5	65.6	65.5	64.9	65.5	65.5	64.9	68.7
70	54.5	55.4	56	56.5	56.7	56.8	56.7	56	57.3	58.2	58.7	58.9	58.7	58.2	57.3	57.3	56.7	60.3	58.9
60	47.3	47.7	48	48.1	48	50	49.6	48.4	49.1	49.5	49.5	49.1	48.4	50.9	49.6	49.1	52.4	51	49.1
50	40	40.1	40	41.8	41.5	40.9	40.2	40.7	40.9	40.7	43.3	42.5	41.5	43.6	42	40.9	43.6	41.7	44.2
40	32.7	32.5	32	33.5	32.7	34.1	33.1	33.1	32.7	34.9	34	32.7	34.5	32.7	34.4	32.7	34.9	32.5	34.4
30	25.5	24.8	26	25.1	26.2	25	26	25.5	24.5	26.2	24.7	26.2	24.2	25.5	26.7	24.5	26.2	27.8	24.5
20	16.4	17.2	18	16.7	17.5	18.2	16.5	17.8	16.4	17.5	18.5	16.4	17.3	18.2	19.1	16.4	17.5	18.5	19.6
10	9.1	9.5	8	8.4	8.7	9.1	9.5	7.6	8.2	8.7	9.3	9.8	10.4	7.3	7.6	8.2	8.7	9.3	9.8

Figure 4.12: Design Bending Compressive Stress Corresponding Lateral Buckling for 0.21

