CFED using OpenFOAM
Lecture 6: Essential Flow Governing Laws & OpenFOAM
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Recap : Governing Laws for Fluid Dynamics 3

» Framework : Eulerian and Lagrangian
» Conservation Equations in Fluid Dynamics

» Mass Conservation (2D):

o Ou | ow
Continuity: 2% + 2° 0
Tdr o dy
» Momentum Conservation (2D):
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Division of contents for CFD & OpenFOAM Implementation
—

Part | : Governing Laws ‘
and PDE Format

Part lll : OpenFOAM ‘
Implementation &

Hlustration
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Notations used for Finite Volume Discretisation

—

» The following figure indicates a 1D Control Volume (C.V) with notations
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» Gauss divergence theorem is extensively used in Finite-Volume-Method
(FVM) to obtain discrete equation




Notations used for Finite Volume Discretisation

—

» The following figure indicates a 1D Control Volume (C.V) with notations

IA ox,, ‘IA ox, ‘l
w 'l é P — Centroid of C.V
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» Gauss divergence theorem is extensively used in Finite-Volume-Method
(FVM) to obtain discrete equation

//V/(V?)dvz//A(?.ﬁ)dA (1)
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Discretisation of Mass Conservation

—

» The governing equation for mass conservation in 1D domain can be written as

9(puaz)
Ox

where ‘u,’ denotes velocity in ‘z’ direction.

=0 (2)
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where ‘u,’ denotes velocity in ‘z’ direction.

» Upon Finite Volume (FV) integration, the discrete equation can be obtained
as follows:
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Discretisation of Mass Conservation

—

» The governing equation for mass conservation in 1D domain can be written as

pug)
oxr 0 2)

where ‘u,’ denotes velocity in ‘z’ direction.

» Upon Finite Volume (FV) integration, the discrete equation can be obtained

as follows:
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Discretisation of X-Momentum Equation

—

» The governing equation for X-momentum conservation in 1D domain can be
written as
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Discretisation of X-Momentum Equation

—

» The governing equation for X-momentum conservation in 1D domain can be
written as

Jd(puy) J(puy) op 0 Ouy
= 3
ot " Ter ~ or o \Mou )
» Upon Finite Volume (FV) integration, the discrete equation can be obtained
as follows (after using Gauss-divergence theorem for 27¢, 37 & 4 term):
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Discretisation of X-Momentum Equation
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» The governing equation for X-momentum conservation in 1D domain can be
written as
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» Upon Finite Volume (FV) integration, the discrete equation can be obtained
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Properties of a Discretisation Scheme

—

» Any discretisation scheme which we select to obtain value or gradient of
variable at face of CV consists of 3 properties
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Properties of a Discretisation Scheme 8

—

» Any discretisation scheme which we select to obtain value or gradient of
variable at face of CV consists of 3 properties

1. Conservativeness: I_._.w_.(.pu.).é. _____ P ___
(flux out of a C.V) = (flux in of neighbouring . _'_’ o E
C.V) T w (pul, e e
2. Boundedness: E

values of variables @ face should be intermediate P e
i.e, for upstream flow ; oy < @y < Pp

3. Transportiveness:
Calculation of variable value/gradient should
consider effect of flow into account




Common Discretisation Schemes for Advection

—

1. Central Difference/Linear Interpolation : (Does not satisfy transportiveness)

_ AVpow + AViyép

_ AVpop + AVE¢P.¢ _
v AVp + AV

Pe = AVp+AVg

(4)
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Common Discretisation Schemes for Advection

—

1. Central Difference/Linear Interpolation : (Does not satisfy transportiveness)
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Common Discretisation Schemes for Advection

—

1. Central Difference/Linear Interpolation : (Does not satisfy transportiveness)

AVpor + AVipop _ AVpow + AViyop

; Ow

P = AVp + AVg T AV + AV

(4)

2. First Order Upwind (FOU) :

Flow Direction

Upstream " Downstream

o = ou
E ¢ ! o 3. Second Order Upwind (SOU) :

¢ = 1.5¢u — 0.5¢uvU
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Challenges faced in Incompressible CFD
——

10

» Non-Linearity of Advection Term:
Advection term consists of u,(pu,) term, the equation becomes non-linear
Solution : velocity in mass-flux is time-lagged (i.e, in pu,, u’ is used)
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Challenges faced in Incompressible CFD

—

10

» Non-Linearity of Advection Term:

Advection term consists of u,(pu,) term, the equation becomes non-linear
Solution : velocity in mass-flux is time-lagged (i.e, in pu,, u’ is used)

» Non-availability of Explicit Pressure Equation:

Equations : (1) Continuity : Involves velocity only
(2) Momentum : Used to calculate the velocity

» Pressure-Velocity Decoupling:

Numbers indicate pressure values

% = (pe _pw)/A'rP
dp  ((Pg+ Pp) — (Pw + Pp))

or (2Azp)

=0




SIMPLE Algorithm

—

In order to address the
issue of non-availability
of specific pressure
equation in conservation
laws, a predictor
corrector approach
named as
‘Semi-Implicit
Method for Pressure
Linked Equations’
(SIMPLE) is employed
as given below

11
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Staggered Grid Arrangement

12

» In order to avoid pressure-velocity decoupling, a staggered grid arrangement is
employed as shown :
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» In order to avoid pressure-velocity decoupling, a staggered grid arrangement is
employed as shown :

Velocity C.V
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Staggered Grid Arrangement 12

» In order to avoid pressure-velocity decoupling, a staggered grid arrangement is
employed as shown :

Velocity C.V
o wo P E op
e e gl sl
L—mm '—/- BT Jatats op _ ((Pg)—(Pp)) 4
Velocity or (Azp) - Azp
Pressure C.V @® Pressure
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Summary 13

—

Control Volume Notations
Discretisation Procedure for Mass Conservation
Discretisation Procedure for Momentum Conservation

Properties of discretisation scheme

AN I .

. Challenges faced and solution techniques employed.

In the next lecture, we shall look into the implementation details in OpenFOAM
code and see a sample example.
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Thank you for listening!

Sumant R Morab
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