CFED using OpenFOAM
Lecture 4: Essential Governing Laws & OpenFOAM
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Part I : Computational Heat Convection
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Recap : Computational Heat Conduction (CHCd)

» Governing Equations :
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» Governing Equations :

ot ox?  Oy?

» Discretization : Finite Volume Methodology

apTp +awTw + agTy +b=0 (2)

» Solution Methodology : Iterative scheme with implicit time-stepping
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Recap : Computational Heat Conduction (CHCd) 3

» Governing Equations :

I(pCypT O*T  9*T
M =k| 55+ 55 (1)
ot Oox dy
» Discretization : Finite Volume Methodology
apTp +awTw + agTy +b=0 (2)

» Solution Methodology : Iterative scheme with implicit time-stepping

» Illustrative Problem : Unsteady 2D heat conduction in a metallic slab.
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Convective Heat Transfer

—

» Consider flow over bike engine as shown

Velocity
variation
of air

r
Temperature
variation
of air

Hot Block
FIGURE 1-31
Heat transfer from a hot
surface to air by convection.

Source : Cengel, Heat Transfer [2]
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Convective Heat Transfer
—

» Consider flow over bike engine as shown

variation
of air

Hot Block
FIGURE 1-31

Heat transfer from a hot
surface to air by convection.

Source : Cengel, Heat Transfer [2]

» What if bike stopped and air speed is 0 7 - pure conduction.
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Convective Heat Transfer

—

» Consider flow over bike engine as shown

Velocity
variation
of air

r
Temperature
variation
of air

Hot Block
FIGURE 1-31
Heat transfer from a hot
surface o air by convection.

Source : Cengel, Heat Transfer [2]

» What if bike stopped and air speed is 0 7 - pure conduction.

» Convection - “ Energy transfer between fluid/solid interfaces in motion due
vibration of molecules(conduction) & bulk motion of fluid(Advection) ”

r

L'A’ S
e tt e r

e d i on

ucatio



Convection - Practical Applications 5

—

1. Day and Night Breeze : The temperature of land surface is maintained due
to convection between land surface and air along with ocean surface and air as

shown
o~ warmair

Y cool sea breeze

1. Body Temperature Regulation : the
heat generated by cells tissue cells is carried
by blood which moves through arteries and o r sea cooler
veins.

» Variables Involved : Temperature + Flow
(velocities)

Source : Britannica [3]
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Energy Conservation with Convection

» Governing Law : Over a time-interval At, net amount of convected thermal
energy entering the C.V + heat generated within C.V = amount of increase of

Enthalpy(AE) stored within C.V

net,in net,in 8E
= |:Qco7i7d + Qadqt; ] + Qgen,vol = E
T I(ay + hy)
ot dx dy
_, WG T) | Ohe \ Ohy _ O4: Oty
ot ox oy oz dy

OF  0(qz + ha)

qy+dy + hy+dy

qx+dx

x+dx

I dx
q,+ hy
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Energy Conservation (Convection) - Continuous PDE Form

» Using Fourier law and advected enthalpy flux expansion, the continuous form
of energy conservation in terms of Temperature can be derived as follows :




Energy Conservation (Convection) - Continuous PDE Form

» Using Fourier law and advected enthalpy flux expansion, the continuous form
of energy conservation in terms of Temperature can be derived as follows :

oT

Qe = — % (6)
orT

qy = _kaiy (7)




Energy Conservation (Convection) - Continuous PDE Form

» Using Fourier law and advected enthalpy flux expansion, the continuous form
of energy conservation in terms of Temperature can be derived as follows :

L (6)
gy = (ZZ (7) hy = myGT = puy ST (9)




Energy Conservation (Convection) - Continuous PDE Form

» Using Fourier law and advected enthalpy flux expansion, the continuous form
of energy conservation in terms of Temperature can be derived as follows :

=k ()
=" he = meCyT = pu,CyT  (8)
qQy = —k?;; (7) hy = myCpT = pu, CyT (9)
A(pCyT)  O(pusCpT)  O(pu,CyT) | [0*°T  0°T
o T or T oy Mo T ap (10)

» Along with Temperature, flow variables need to be calculated at faces of C.V




Numerical Methodology : 1D Convection 8
—

» Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘P’ (Assume that x-velocity ‘u’ is

known).
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Using Gauss—dive;gence theorem i.e, fV g—ZdV = fS on.dS

e T e
== / k:gdy.dz — pC'p/ ul'dy.dz =0
w x w




Numerical Methodology : 1D Convection 9
—

» Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘P’
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Numerical Methodology : 1D Convection 9
—

» Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘P’

! l— 2 | oT T
v e e w(5) (%) | e en- an =0
——o——o o Fle AN w
w e
Ty —Tp Tp—Tw]
Bx, = k[ P ]—pCp [ueTe — uwTy)

» How do you find face center values of u & T 7

» Option 1 : Average of common cells i.e, T, = 0.5%(Tg+Tp)




Advection Schemes

—

10

» The averaged variable does not work when gradient of flow is very large.