										<i>f</i> ,									
Jerab	200	210	220	230	240	250	260	280	300	320	340	360	380	400	420	450	480	510	540
10 000	181.8	190.9	200.0	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
8 000	181.8	190.9	200.0	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
6 000	181.8	190.9	200.0	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
4 000	181.8	190.9	200.0	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
2 000	181.8	190.9	200.0	209.1	218.2	227.3	236.4	254.5	272.7	290.9	309.1	327.3	345.5	363.6	381.8	409.1	436.4	463.6	490.9
1 000	160.0	164.2	170.0	179.8	185.5	190.9	196.2	211.3	220.9	235.6	247.3	255.3	266.0	280	290.2	302.7	318.5	329.2	343.6
900	154.5	164.2	170.0	173.5	183.3	188.6	193.8	203.6	218.2	226.9	238.0	252.0	262.5	269.1	282.5	290.5	305.5	319.9	333.8
800	152.7	158.5	168.0	171.5	176.7	181.8	191.5	201.1	210.0	224.0	234.9	242.2	252.2	258.2	271.1	282.3	296.7	306	319.1
700	150.9	154.6	160.0	169.4	172.4	177.3	182.0	196	207.3	215.3	222.5	232.4	238.4	247.3	259.6	270	279.3	292.1	304.4
600	145.5	150.8	154.0	161.0	168.0	172.7	177.3	188.4	193.6	203.6	213.3	222.5	228	236.4	244.4	253.6	261.8	273.5	274.9
500	140.0	145.1	150.0	154.7	159.3	161.4	167.8	175.6	185.5	192	200.9	206.2	214.2	218.2	225.3	229.1	240	245.7	250.4
450	134.5	141.3	144.0	148.5	152.7	156.8	160.7	168	177.3	186.2	191.6	196.4	203.8	210.9	213.8	220.9	231.3	236.5	235.6
400	129.1	135.5	138.0	142.2	148.4	150	153.6	162.9	169.1	174.5	182.4	183.3	193.5	196.4	202.4	208.6	209.5	217.9	220.9
350	123.6	129.8	132.0	135.9	139.6	143.2	148.9	152.7	158.2	162.9	170	173.5	176.2	181.8	183.3	192.3	196.4	199.4	206.2
300	118.2	122.2	126.0	129.6	130.9	134.1	137.1	142.5	147.3	154.2	157.6	157.1	162.4	167.3	168	175.9	178.9	180.8	181.6
250	109.1	112.6	116.0	117.1	120.0	122.7	125.3	129.8	130.9	136.7	139.1	140.7	145.1	149.1	148.9	151.4	152.7	157.6	157.1
200	98.2	101.2	102.0	104.5	104.7	109.1	108.7	112	117.3	119.3	120.5	121.1	124.4	127.3	126	130.9	130.9	129.8	132.5
150	83.6	84.0	86.0	87.8	89.5	88.6	89.8	91.6	95.5	96.0	95.8	98.2	100.2	101.8	103.1	102.3	104.7	106.6	103.1
100	63.6	63.0	64.0	64.8	65.5	65.9	66.2	68.7	68.2	69.8	71.1	68.7	69.1	72.7	72.5	73.6	74.2	74.2	73.6
90	58.2	57.3	60.0	58.5	61.1	61.4	61.5	61.1	62.7	64.0	64.9	65.5	65.6	65.5	64.9	65.5	65.5	64.9	68.7
80	52.7	53.5	54.0	54.4	54.5	54.5	54.4	56	57.3	58.2	58.7	58.9	58.7	58.2	61.1	61.4	61.1	60.3	58.9
70	47.3	47.7	48.0	48.1	48.0	50.0	49.6	50.9	49.1	49.5	52.5	52.4	51.8	50.9	53.5	53.2	52.4	55.6	54.0
60	41.8	42.0	42.0	41.8	43.6	43.2	42.5	43.3	43.6	43.6	43.3	45.8	44.9	47.3	45.8	45.0	48.0	46.4	49.1
50	36.4	36.3	36.0	35.5	37.1	36.4	37.8	38.2	38.2	37.8	37.1	39.3	38.0	40.0	38.2	40.9	39.3	37.1	39.3
40	29.1	30.5	30.0	29.3	30.5	29.5	30.7	30.5	30.0	32.0	30.9	32.7	31.1	32.7	30.5	32.7	30.5	32.5	34.4
30	23.6	22.9	22.0	23.0	24.0	22.7	23.6	22.9	24.5	23.3	24.7	22.9	24.2	25.5	22.9	24.5	26.2	23.2	24.5
20	16.4	15.3	16.0	16.7	15.3	15.9	16.5	15.3	16.4	17.5	15.5	16.4	17.3	18.2	15.3	16.4	17.5	18.5	14.7
10	9.1	7.6	80	84	87	91	95	7.6	8.2	87	93	9.8	69	73	7.6	82	87	9.2	0.9

Figure 4.13: Design Bending Compressive Stress Corresponding Lateral Buckling for 0.49

Sl No.	Definition	Partial Safe	ty Factor
i) ii) iii)	Resistance, governed by yielding, γ_{m0} Resistance of member to buckling, γ_{m0} Resistance, governed by ultimate stress, γ_{m1}	1.10 1.10 1.2)) 5
iv)	Resistance of connection:	Shop Fabrications	Field Fabrications
	 a) Bolts-Friction Type, γ_{mf} b) Bolts-Bearing Type, γ_{mb} c) Rivets, γ_{mr} d) Welds, γ_{mw} 	1.25 1.25 1.25 1.25 1.25	1.25 1.25 1.25 1.50

