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I Framework : Eulerian and Lagrangian

I Conservation Equations in Fluid Dynamics

I Mass Conservation (2D):

I Momentum Conservation (2D):



Recap : Governing Laws for Fluid Dynamics 3

I Framework : Eulerian and Lagrangian

I Conservation Equations in Fluid Dynamics

I Mass Conservation (2D):

I Momentum Conservation (2D):



Recap : Governing Laws for Fluid Dynamics 3

I Framework : Eulerian and Lagrangian

I Conservation Equations in Fluid Dynamics

I Mass Conservation (2D):

I Momentum Conservation (2D):



Recap : Governing Laws for Fluid Dynamics 3

I Framework : Eulerian and Lagrangian

I Conservation Equations in Fluid Dynamics

I Mass Conservation (2D):

I Momentum Conservation (2D):



Division of contents for CFD & OpenFOAM Implementation 4



Notations used for Finite Volume Discretisation 5

I The following figure indicates a 1D Control Volume (C.V) with notations

P → Centroid of C.V
W,E → Centroid of neighbouring
C.V’s
w,e → Faces of C.V

I Gauss divergence theorem is extensively used in Finite-Volume-Method
(FVM) to obtain discrete equation∫ ∫

V

∫
(
−→
∇ ·
−→
F )dV =

∫ ∫
A

(
−→
F · −→n )dA (1)
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Discretisation of Mass Conservation 6

I The governing equation for mass conservation in 1D domain can be written as

∂(ρux)

∂x
= 0 (2)

where ‘ux’ denotes velocity in ‘x’ direction.

I Upon Finite Volume (FV) integration, the discrete equation can be obtained
as follows: ∫ ∫

V

∫
(
−→
∇ · ρ−→u )dV = 0

=⇒
∫ ∫

A
(ρ−→u · −→n )dA = 0

=⇒ (ρux)e − (ρux)w = 0
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Discretisation of X-Momentum Equation 7

I The governing equation for X-momentum conservation in 1D domain can be
written as

∂(ρux)

∂t
+ ux

∂(ρux)

∂x
= −∂p

∂x
+

∂

∂x

(
µ
∂ux
∂x

)
(3)

I Upon Finite Volume (FV) integration, the discrete equation can be obtained
as follows (after using Gauss-divergence theorem for 2nd, 3rd & 4th term):

ρ
(
ut+∆t
x − utx

)
∆t

∆xP +

∫ ∫
A
ux(ρux)dA = −

∫ ∫
A
pdA+

∫ ∫
A
µ
∂ux
∂x

dA

=⇒
ρ
(
ut+∆t
x − utx

)
∆t

+ (uxρux)e − (uxρux)w = −(pe − pw) + (µ
∂ux
∂x

)e − (µ
∂ux
∂x

)w
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Properties of a Discretisation Scheme 8

I Any discretisation scheme which we select to obtain value or gradient of
variable at face of CV consists of 3 properties

1. Conservativeness:
(flux out of a C.V) = (flux in of neighbouring
C.V)

2. Boundedness:
values of variables @ face should be intermediate
i.e, for upstream flow ; φW ≤ φw ≤ φP

3. Transportiveness:
Calculation of variable value/gradient should
consider effect of flow into account
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Common Discretisation Schemes for Advection 9

1. Central Difference/Linear Interpolation : (Does not satisfy transportiveness)

φe =
∆VPφE + ∆VEφP

∆VP + ∆VE
;φw =

∆VPφW + ∆VWφP
∆VP + ∆VW

(4)

2. First Order Upwind (FOU) :

φf = φU (5)

3. Second Order Upwind (SOU) :

φf = 1.5φU − 0.5φUU (6)
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Challenges faced in Incompressible CFD 10

I Non-Linearity of Advection Term:
Advection term consists of ux(ρux) term, the equation becomes non-linear
Solution : velocity in mass-flux is time-lagged (i.e, in ρux, utx is used)

I Non-availability of Explicit Pressure Equation:
Equations : (1) Continuity : Involves velocity only
(2) Momentum : Used to calculate the velocity

I Pressure-Velocity Decoupling:

∂p

∂x
= (pe − pw)/∆xP

∂p

∂x
=

((PE + PP )− (PW + PP ))

(2∆xP )
= 0
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SIMPLE Algorithm 11

In order to address the
issue of non-availability
of specific pressure
equation in conservation
laws, a predictor
corrector approach
named as
‘Semi-Implicit
Method for Pressure
Linked Equations’
(SIMPLE) is employed
as given below
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Staggered Grid Arrangement 12

I In order to avoid pressure-velocity decoupling, a staggered grid arrangement is
employed as shown :

∂p
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= (pe − pw)/∆xP

∂p

∂x
=

((PE)− (PP ))
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Summary 13

1. Control Volume Notations

2. Discretisation Procedure for Mass Conservation

3. Discretisation Procedure for Momentum Conservation

4. Properties of discretisation scheme

5. Challenges faced and solution techniques employed.

In the next lecture, we shall look into the implementation details in OpenFOAM
code and see a sample example.
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Thank you for listening!

Sumant R Morab


	Outline
	Control Volume Notations
	Mass Conservation
	Momentum Conservation
	Discretisation Scheme
	Challenges and Solution

