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» Mass Conservation (2D):
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Recap: Governing Laws for Fluid Dynamics & Discretisation

» Mass Conservation (2D):
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Continuity: ﬂ + i = 0
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» Momentum Conservation (2D):
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Division of contents for CFD & OpenFOAM Implementation
—

Part | : Governing Laws -
and PDE Format

Part 1ll : OpenFOAM
Implementation &
Illustration




Vector format of Navier Stokes Equation

—

P> Since algorithms are implemented from vector notation-based equations, the
N-S can be written as:

V-7 =0 (1)
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Vector format of Navier Stokes Equation
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P> Since algorithms are implemented from vector notation-based equations, the
N-S can be written as:
V-4 =0 (1)
opd
ot
where, m&u represents mass-flux and velocity vector respectively
V is the divergence vector, given by
0. 0~ -

+V-(mMd)=—-Vp+puAd (2)




Vector format of Navier Stokes Equation

—

P> Since algorithms are implemented from vector notation-based equations, the
N-S can be written as:

V-4 =0 (1)
opd
ot

where, m&u represents mass-flux and velocity vector respectively
V is the divergence vector, given by

+V-(mMd)=—-Vp+puAd (2)

0. 0~ -
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and A is the Laplacian, given by
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Differences in various flow conditions

—

» Before solving a problem, it is important to understand flow behavior so that
correct algorithm is selected :
» Consider 2 variations for a lid-driven-cavity problem as given below
Moving Wall

u=U;
v = 0; dP/dy = 0

No Slip Wall No Slip Wall
u=v=0;
dP/dx = 0 L
L
No Slip Wall
Case 1
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Differences in various flow conditions

—

» Before solving a problem, it is important to understand flow behavior so that
correct algorithm is selected :

» Consider 2 variations for a lid-driven-cavity problem as given below

No Slip Wall
u=v=0;
dP/dx = 0

Moving Wall
u=U;
v = 0; dP/dy = 0

L

No Slip Wall
Case 1

No Slip Wall
u=v=0;
dP/dx = 0

Oscillating Wall

u = U cos(wt) ;
v = 0; dP/dy = 0

L

No Slip Wall
Case 2

No Slip Wall



Differences in various flow conditions

—

» Let us see differences in the flow behavior in 2 cases presented previously:

t=n+1 t=n+2

Steady
(Casel) >
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Differences in various flow conditions 7

—

» Let us see differences in the flow behavior in 2 cases presented previously:

t=n

Steady
(Casel) >

Transient
(Casell) >
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Differences in various flow conditions

e
—

( / / Lamina of flow
Laminar > \ 1 ( with successively
)

| \ , ) higher velocities e
M\\\\\\\ / / / // { //X Stationary plate
By Kraaiennest, CC l‘a\i—s,; 3.0,

i
https://commons.wikimedia.or
g/w/index.php?curid=4115921

Moving plate

By R NaveGeorgia State University -
HyperPhysicshhttp://hyperphysics.phy-
astr.gsu.edu/hbase/pfric.html
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Differences in various flow conditions

—

|
Laminar > //4\// \\l}
\\\\\\ 111

By Kraaiennest, CC BY-SA 3.0,
https://commons.wikimedia.or
g/w/index.php?curid=4115921
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Turbulent >

https://commons.wikimedia.or
g/w/index.php?curid=3082535

Lamina of flow
with successively
higher velocities

Moving plate

Fluid =
Stationary plate
By R NaveGeorgia State University -

HyperPhysicshhttp://hyperphysics.phy-
astr.gsu.edu/hbase/pfric.html
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Incompressible Flow Solvers in OpenFOAM
—

» Let us look at important Incompressible flow solvers in OpenFOAM and their
capabilities :

Steady/Transient | Laminar/Turbulent Viscosity

icoFoam Transient Laminar Newtonian
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Incompressible Flow Solvers in OpenFOAM

—

» Let us look at important Incompressible flow solvers in OpenFOAM and their

capabilities :
Steady/Transient | Laminar/Turbulent Viscosity
icoFoam Transient Laminar Newtonian
nonNewtonianlcoFoam Transient Laminar non-Newtonian
simpleFoam Steady Turbulent non-Newtonian
pisoFoam Transient Turbulent non-Newtonian

» What if problem is Laminar, Steady State 7

» 2 options : (1) modify simpleFoam for Laminar flow (2) run icoFoam only (for

longer time)
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icoFoam Implementation

—

10

» Location of the solver to check implementation :
/opt/openfoam7/applications/solvers/incompressible /icoFoam
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icoFoam Implementation 10

—

» Location of the solver to check implementation :
/opt/openfoam7/applications/solvers/incompressible /icoFoam
» Contents : 2 files & 1 folder :
1. Make folder : compiling the solver

2. createFields.c — variable declaration sections
3. icoFoam.c — definitions of equations to be solved
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icoFoam Implementation 10

—

» Location of the solver to check implementation :
/opt/openfoam7/applications/solvers/incompressible /icoFoam
» Contents : 2 files & 1 folder :