Figure 4.14: Partial Safety Factor for Materials

Bending 1	Moment Diagram	Rar	nge	Cmy, Cmz, CmLT					
	(1)	(2)	Uniform Loading (3)	Concentrated Load (4)				
м	ψM	-1 ≤ 0	$\nu \leq 1$	$0.6 + 0.4 \ \psi \ge 0.4$					
		$0 \le a_n \le 1$	$-1 \le \psi \le 1$	$0.2 + 0.8 \alpha_s \ge 0.4$	$0.2 + 0.8 \alpha_s \ge 0.4$				
	ψM_h	$-1 \leq \alpha_1 \leq 0$	$0 \le \psi \le 1$	$0.1 - 0.8 \alpha_s \ge 0.4$	$-0.8 a_s \ge 0.4$				
			$-1 \le \psi \le 0$	$0.1(1-\psi) - 0.8 \ \alpha_s \ge 0.4$	$0.2(1-\psi) - 0.8 a_s \ge 0.4$				
d_h d_h M_s M_s M_s		$0 \le a_s \le 1$	$-1 \le \psi \le 1$	0.095 - 0.05 a _{in}	0.90 + 0.10 a _h				
		$-1 \le a_* \le 0$	$0 \le \psi \le 1$	0.095 + 0.05 a _{la}	0.90 + 0.10 a _h				
			$-1 \leq \psi \leq 0$	$0.95 \pm 0.05 \alpha_h (1\pm 2 \psi)$	$0.90 + 0.05 \alpha_{\rm h} (1+2 \psi)$				
or members with sway bu	ckling mode, the equival	lent uniform moment factor $C_{my} = C$	mz = 0.9.						
my, Cmz, CmLT shall be obt	ained according to the be	nding moment diagram between the	relevant braced points						
Moment factor	Bending axis	Points braced in direction		P.P					
Cmy	Z-Z	у-у	****						
Cmz	у-у	2-2		2 B					
CmLT	2-2	Z-2							
			My for Cmy						
			Mz for CmLT	for C _{mz}					

Figure 4.15: Equivalent Uniform Moment Factor

Table 17 Constants α_1 and α_2

(Clause 9.3.1.1)

SI No.	Section	α_{i}	α_2
(1)	(2)	(3)	(4)
i)	I and channel	5 <i>n</i> ≥ 1	2
ii)	Circular tubes	2	2
iii)	Rectangular	1.66/	1.66/
	tubes	$(1-1.13n^2) \le 6$	$(1-1.13n^2) \le 6$
iv)	Solid rectangles	$1.73 + 1.8n^3$	$1.73 + 1.8 n^3$
NOT	$E - n = N/N_{d}.$		

Figure 4.16: Constants $\alpha_1 and \alpha_2$

9.3.1.2 For plastic and compact sections without bolts holes, the following approximations may be used for evaluating M_{ndy} and M_{ndz} :

a) Plates

$$M_{\rm nd} = M_{\rm d} \left(1 - n^2\right)$$

b) Welded I or H sections

$$M_{ndy} = M_{dy} \left[1 - \left(\frac{n-a}{1-a}\right)^2 \right] \le M_{dy} \text{ where } n \ge a$$

$$M_{\rm ndz} = M_{\rm dz} (1-n) / (1-0.5a) \le M_{\rm dz}$$

where

 $n = N/N_{\rm d}$ and $a = (A - 2 bt_{\rm f})/A \le 0.5$

c) For standard I or H sections

for $n \le 0.2$ $M_{ndy} = M_{dy}$ for n > 0.2 $M_{ndy} = 1.56 M_{dy} (1 - n) (n + 0.6)$ $M_{ndz} = 1.11 M_{dz} (1 - n) \le M_{dz}$

d) For rectangular hollow sections and welded box sections

When the section is symmetric about both axes and without bolt holes

$$M_{ndy} = M_{dy} (1 - n) / (1 - 0.5a_{f}) \le M_{dy}$$

$$M_{ndz} = M_{dz} (1 - n) / (1 - 0.5a_{w}) \le M_{dz}$$

where

$$a_{w} = (A - 2 b t_{f}) / A \le 0.5$$

 $a_{f} = (A - 2 h t_{w}) / A \le 0.5$

e) Circular hollow tubes without bolt holes

$$M_{\rm nd} = 1.04 \ M_{\rm d} \ (1 - n^{1.7}) \le M_{\rm d}$$

)

Figure 4.17: For plastic and compact sections without bolts holes

Reference

- Is 800-2007
- N Subramanium
- Design of Steel Structures-S.S.Bhavikatti