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Recap : Computational Heat Conduction & Convection 3

I Governing Equation :{
∂(ρCpT )

∂t

}
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+
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)
= k
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]
(1)

{ } → Unsteady Volumetric Term
( ) → Advection due to bulk motion across surface of C.V
k[ ] → Heat conduction due to vibration/collision of molecules.

I Solution Methodology : Iterative scheme with implicit time-stepping

I Illustrative Problem : (1) Unsteady 2D heat conduction in a metallic slab and
(2) Heat convection in channel with backward-facing step
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Objective of CFD 4

I What is the main objective of CFD ?

I To replicate/produce the physical reality in a computational setup.

I Example : Consider head-on collision of 2 droplets as shown. (Goyal et al. [2])

I Physical reality achieved by solving correct physical model(s).
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Framework for Governing Laws 6

I Isothermal fluid flow bound by 2 conservation laws :
(1) Mass Conservation (Continuity)
(2) Momentum Conservation (Newton’s 2nd Law)

I There are 2 ways in which fluid motion can be tracked
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Mass Conservation 7

I Rate of increase of mass inside a C.V = Net
rate of Mass influx to C.V - Net rate of Mass
outflux from C.V. i.e,

∂Mvol.

∂t
=
mx −mx+dx

dx
+
my −my+dy

dy
(2)

Where Mvol. = M/V ol. = ρ, mx = ρu and
my = ρv

I If the flow is assumed incompressible, mass does not change inside a fixed
region of C.V; Hence

∂u

∂x
+
∂v

∂y
= 0 (3)
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Momentum Conservation - General Principle 8

I Newton’s 2nd law of motion

−→
F = m−→a (4)

I For the considered C.V, we can write

D(−→m−→u )

Dt
= Fnet = Fviscous + Fpressure (5)

1. D()/Dt = Rate of change of momentum
= rate of increase of momentum inside a C.V + net rate of momentum influx
into the C.V

2. Fviscous → Force due to shear between two layers of fluid, Fpressure →
Hydrodynamic pressure
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Momentum Conservation - X Direction 9

I For the considered C.V, we can write →
The net rate of increase of X-momentum stored
within the CV, plus the net rate of advected
X-momentum that leaves the CV must equal the
net viscous and pressure force in X-direction i.e,

I d(ρu)/dt + Net Advection outflux = Net diffusive
force in X-direction + Pressure Force in X-direction

=⇒ ∂(ρu)

∂t
+
∂au,x
∂x

+
∂au,y
∂y

=
∂σxx
∂x

+
∂σxy
∂y

(6)
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Subsidiary Laws 11

I How to convert above laws in terms of fluid velocity & pressure ?

I Similar to Fourier’s law of heat conduction, Fluid Dynamics involves use of
Newton’s stress strain relation to serve the purpose.

σxx = −p+ 2µε̇xx (8)

σyy = −p+ 2µε̇yy (9)

σxy = σyx = 2µε̇xy (10)

where ‘µ’ indicates dynamic viscosity, ε̇ indicates strain rate which can be
expressed in terms of fluid velocities as follows

ε̇xx = µ
∂u

∂x
; ε̇yy = µ

∂v

∂y
; and ε̇xy =

µ

2

(
∂v

∂x
+
∂u

∂y

)
(11)



Final Governing Equations 12

I The final governing partial differential equations for fluid dynamics can be
stated as below :
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Summary 13

1. Objective of CFD

2. Framework for Governing Laws (Eulerian & Larangian)

3. Mass Conservation

4. Momentum Conservation (X & Y direction)

5. Subsidiary Laws & final differential formulation.

In the next lecture, we shall look into the discretised form and some of the
challenges involved in solving these equations.
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Thank you for listening!

Sumant Morab
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