1. Make folder : compiling the solver
2. createFields.c — variable declaration sections
3. icoFoam.c — definitions of equations to be solved

fvVectorMatrix UEqn

au . 252 fvm: :ddt (U)
UEqn =7+ V- (UU) —vP*U gy + fum::div(phi, U)
- fvm::laplacian(nu, U)
)i
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icoFoam Implementation 11

—

» Location of the solver to check implementation :
/opt/openfoam7/applications/solvers/incompressible/icoFoam
» Contents : 2 files & 1 folder :

1. Make folder : compiling the solver
2. createFields.c — variable declaration sections
3. icoFoam.c — definitions of equations to be solved

if (piso.momentumPredictor())
UEqn = —Vp {
(Obtain U) ” ) solve(UEqn == -fvc::grad(p));
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icoFoam Implementation 12

III..I........I---——-

» Location of the solver to check implementation :
/opt/openfoam?7 /applications/solvers/incompressible /icoFoam
» Contents : 2 files & 1 folder :
1. Make folder : compiling the solver
2. createFields.c — variable declaration sections
3. icoFoam.c — definitions of equations to be solved
fvScalarMatrix pEqn

2.0t _ P s (
Vop At V-u - fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
)i
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simpleFoam Implementation

13

» Location of the solver to check implementation :
/opt/openfoam?/applications/solvers/incompressible /simpleFoam
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simpleFoam Implementation

13

» Location of the solver to check implementation :
/opt/openfoam?/applications/solvers/incompressible /simpleFoam
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simpleFoam Implementation 13

» Location of the solver to check implementation :
/opt/openfoam?/applications/solvers/incompressible /simpleFoam

tmp<fvVectorMatrix> tUEqn
(

fvm::div(phi, U)
UEq"(?;)_)) , + MRF.DDt(U)
:V-(UU)+ MRF +u'u + turbulence->divDevReff(U)
P > -- _
—veu =S5 fvoptions (U)

)i
fvVectorMatrix& UEqn = tUEgn.ref();
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simpleFoam Implementation 14

» Location of the solver to check implementation :
/opt/openfoam?/applications/solvers/incompressible /simpleFoam

if (simple.momentumPredictor())

{
UEqn = —|7p - solve(UEgqn == -fvc::grad(p));
(Obtain U)

fvOptions.correct(U);
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simpleFoam Implementation 15

» Location of the solver to check implementation :
/opt/openfoam?/applications/solvers/incompressible /simpleFoam

- : - fvScalarMatrix pEqgn

2, n+l L e - (
Vp - AtV u fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)
)i
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simpleFoam Implementation 15

» Location of the solver to check implementation :
/opt/openfoam?/applications/solvers/incompressible /simpleFoam

- : - fvScalarMatrix pEqgn

2, n+l L e (
Vi = AtV u » fvm: :laplacian(rAtU(), p) == fvc::div(phiHbyA)
)i

» To modify a solver : (1) make a copy of existing solver (2) change code (UEqn
mostly ) (3) compile using ‘wmake’ command

e ducation



Oscillating LDC Problem Statement
P——

16

» Let us consider a simple oscillating Lid-Driven cavity problem [2].




Oscillating LDC Problem Statement
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16

» Let us consider a simple oscillating Lid-Driven cavity problem [2].

» The domain consists of oscillating wall at the top of fluid-filled cavity as
shown in Figure.

No Slip Wall
u=v=0;
dP/dx =0

Oscillating Wall

u = U cos(wt) ;
v =0; dP/dy = 0

L

No Slip Wall
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Oscillating LDC Problem Statement 16
—

» Let us consider a simple oscillating Lid-Driven cavity problem [2].

» The domain consists of oscillating wall at the top of fluid-filled cavity as
shown in Figure.

Oscillating Wall
u = U cos(wt) ; | 4 Since the ﬂOW 1S periodic,

v = 0; dP/dy = 0 ; .
icoFoam solver is used.

No Slip Wall No Slip Wall
u=v=0;
dP/dx =0 L

L




Oscillating LDC Problem Statement 16
—

» Let us consider a simple oscillating Lid-Driven cavity problem [2].

» The domain consists of oscillating wall at the top of fluid-filled cavity as
shown in Figure.

Oscillating Wall
u = U cos(wt) ; » Since the flow is periodic,

v = 0; dP/dy = 0 ; .
icoFoam solver is used.

No Slip Wall No Slip Wall » Domain Size (L) =1
apa=0 || L » Frequency (w) = 27/6
» Maximum Velocity (U) =1
L » Grid Size : 100 x 100
No Slip Wall » Re = % = 100
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Steps to Execute the Solver
—

17

» Go to the Folder: /opt/openfoam?7/tutorials/incompressible/icoFoam/cavity
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Steps to Execute the Solver
—

17

» Go to the Folder: /opt/openfoam?7/tutorials/incompressible/icoFoam/cavity

» Copy ‘cavity’ tutorials to a local drive of your choice.
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Steps to Execute the Solver

17

—

» Go to the Folder: /opt/openfoam?7/tutorials/incompressible/icoFoam/cavity
» Copy ‘cavity’ tutorials to a local drive of your choice.

