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Recap : Computational Heat Conduction (CHCd) 3

I Governing Equations :

∂(ρCpT )

∂t
= k

[
∂2T

∂x2
+
∂2T

∂y2

]
(1)

I Discretization : Finite Volume Methodology

aPTP + aWTW + aETE + b = 0 (2)

I Solution Methodology : Iterative scheme with implicit time-stepping

I Illustrative Problem : Unsteady 2D heat conduction in a metallic slab.
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Convective Heat Transfer 4

I Consider flow over bike engine as shown

I What if bike stopped and air speed is 0 ? - pure conduction.

I Convection - “ Energy transfer between fluid/solid interfaces in motion due
vibration of molecules(conduction) & bulk motion of fluid(Advection) ”
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Convection - Practical Applications 5

1. Day and Night Breeze : The temperature of land surface is maintained due
to convection between land surface and air along with ocean surface and air as
shown

1. Body Temperature Regulation : the
heat generated by cells tissue cells is carried
by blood which moves through arteries and
veins.

I Variables Involved : Temperature + Flow
(velocities)



Energy Conservation with Convection 6

I Governing Law : Over a time-interval ∆t, net amount of convected thermal
energy entering the C.V + heat generated within C.V = amount of increase of
Enthalpy(∆E) stored within C.V

=⇒
[
Qnet,incond +Qnet,inadv

]
+Qgen,vol =

∂E

∂t
(3)

=⇒ ∂E

∂t
= −∂(qx + hx)

dx
− ∂(qy + hy)

dy
(4)

=⇒ ∂(ρCpT )

∂t
+
∂hx
∂x

+
∂hy
∂y

= −∂qx
∂x
− ∂qy
∂y

(5)



Energy Conservation (Convection) - Continuous PDE Form 7

I Using Fourier law and advected enthalpy flux expansion, the continuous form
of energy conservation in terms of Temperature can be derived as follows :

qx = −k∂T
∂x

(6)

qy = −k∂T
∂y

(7)

hx = mxCpT = ρuxCpT (8)

hy = myCpT = ρuyCpT (9)

∂(ρCpT )

∂t
+
∂(ρuxCpT )

∂x
+
∂(ρuyCpT )

∂y
= k

[
∂2T

∂x2
+
∂2T

∂y2

]
(10)

I Along with Temperature, flow variables need to be calculated at faces of C.V
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Numerical Methodology : 1D Convection 8

I Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘P’ (Assume that x-velocity ‘u’ is
known).

k
∂2T

∂x2
= ρCpu

∂T

∂x

=⇒
∫
V
k
∂2T

∂x2
dV = ρCp

∫
V
u
∂T

∂x
dV

Using Gauss-divergence theorem i.e,
∫
V
∂φ
∂ndV =

∫
S φn̂.dS

=⇒
∫ e

w
k
∂T

∂x
dy.dz − ρCp

∫ e

w
uTdy.dz = 0



Numerical Methodology : 1D Convection 9

I Consider a 1D domain as shown. It is required to obtain algebraic equation
for steady state energy conservation at CV - ‘P’.

k

[(
∂T

∂x

)
e

−
(
∂T

∂x

)
w

]
− ρCp [(uT )e − (uT )w] = 0

=⇒ k

[
TE − TP
δxe

− TP − TW
δxw

]
= ρCp [ueTe − uwTw]

I How do you find face center values of u & T ?

I Option 1 : Average of common cells i.e, Te = 0.5*(TE+TP )
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Advection Schemes 10

I The averaged variable does not work when gradient of flow is very large.

Tf = w1Tf,D + w2Tf,U + w3Tf,UU (11)

The values of weight function are
available in literature ([1]).

I Based on values of weights, Advection schemes are classified as Second Order
Upwind (SOU), First Order Upwind (FOU), Quadratic Interpolation for
Kinematic Convection (QUICK), Central Difference (CD) etc..
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OpenFOAM Format of Equations 11

I Let us check general Scalar Transport Model solution implementation in
OpenFOAM

I Go to → /opt/openfoam7/applications/solvers/basic/scalarTransportFoam

I Open scalarTransportFoam.C file
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Solution Methodology 12

I Let us consider a tutorial example to understand solution schemes used by
OpenFOAM

I Go to → /opt/openfoam7/tutorials/basic/scalarTransportFoam/pitzDaily

I Open fvSolution & fvSchemes files
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Illustration : 2D Unsteady State Convection in backward facing step13

I Consider a 2D Unsteady state heat-convection problem as shown :
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Illustration : 2D Unsteady State Convection in backward facing step14

I Download the zip file given with video & extract the files

I In the terminal, type ‘blockMesh’ to generate mesh file

I Run ‘scalarTransportFoam’ solver and check the results using ‘paraFoam’.
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Thank you for listening!

Sumant Morab
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