Flow(+) >
uu u D
e o=l
D v uu

& Flow(-) The values of weight function are
available in literature ([1]).
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Advection Schemes 10
» The averaged variable does not work when gradient of flow is very large.
Flow(+) >
uu u D
j_';_['T'V;'_'E'_';F'_'r';f'_'[_';] Ty = uiTyp + weTyu +wsTypo (11)

< ;’,zw(_) The values of weight function are
available in literature ([1]).

» Based on values of weights, Advection schemes are classified as Second Order
Upwind (SOU), First Order Upwind (FOU), Quadratic Interpolation for
Kinematic Convection (QUICK), Central Difference (CD) etc..
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OpenFOAM Format of Equations
—

11

» Let us check general Scalar Transport Model solution implementation in
OpenFOAM

» Go to — /opt/openfoam?/applications/solvers/basic/scalarTransportFoam
» Open scalarTransportFoam.C file




OpenFOAM Format of Equations
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11

» Let us check general Scalar Transport Model solution implementation in

OpenFOAM

» Go to — /opt/openfoam?/applications/solvers/basic/scalarTransportFoam

» Open scalarTransportFoam.C file

while (simple.correctNonOrthogonal())

{

fvScalarMatrix TEgn

fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(DT, T)

fvOptions(T)
)i

TEgn.relax();
fvOptions.constrain(TEqn);
TEgn.solve();
fvOptions.correct(T);
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Solution Methodology
——

12

» Let us consider a tutorial example to understand solution schemes used by
OpenFOAM

» Go to — /opt/openfoam7/tutorials/basic/scalarTransportFoam /pitzDaily
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Solution Methodology
——

12

» Let us consider a tutorial example to understand solution schemes used by

OpenFOAM

» Go to — /opt/openfoam7/tutorials/basic/scalarTransportFoam /pitzDaily
» Open fvSolution & fvSchemes files

divSchemes solvers

default none; T

div(phi,T) Gauss linearUpwind grad(T); {

solver
. preconditioner

laplacianSchemes tolerance

default none; relTol

laplacian(DT,T) Gauss linear corrected; } }
}

PBiCGStab;
DILU;
le-06;

0;
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[lustration : 2D Unsteady State Convection in backward facing stepi13

—

» Consider a 2D Unsteady state heat-convection problem as shown :

Inlet: U, = 10.0 m/s Outlet: p =0 Pa

k [
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[lustration : 2D Unsteady State Convection in backward facing stepi13

—

» Consider a 2D Unsteady state heat-convection problem as shown :

Inlet: U, = 10.0 m/s Outlet: p= 0 Pa

i Inlet Temperature 1 units
e T, Diffusivity ( a = k/pCp) 0.01
Wall zeroGradient
. { Outlet zeroGradient
e el I)imﬂx.-aim::(:nm Inlet Velocity 10 units

t

d uc ation

o|g™ =
m-
),

m 1Y
- b



[lustration : 2D Unsteady State Convection in backward facing stepi4

—

» Download the zip file given with video & extract the files
» In the terminal, type ‘blockMesh’ to generate mesh file




[lustration : 2D Unsteady State Convection in backward facing stepi4
—

» Download the zip file given with video & extract the files
» In the terminal, type ‘blockMesh’ to generate mesh file

» Run ‘scalarTransportFoam’ solver and check the results using ‘paraFoam’.




[lustration : 2D Unsteady State Convection in backward facing stepi4
—

» Download the zip file given with video & extract the files
» In the terminal, type ‘blockMesh’ to generate mesh file

» Run ‘scalarTransportFoam’ solver and check the results using ‘paraFoam’.

Ux
2 -1 0 1 2 3 4 5 6 7 8 9 10
| | | | | | | | | ! | |

Velocity Contour

T
0.8 0.82 0.84 0.86 0.88 0.9 092 094 0.96 0.98 1
| | | | | | | | I I |

Temperature Contour
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Thank you for listening!

Sumant Morab
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