» We have to specify time-varying boundary conditions. open ‘0/U’ file. Add
the following in moving wall
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Steps to Execute the Solver

—

17

» Go to the Folder: /opt/openfoam?7/tutorials/incompressible/icoFoam/cavity

» Copy ‘cavity’ tutorials to a local drive of your choice.

» We have to specify time-varying boundary conditions. open ‘0/U’ file. Add
the following in moving wall

movingWall

type
value

name

code
#{

#};

codedFixedValue;
uniform (1.0 0 0);

parabolicVelocity;
const vectorField& Cf = patch().Cf();
const scalar t = this->db().time().value();

vectorField& field = *this;
const scalar Umax = 1.0;

forAll(Cf, facel)
{

field[faceI] = vector( Umax*cos(2.0%3.142*%t/6.0) , 0, 0);

£
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Execution Steps and Contours

IIIIIIIII.I......IIIIIIII-—-—-

18

» In the ‘system/blockMeshDict’ file, change number of grid points as follows:

blocks
(

);

hex (01 23456 7) (60 60 1) simpleGrading (1 1 1)
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Execution Steps and Contours

IIIIIIIII.I......IIIIIIII-—-—-

18

» In the ‘system/blockMeshDict’ file, change number of grid points as follows:

blocks
(

);

» In the ‘system/controlDict’ file, enter ‘endTime’ as 18.0 & ‘delT’ as 0.001.

hex (01 23456 7) (60 60 1) simpleGrading (1 1 1)
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Execution Steps and Contours

IIIIIIIII.I......IIIIIIII-—-—-

18

» In the ‘system/blockMeshDict’ file, change number of grid points as follows:

blocks
(

)i
» In the ‘system/controlDict’ file, enter ‘endTime’ as 18.0 & ‘delT’ as 0.001.

» In the terminal, enter ‘blockMesh’ (to generate mesh) and then ‘icoFoam’ (to
run the algorithm).

hex (01 23456 7) (60 60 1) simpleGrading (1 1 1)
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Execution Steps and Contours

IIIIIIIII.I.....IIIIIIIII-—-—-

18

» In the ‘system/blockMeshDict’ file, change number of grid points as follows:
blocks
(

hex (01 23456 7) (60 60 1) simpleGrading (1 1 1)
)i

» In the ‘system/controlDict’ file, enter ‘endTime’ as 18.0 & ‘delT’ as 0.001.

» In the terminal, enter ‘blockMesh’ (to generate mesh) and then ‘icoFoam’ (to
run the algorithm).

» The contours at t/T = 0.1, 0.25 look as follows :

— 075
07
06s
06
0ss

HHH LT

(]
e tt e
u c at.i

Ele 1N

d o



Validation of Results 19
——

» In order to check whether correct results are obtained or not, X-velocity along
vertical centerline at X = 0.5 is compared with literature [2] at different
time-instants.

t=0.5T, Re = 100

t=1.0T, Re = 100

12

06 ® Mendu_Das

W Mendu Das
Present_Numerical 2 iy

—— Present_Numerical
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Problems to Try Out ... !
—

20

» To understand the implementation of grid generation and boundary
conditions, following examples can be tried out:

» Flow inside a Channel:

No Slip Wall
u=v=0;

dPIdi =0

outlet

Inlet
o —— du/dx =
u-1,.v-0 dv/dx = 0;
; =
dP/dx = 0 B0
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Problems to Try Out ... !
—

» To understand the implementation of grid generation and boundary
conditions, following examples can be tried out:

» Flow inside a Channel:
No Slip Wall

u=v=0;
dP/di =0
outlet
_nlet_ duldx =
u-1,.v-0 dv/dx = 0;
dP/dx = 0 B0
No Slip Wall
» Flow across square cylinder:
Free Slip Surface
du/dy=v=0;
dP/dy = 0
—
—
Ly No Slip Wall outlet
inlet [ SR =lor duldx =
u=1v=0; —» dP/dy = 0 dvidx = 0;
dP/dx = 0 :: P=0

Free Slip Surface
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Summary

—

1. Vector Format of Conservation Equations

21
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2. Steady & Unsteady State, Laminar & Turbulent flow
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Summary

—

21

1. Vector Format of Conservation Equations

2. Steady & Unsteady State, Laminar & Turbulent flow

3. Comparison of Algorithms

4. OpenFOAM implementation of Oscillating LDC test-case
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Summary 21

—

ARl

Vector Format of Conservation Equations

Steady & Unsteady State, Laminar & Turbulent flow
Comparison of Algorithms

OpenFOAM implementation of Oscillating LDC test-case
Sample problems to try
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Summary 21

—

Vector Format of Conservation Equations

Steady & Unsteady State, Laminar & Turbulent flow
Comparison of Algorithms

OpenFOAM implementation of Oscillating LDC test-case
Sample problems to try

ARl

In the next lecture, we shall look into the problems involving complex geometry.
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Thank you for listening!

Sumant R Morab
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